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1To the title page: What is the meaning of ΦSX? Firstly, it sounds like “Physics”. Secondly, the symbols stand for
the three main pillars of theoretical physics: “X” is the symbol for the coordinate of a particle and represents Classical
Physics. “Φ” is the symbol for the wave function and represents Quantum Physics “S” is the symbol for the entropy
and represents Statistical Physics.

https://phisx.org/


Foreword and Outlook

A word of caution, before I start: This book is work in progress. You can use this book as a basis for
following through the material presented in the course. But, you should never blindly copy formulas
and apply them. The chances that there are still errors is still too large. However, the goal of this
lecture is that the reader is able to convince himself, whether it is correct what he learns. For this
purpose, I provide explicit derivations of all the material presented in this lecture and I make an effort
to provide guidance to make careful reading as easy as possible.

My aim is to include all proofs in a comprehensive and hopefully water-tight manner. I am also
avoiding special systems of units. I consider this important in view of a large variety of notations,
differing definitions etc. While the proofs have the advantage to train the student to perform the
typical operations, it clutters the course with material far from applications. Therefore, I have placed
many of the more detailed derivations into appendices. It is strongly recommended to follow through
the derivations. On the graduate level, the student should be able to follow the proofs without
problem.

This book provides an introduction into the quantum mechanics of the interacting electron gas.
It aims at students at the graduate level, that already have a good understanding on one-particle
quantum mechanics.

The goal of the lecture is that the student

• understands language of many-particle quantum mechanics using many-particle wave functions,
field operators and Green’s functions.

• understands the approach to many-particle physics both using Green’s functions as well as from
the point of view of density-functional theory.

• is familiar with many-electron Green’s functions, their meaning and properties

• understands the main theorems underlying the perturbation expansion of Green’s functions,
including Feynman diagrams.

• understands both time-dependent as well as finite-temperature formulation of Green’s functions

In the online version of my lecture notes, there are many hyperreferences that allow one to jump
to the relevant information in the book. The hyperlinks do not stand out because they have a different
color. Thus, it is important to know where the hyperlinks are. The following items are hyperlinks:

• items in the list of contents will take you to the corresponding section.

• references to equation numbers, figures, tables, sections, appendices, etc. will take you to the
indicated object.

• citations will take you to the corresponding position in the list of references

It is recommended that the student is already familiar with the one-particle description of the
electronic structure of solids, because the present text implicitly builds on these concepts. These
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foundations are provided in the preceding volume of the ΦSX series “Introduction to solid state
theory”[1].

My lectures do not follow a particular text, but they reflect my personal approach to the problem.
Nevertheless it is useful and it will often be necessary to consult other text books. For the section on
Green’s function, I strongly recommend the book by Stefanucci and van Leeuwen[2]. It makes use of
a unified view of zero-temperature, finite-temperature and non-equilibrium Green’s functions, which
is similar to the present text. A solid, rather detailed, reference employing the more traditional view
is the text by Fetter and Walecka [3]. The book of Mattuck [4] presents a very intuitive approach to
Feynman diagrams. The book of P. Fulde[5] provides a wealth of physical insight and, in addition,
and it connects to the quantum chemical point of view.

Another excellent book on many-particle physics, which, however, concentrates on path integrals,
a quite different approach from the one used in my text, is the book by Negele and Orland [6]. A
recommended reading are the Lecture notes[7] by Wolf-Dieter Schöne.

With the present lecture notes, I hope to provide a solid ground on the subject of many-electron
Green’ functions. In order to make use of it it will be necessary to specialize and extend this back-
ground. For this purpose, I recommend the lecture notes of the Julich autumn schools on correlated
electrons. The lecture notes of these schools are freely available at

https://www.cond-mat.de/events/correl.html

0.1 Some Thoughts

Many-particle quantum mechanics comes in several flavors, the most prominent being the following.

• So-called wave function approaches, which directly deal with many-particle wave functions.
Wave function approaches are commonly used by quantum chemists.

• Many-particle Green’s-function approaches. Green’s-function approaches are best known from
Feynman diagrams, which are one of the prominent tools in this methodology. Many-particle
Green’s function are close to spectroscopic measurements of excitations.

• effective independent-particle descriptions such as density-functional theory. Here the physical
description is very similar to that of non-interacting electrons, while the interaction are taken
into account approximately as in the Hartree-Fock approximation, or exactly as in the density-
functional theory. Density-functional theory is the basis of first-principle calculations of solids.

While the focus of this lecture is on Green’s functions, the intent of this lecture is to also show the
link to other descriptions.

https://www.cond-mat.de/events/correl.html
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Chapter 1

Non-interacting electrons

In this section, I will remind of some concepts from quantum mechanics and I will introduce my
notation. A more detailed coverage is found in Blöchl, ΦSX: Introduction to Solid State Theory.[1]
While the material in this chapter is rather elementary, I use it to make the reader familiar with the
notation and the mathematical language, that will be used in the later chapters.

1.1 One-particle quantum mechanics

1.1.1 One-particle Schrödinger equation

The wave function of a single particle is described by a time-dependent Schrödinger equation.

iℏ∂t |ψ(t)⟩ = ĥ(t)|ψ(t)⟩ (1.1)

where |ψ(t)⟩ is the quantum state and ĥ(t) is the time-dependent Hamiltonian.
If the Hamiltonian ĥ is time-independent, the problem is invariant under time translations. Time-

translation symmetry, in turn, results in energy conservation, which implies that the general solution
can be expressed in terms of energy eigenstates |ϕn⟩ with arbitrary coefficients cn.

|ψ(t)⟩ =
∑
n

|ϕn⟩e−
i
ℏ ϵntcn (1.2)

The coefficients are determined by the initial conditions as cn = ⟨ϕn|ψ(t = 0)⟩.
The energy eigenstates |ϕn⟩ obey the time-independent Schrödinger equation

ĥ|ϕn⟩ = |ϕn⟩ϵn (1.3)

and the orthonormality condition1

⟨ϕm|ϕn⟩ = δm,n (1.4)

To ensure normalization of the wave function |ψ(t)⟩ in Eq. 1.2, the coefficients need to satisfy∑
n c
∗
ncn = 1.

1.1.2 Notation

In my lecture notes, I make an effort to be explicit in notation and units.

1The orthogonality of non-degenerate states is automatically satisfied, but the orthogonality between states from
the same degenerate multiplet must be imposed.

3



4 1 NON-INTERACTING ELECTRONS

• vectors are indicated by an upper arrow such as r⃗ .

• matrices are indicated by a bold-face symbol A. On the blackboard, I use a double underscore
A
¯̄

instead.

• A quantum state is written in bra-ket notation as |ψ⟩.

• a quantum operator, such as Â, acting on a ket is indicated by a hat. There is a distinction
between a quantum operator and a differential operator. Let me demonstrate the difference
on the example of a momentum operator.

– Do not write ℏi ∇⃗|ψ⟩, nor p̂Ψ(r⃗),

– but

p̂|ψ⟩ =
∫
d3r |r⃗⟩

ℏ
i
∇⃗⟨r⃗ |ψ⟩ or (1.5)

ℏ
i
∇⃗⟨r⃗ |ψ⟩ =

ℏ
i
∇⃗ψ(r⃗) = ⟨r⃗ |p̂|ψ⟩ (1.6)

• For the matrix elements of a function of a matrix, taking the inverse as an example for a
function, I use

A−1α,β
def
= (A−1)α,β ̸= (Aα,β)−1 (1.7)

• I do not distinguish between column and row vectors. Rather, I distinguish between two different
products, the scalar product and the dyadic product.

– The dot product a⃗ · b⃗ = a⃗b⃗ =
∑

j ajbj is also called scalar product or inner product.
The dot is often omitted. The dot product of two vectors is a scalar. It corresponds to a
product of a row vector on the left with a column vector on the right.

– dyadic product a⃗ ⊗ b⃗, defined by (a⃗ ⊗ b⃗)m,n = ambn is also called outer product.

1.1.3 Spin orbitals

The electron is properly described by the Dirac equation, which is a relativistic equation for spin- 12
particles. The wave function of the Dirac equation has four components, which make up a four-
component Dirac spinor. Each component is a complex wave function in real space. The four
components describe electrons with two spin directions and positrons with two spin directions. In the
non-relativistic limit, the Dirac equation separates into two Pauli equations, one for the electron
components and one for the positron components. The Pauli equation describes spin- 12 particles with
two spin-components.

I will describe electrons here on the level of the Pauli equation: An electron is characterized by a
position r⃗ in space and a spin index σ. The spin index can have the values 2 σ ∈ {↑, ↓}. Often we
will refer to the numerical values of σ, namely ↑ =̂ + 1 and ↓ =̂− 1.

The wave function of an electron consists of two distinct functions in space and time, namely
ψ(r⃗ , ↑, t) and ψ(r⃗ , ↓, t). The wave function is thus a so-called spin orbital or a two-component
spinor.

2The notation using arrows is mathematical slang. It is very intuitive but not according the rules. What it means
is that a spin- 1

2
has a two-dimensional Hilbert space. As basisset for this Hilbert space, I can use the two eigenstates

of Ŝz

Ŝz |ψ1⟩ = |ψ1⟩
(
+
ℏ
2

)
and Ŝz |ψ2⟩ = |ψ2⟩

(
−
ℏ
2

)
(1.8)

A more pictorial way of distinguishing the two states uses arrows, i.e. | ↑⟩ def
= |ψ1⟩, respectively | ↓⟩ def

= |ψ2⟩. The sum
over these two states is written as

∑
σ∈{↑,↓}, rather than

∑2
σ=1 or

∑
σ∈{1,2}.
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REAL-SPACE-AND-SPIN BASISSET

The states |r⃗ , σ⟩ form a complete basis for a single electron. The states in this basis are characterized
by the eigenvalue equations

ˆ⃗r |r⃗ , σ⟩ = |r⃗ , σ⟩r⃗

Ŝz |r⃗ , σ⟩ = |r⃗ , σ⟩
ℏ
2
σ = |r⃗ , σ⟩

{
+ ℏ2 for σ = +1 =↑
− ℏ2 for σ = −1 =↓

. (1.9)

The states obey the orthonormality condition

⟨r⃗ , σ|r⃗ ′, σ′⟩ = δ(r⃗ − r⃗ ′)δσ,σ′ (1.10)

and the completeness relation in the one-electron Hilbert space

1̂ =
∑

σ∈{↑,↓}

∫
d3r |r⃗ , σ⟩⟨r⃗ , σ| . (1.11)

The one-electron wave function is obtained as

ψ(r⃗ , σ, t) = ⟨r⃗ , σ|ψ(t)⟩ (1.12)

so that

|ψ(t)⟩ =
∑

σ∈{↑,↓}

∫
d3r |r⃗ , σ⟩⟨r⃗ , σ|ψ(t)⟩ =

∑
σ∈{↑,↓}

∫
d3r |r⃗ , σ⟩ψ(r⃗ , σ, t) (1.13)

Combined position and spin argument

In order to simplify the notation, we combine the continuous position r⃗ and discrete spin coordinate
σ into a single “four-dimensional” quantity

x⃗
def
= (r⃗ , σ) with r⃗ ∈ R3 and σ ∈ {↑, ↓} (1.14)

In this notation, the integral is defined as∫
d4x

def
=

∑
σ∈{↑,↓}

∫
d3r (1.15)

and the δ function is

δ(x⃗ − x⃗ ′) def
= δ(r⃗ − r⃗ ′)δσ,σ′ (1.16)

Often, I need to refer to a specific component of x⃗ such as either the position r⃗ or the spin index
σ. Then, I use the components with the same indices, that is x⃗ = (r⃗ , σ), x⃗ ′ = (r⃗ ′, σ′), x⃗1 = (r⃗1, σ1),
and so on. Let me give a small warning beforehand: I will use the symbol σ also as occupation-number
eigenvalues σ ∈ {0, 1}. This notation may be confusing.

1.1.4 Frequently used observables

Let me remind you of the most relevant observables. I will provide here, both, the operator and the
corresponding expectation value.
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• probability density n(r⃗ , t) for the electron to be at position r⃗

n̂(r⃗)
def
=

∑
σ∈{↑,↓}

|r⃗ , σ⟩⟨r⃗ , σ| (1.17)

n(r⃗ , t)
def
= ⟨ψ(t)|n̂(r⃗)|ψ(t)⟩ =

∑
σ∈{↑,↓}

|ψ(r⃗ , σ, t)|2 (1.18)

The probability density at r⃗ is sum of the absolute-squared wave-function amplitudes for both
spin directions. In one-particle quantum mechanics, the operator n̂(r⃗) is the real-space projec-
tion operator.

• (average) position r̂

r̂
def
=

∑
σ∈{↑,↓}

∫
d3r |r⃗ , σ⟩r⃗⟨r⃗ , σ|

r⃗(t)
def
= ⟨ψ(t)|ˆ⃗r |ψ(t)⟩ =

∫
d3r r⃗

∑
σ∈{↑,↓}

|ψ(r⃗ , σ, t)|2 (1.19)

The average position is used, for example, to determine the electric dipole d⃗ = q⟨ψ|ˆ⃗r − r⃗01̂|ψ⟩
of a molecule, where q = −e is the electron charge. In an optical excitation, the dipole couples
to the electric field of the light wave.

• probability Pσ for having spin ℏ
2σ along the z-axis. P̂σ is the spin-projection operator.

P̂σ =

∫
d3r |r⃗ , σ⟩⟨r⃗ , σ|

Pσ(t)
def
= ⟨ψ(t)|P̂σ|ψ(t)⟩ =

∫
d3r |ψ(r⃗ , σ, t)|2 , (1.20)

For example, P↑ =
∫
d3r |ψ(r⃗ , ↑, t)|2.

• Spin along an axis e⃗ with e⃗2 = 1

e⃗ ˆ⃗S
def
=

∑
σ,σ′∈{↑,↓}

∫
d3r |r⃗ , σ⟩

3∑
j=1

ej
ℏ
2
σj,σ,σ′⟨r⃗ , σ′|

e⃗S⃗(t) = ⟨ψ(t)|e⃗ ˆ⃗S|ψ(t)⟩ =
∫
d3r

3∑
j=1

ej
ℏ
2

∑
σ,σ′∈{↑,↓}

ψ∗(r⃗ , σ, t)σj,σ,σ′ψ(r⃗ , σ
′, t) (1.21)

where the (2× 2) matrices σj are the Pauli matrices.

PAULI MATRICES

The Pauli matrices are

σx =̂

(
0 1

1 0

)
and σy =̂

(
0 −i
i 0

)
and σz =̂

(
1 0

0 −1

)
(1.22)

so that

e⃗σ⃗=̂

(
ez ex − iey

ex + iey −ez

)
(1.23)

The most general hermitian 2× 2 matrix is
∑

j∈{0,x,y ,z} ajσj with a 4-dimensional, real-valued
vector a⃗ with indices j ∈ {0, x, y , z} and the 2-dimensional unit matrix σ0 = 111.

I recommend to memorize the Pauli matrices.
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• spin density: The spin density n⃗s(r⃗ , t) is defined as the electron density3 of unpaired electrons.[8].

n̂s,j(r⃗) =
∑

σ,σ′∈{↑,↓}

|r⃗ , σ⟩σj,σ,σ′⟨r⃗ , σ′| for x ∈ {x, y , z} (1.24)

so that

ns,j(r⃗ , t) =
∑

σ,σ′∈{↑,↓}

ψ∗(r⃗ , σ, t)σj,σ,σ′ψ(r⃗ , σ
′, t) (1.25)

To avoid ambiguities, let me write down an example, namely the x-component of the spin
density:

n̂s,x =

(
|r⃗ , ↑⟩
|r⃗ , ↓⟩

)(
0 1

1 0

)(
⟨r⃗ , ↑ |
⟨r⃗ , ↓ |

)
= |r⃗ , ↑⟩⟨r⃗ , ↓ |+ |r⃗ , ↓⟩⟨r⃗ , ↑ |

ns,x(r⃗ , t) = ψ
∗(r⃗ , ↑)ψ(r⃗ , ↓) + ψ∗(r⃗ , ↓)ψ(r⃗ , ↑) (1.26)

The spin contribution of the angular-momentum density is obtained from the spin density by
multiplication with the spin ℏ/2 of the electron

s⃗(r⃗ , t)
def
=
ℏ
2
n⃗s(r⃗ , t) (1.27)

The magnetization m⃗(r⃗ , t) is obtained from the spin density n⃗s(r⃗ , t) by multiplication with
the electron magnetic moment µe = 1

2geµB, where ge = 2.002319 . . . is the electron Landé

g-factor of the free electron and µB
def
= eℏ/(2me) is the Bohr magneton.[9]

m⃗(r⃗ , t)
def
= −µe n⃗s(r⃗ , t) (1.28)

Because of the negative charge of the electron, its magnetic moment is oriented opposite to
the spin direction, which explains the minus sign in the equation Eq. 1.28 above4.

• momentum: The momentum operator, expressed in a real-space-and-spin basisset, has the
following form

3According to the definition in the Gold book[8], the spin density would be |n⃗s(r⃗ , t)| rather then the vectorial quantity.
I consider this as an oversight, because usually only collinear spin distributions with an axis along the z-direction are
considered.

4Some caution is needed regarding which quantities carry the minus sign and which do not. This is not always
handled on the same way.
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MOMENTUM OPERATOR

ˆ⃗p =
∑

σ∈{↑,↓}

∫
d3r |r⃗ , σ⟩

ℏ
i
∇⃗⟨r⃗ , σ| (1.29)

which has matrix elements a

⟨r⃗ , σ| ˆ⃗p|r⃗ ′, σ′⟩ =
ℏ
i
∇⃗rδ(r⃗ − r⃗ ′)δσ,σ′ = δ(r⃗ − r⃗ ′)δσ,σ′

ℏ
i
∇⃗r ′ (1.32)

where the gradient ∇⃗ acts on the spatial argument r⃗ .

aLike the δ-function, also ∇⃗δ(r⃗) is not a regular function, but a distribution (see for example [10]). It is
defined by the integral identity ∫

d3r f (r⃗)∇⃗δ(r⃗) = − ∇⃗
∣∣
r⃗=0⃗

f (1.30)

where f (r⃗) can be any differentiable function. One can also construct ∇⃗δ(r⃗) as the limit of a sequence of
functions, or via the differential quotient from the δ-function

e⃗ ∇⃗δ(r⃗) = lim
∆→0

δ(r⃗ + e⃗∆)− δ(r⃗ − e⃗∆)
2∆

(1.31)

where e⃗ is an arbitrary unit vector. This vector specifies the direction along which the derivative is taken.

The momentum expectation value at time t is

p⃗(t) = ⟨ψ(t)| ˆ⃗p |ψ(t)⟩ Eq. 1.29
=

∑
σ∈{↑,↓}

∫
d3r ⟨ψ(t)|r⃗ , σ⟩

ℏ
i
∇⃗⟨r⃗ , σ|ψ(t)⟩

=

∫
d3r

∑
σ∈{↑,↓}

ψ∗(r⃗ , σ, t)
ℏ
i
∇⃗ψ(r⃗ , σ, t) (1.33)

• current density: The particle-current density is calculated from the velocity v⃗ =
.
r⃗ = ∇⃗pH(p⃗, r⃗).

For the Hamilton operator H(p⃗, r⃗ , t) = 1
2m (p⃗−qA⃗(r⃗ , t)

)2
+qΦ(r⃗ , t) of a charged particle with

charge q and mass m in an electromagnetic field with an electric potential Φ(r⃗ , t) and a vector
potential A⃗(r⃗ , t), the current density is

ˆ⃗j(r⃗) =
1

2me

∑
σ∈{↑,↓}

[(
p̂ − qA⃗(ˆ⃗r)

)
|r⃗ , σ⟩⟨r⃗ , σ|+ |r⃗ , σ⟩⟨r⃗ , σ|

(
p̂ − qA⃗(ˆ⃗r)

)]
. (1.34)

Two terms are required to ensure that the observable is represented by a hermitian operator.
The charge current is obtained from the particle current by multiplication with the charge q.

1.1.5 Discrete and continuous spectra of quantum states

The spectrum of an operator is the set of its eigenvalues. Quantum states may have discrete and
continuous spectra, and, even worse, they may have spectra consisting of discrete eigenvalues and
regions, where they are continuous. An example is the hydrogen atom, which has a discrete energy
spectrum at negative energies, but a continuous spectrum of scattering states at positive energies.
A common mistake is to forget the continuous part of the spectrum.

Rather than dealing with these difficulties, I am avoiding them by introducing what I call a finite
universe. A continuous spectrum can result, when the norm is defined on an infinite region. When
this region is replaced by a finite region, like a very large box, the spectrum becomes discrete. I call
this box my finite universe.
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As a consequence of the finite extent, all states have the regular normalization and all spectra are
discrete. The advantage of this choice is that I can treat localized and extended states on the very
same footing. While the spectrum of a finite system is discrete, the eigenvalues may be extremely
close. Furthermore, states that extend over the entire box, may have a very small wave function
amplitude.

The limit to a truly infinite system, is postponed to the final result, rather than done during the
derivations. Given that an infinite system is usually an idealization, I consider this approach appealing.

For infinite periodic systems, which are described with periodic boundary conditions and Bloch’s
theorem (see below in section 1.1.8), we proceed slightly differently: Rather than choosing a finite
volume, we choose a large supercell and require the wave function (not only the potential) to be strictly
periodic with the supercell lattice vectors. This requirement leads to a discrete energy spectrum just
as in the case described above. The wave functions are normalized within this supercell. Once the
final equations have been obtained, we increase the size of the supercell to infinity and normalize
within the regular unit cell of the crystal.

1.1.6 Momentum eigenstates

The eigenstates of the momentum are plane waves, which extend over an infinite volume. The
momentum eigenvalues are continuous.

I define the basis states as eigenvalues of momentum operator Eq. 1.29 and spin (with ↑ =̂1 and
↓ =̂− 1)

ˆ⃗p|p⃗, σ⟩ = |p⃗, σ⟩p⃗

Ŝz |p⃗, σ⟩ = |p⃗, σ⟩
ℏ
2
σ (1.35)

The eigenvalue equation of the momentum operator Eq. 1.29 and the normalization ⟨p⃗, σ|p⃗, σ⟩ =
1 define the basis states of the momentum representation as

⟨x⃗ |p⃗, σ′⟩︸ ︷︷ ︸
⟨r⃗ ,σ|p⃗,σ′⟩

=
1√
Ω
e
i
ℏ p⃗r⃗δσ,σ′ (1.36)

where Ω = L3 is the size of the integration volume, which also defines the periodic boundary condition
for the wave function. For periodic boundary conditions in a cubic box of side length L, the set
of momentum eigenvalues p⃗i ,j,k = (i , j, k)∆p is discrete with integer i , j, k and the spacing of the
momentum eigenvalues is ∆p = 2πℏ

L in each of the three spatial directions.
Note that I define momentum eigenstates which are normalized within a finite, even though very

large, box. I name the box jokingly the “finite universe”. The consequence of this choice is that the
sum over all states is a discrete sum, rather than an integral. This simplifies the notation considerable.
The limit to an infinite box needs to be done, but here it is done at the very end of a calculations,
or where it becomes convenient, and not right in the beginning. Adopting this style requires that the
reader is familiar with executing this limit.5

5One advantage is that one may capture problems, when another limiting case is to be done, which may not be
interchangeable with that to an infinitely large system. In this context is however also important to distinguish between
periodic boundary conditions and that of a true finite box.
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NORMALIZATION OF MOMENTUM EIGENSTATES

The overlap matrix elements of momentum eigenstates area

⟨p⃗, σ|p⃗′, σ′⟩ Eq. 1.36
= δσ,σ′

∫
Ω

d3r
1

Ω
e
i
ℏ (p⃗−p⃗′)r⃗ = δp⃗,p⃗′δσ,σ′

Ω→∞→
(2πℏ)3

Ω
δ(p⃗ − p⃗′)δσ,σ′ (1.38)

The completeness relation has the form

1̂ =
∑

{p⃗},σ∈{↑,↓}

|p⃗, σ⟩⟨p⃗, σ| Ω→∞→
∑

σ∈{↑,↓}

Ω

∫
d3p

(2πℏ)3
|p⃗, σ⟩⟨p⃗, σ| (1.39)

aIn the limit Ω→∞, I use

1 =
∑
{p⃗′}

δ
p⃗,p⃗′

∆p=2πℏ/L
= Ω

∑
{p⃗′}

(∆p)3

(2πℏ)3
δ
p⃗,p⃗′ ⇝ Ω

∫
d3p′

(2πℏ)3
(2πℏ)3

Ω
δ(p⃗ − p⃗′) = 1 . (1.37)

The factors are verified by performing the sum, respectively, the integral, which, both, give 1 as result. I express this
as δp,p′ ⇝

(2πℏ)3
Ω

δ(p⃗ − p⃗′).

1.1.7 Non-orthonormal and local orbitals

When studying atoms, it is often convenient to use local orbitals |χα⟩. The local orbitals are rem-
iniscent of atomic orbitals, because they usually have the same quantum numbers as the atomic
wave functions. The quantum numbers of atomic orbitals are the principal quantum number n, the
angular-momentum quantum number ℓ, the magnetic quantum number m, and spin quantum
number σ. In addition, there is a site index R referring to a particular atom. Thus, the index
α = (R, n, ℓ,m, σ) is a composite index of all these quantum numbers.

The principal quantum number is often suppressed, because the main interest of many-particle
problems is related to the valence states, to which only one main quantum number contributes for a
given site R and angular momentum ℓ.

Often, but not always, we will assume that the local orbitals are orthonormal among each other,
that is ⟨χα|χβ⟩ = δα,β. This orthonormality is not compatible with true atomic orbitals, when
orbitals from different sites are considered. However, in a solid, one can construct so-called Wannier
orbitals[11], which are localized and at the same time orthonormal to each other.

In practice, however, also Wannier orbitals are often too extended to be of use. Furthermore
the Wannier orbitals often have a complex shape. Therefore, it is often advantageous to work in a
non-orthonormal basisset, which provides more flexibility. This is shown in the present section.

We consider a basisset of orbitals |χα⟩, which has an overlap matrix

Sα,β
def
= ⟨χα|χβ⟩ (1.40)

The unit operator6 expressed in the non-orthonormal basis has the form

1̂ =
∑
α,β

|χα⟩
(
S−1

)
α,β
⟨χβ | (1.41)

We can define a projector function ⟨πα| =
∑

β

(
S−1

)
α,β
⟨χβ |, so that

1̂ =
∑
α

|χα⟩⟨πα| . (1.42)

6For a finite basisset, the unit operator below is defined as unity within this basisset. In the more extended Hilbert
space of all square-integrable functions, the expression is a projection operator onto the basisset spanned by the local
orbitals.
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The projector function probes the state for a certain character. This character is quantified by the
“weight” ⟨πα|ψ⟩ of a local orbital |χα⟩ in the state |ψ⟩. I consider the projector function as probe
function.

In practical applications, the overlap matrix S is often singular7, which implies that its inverse
S−1 does not exist, respectively that it is not unique. This is the case whenever one works with
finite, and therefore incomplete basissets. The ambiguity in the inverse reflects in a similar ambiguity
for the projector functions. To make this ambiguity explicit, we use the projector functions as the
fundamental quantity, as opposed to the S−1, and specify only the requirement for the projector
function, namely the bi-orthogonality condition.

⟨πα|χβ⟩ = δα,β (1.43)

The inverse of the overlap matrix becomes a quantity that is derived from the projector functions
via

⟨πα|πβ⟩ = ⟨πα|1̂|πβ⟩
Eq. 1.41
=

∑
γ,δ

⟨πα|χγ⟩
(
S−1

)
γ,δ
⟨χδ|πβ⟩

Eq. 1.43
=

(
S−1

)
α,β

(1.44)

NON-ORTHONORMAL ORBITALS

The wave function can be represented in terms of local orbitals |χα⟩ as

|ψ(t)⟩ =
∑
α

|χα⟩⟨πα|ψ(t)⟩ (1.45)

where the state |πα⟩ is the projector functiona, which extracts the contribution of a particular local
orbital |χα⟩ from the wave function |ψ⟩.
The projector functions obey the bi-orthonormality condition

⟨πα|χβ⟩
Eq. 1.43
= δα,β (1.46)

as well as

⟨χα|χβ⟩
Eq. 1.40
= Sα,β

⟨πα|πβ⟩
Eq. 1.44
=

(
S−1

)
α,β

(1.47)

Convention:

• observables Â are written with the projector functions outward

Â =
∑
α,β

|πα⟩ ⟨χα|Â|χβ⟩︸ ︷︷ ︸
Aα,β

⟨πβ | (1.48)

• states |ψ⟩, density matrices ρ̂ and densities of states are written with the orbitals pointing
outward

ρ̂ =
∑
α,β

|χα⟩ ⟨πα|ρ̂|πβ⟩︸ ︷︷ ︸
ρα,β

⟨χβ | (1.49)

Non-orthonormal basissets are summarized in appendix B on p. 401.

aI introduced the terminology of a projector function in my paper on the projector augmented wave method[12].

7A matrix is singular, when it has a vanishing (left or right) eigenvalue.
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One can easily verify that the projector functions extract the appropriate coefficients for any state
|ψ⟩ that is contained within the Hilbert space spanned by the local orbitals: Consider a wave function
that can be represented by the local orbitals with some coefficients cα

|ψ⟩ =
∑
α

|χα⟩cα (1.50)

A particular coefficient cβ can be obtained from the scalar product of the wave function |ψ⟩ with the
projector function

⟨πβ |ψ⟩ =
∑
α

⟨πβ |χα⟩cα
Eq. 1.46
= cβ q.e.d. (1.51)

If the basis set is orthonormal, that is ⟨χα|χβ⟩ = δα,β, the orbitals themselves can act as projector
functions. This is what is done in nearly all text books. Distinguishing orbitals and projector functions,
however, provides a lot of additional freedom.

The treatment of non-orthonormal orbitals is mathematically analogous to that of vectors using
oblique coordinate systems. Distinguishing orbitals and projector functions is analogous to covariant
and contravariant vectors in skewed coordinate systems. A comparison between bra-ket notation
and the co- and contravariant notation is given in table 1.1.

Each one-particle orbital defines a coordinate axis |χµ⟩=̂e⃗µ in the Hilbert space. The overlap
matrix between the basis states plays the role of a metric tensor Sµ,ν = ⟨χµ|χν⟩=̂gµ,ν = e⃗µe⃗ν . On
the one hand, co- and contra-variant indices distinguish between states and projector functions, a
distinction which is not explicit in the bra-ket notation. On the other hand, the co- and contravariant
notation does not distinguish between complex conjugate partners such as the distinction between
bras and kets in the bra-ket notation: such a distinction is not required for real-valued vectors.

More detail can be found in section 5.4 of ΦSX:Classical Mechanics[13].

Table 1.1: Comparison of Dirac’s bra-ket notation for quantum states and the co-and contravariant
vector notation. I do not use Einstein notation, but use explicit sums.

Bra-Ket notation co and contravariant notation
Basis

basis-state |χµ⟩ e⃗µ contravariant vector
projector-function ⟨πα| e⃗µ co-variant vector

Scalar product and metric tensor gµ,ν
bi-orthogonality ⟨πµ|χν⟩ = δµ,ν gµν = e⃗

µe⃗ν = δµ,ν

overlap matrix Sµ,ν = ⟨χµ|χν⟩ gµ,ν = e⃗µe⃗ν contravariant metric tensor
inverse overlap

(
S−1

)
µ,ν
= ⟨πµ|πν⟩ gµ,ν = e⃗µe⃗ν

scalar product ⟨ψ|φ⟩ r⃗ s⃗ =
∑

µ uµu
µ

completeness 1̂ =
∑

µ,ν |χµ⟩S−1µ,ν⟨χν | 111 =
∑

µ,ν g
µ,ν e⃗µ ⊗ e⃗ν

States and projector-functions
state |ψ⟩ =

∑
µ |χµ⟩cµ r⃗ =

∑
µ e⃗µu

µ vector
coefficient cµ = ⟨πµ|ψ⟩ uµ = e⃗µr⃗ co-variant coefficient

cµ =
∑

ν S
−1
µ,ν⟨χν |ψ⟩ uµ =

∑
ν g

µ,νuν

⟨χµ|ψ⟩ uµ = e⃗µr⃗
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1.1.8 Bloch theorem

I provided derivations of Bloch’s theorem earlier in ΦSX: Quantum Physics[14]. and in ΦSX:
Introduction to Solid-State Theory[1]. This section is not meant as an independent derivation but
as a brief reminder and the presentation of a “cooking recipe”.

Let me first revisit some notions regarding symmetries in physical systems: Noether’s theorem for
classical particles or classical fields says that a conserved quantity emerges from of every continuous
symmetry. In quantum mechanics, this translates into the notion that the Hamiltonian becomes
block-diagonal when represented in terms of eigenstates of a commutating set of its symmetry
operators. As a consequence, the matrix diagonalization of a big matrix is broken down in many
diagonalization problems with smaller dimensions. Each block is characterized by the set eigenvalues
from the commutating set of symmetry operators, i.e. the quantum numbers.

This concept is now applied to the lattice translation symmetry. Bloch theorem exploits the
discrete lattice-translation symmetry of a lattice of atoms. Lattice-translation symmetry implies that
the Hamiltonian is invariant under a lattice translation, i.e. ⟨r⃗ − t⃗ , σ|ĥ|r⃗ ′ − t⃗ , σ′⟩ = ⟨r⃗ , σ|ĥ|r⃗ ′, σ′⟩.
The lattice translation vectors t⃗ are integer multiples of the primitive lattice translation vectors
T⃗1, T⃗2, T⃗3.

The conserved quantity resulting from the lattice-translation symmetry is the crystal momentum
ℏk⃗ or Bloch vector k⃗ , simply called the k-point. The eigenstates of the lattice translation are Bloch
states

ψk⃗(r⃗ , σ) = uk⃗(r⃗ , σ)e
i k⃗ r⃗ (1.52)

where uk⃗(r⃗) is periodic with the lattice. In words, the wave functions are periodic functions un,k(r⃗)
that are modulated by a plane wave ei k⃗ r⃗ .

As a result of the lattice symmetry, the Hamilton operator does not mix wave functions with
different Bloch vectors k⃗ ̸= k⃗ ′ in the same reciprocal unit cell, i.e. ⟨ψk⃗ |ĥ|ψk⃗ ′⟩ = 0.8 As a consequence,
the eigenstates of the Hamiltonian can be written as Bloch states.

A Bloch vector can be any vector in the reciprocal unit cell. In order to avoid the complications
of an infinite space region and the corresponding continuous Bloch-vectors, one imposes periodic
boundary conditions

ψk⃗(r⃗ + T⃗
super
j ) = ψk⃗(r⃗) . (1.53)

on a large, but finite, supercell, with supercell lattice vectors T⃗ super
1 = T⃗1N1, T⃗

super
2 = T⃗2N2, T⃗

super
3 =

T⃗3N3. N1, N2, N3 are very large, but finite, integers. The limit Nj → ∞ is taken typically towards
the end of a calculation.

A discrete set of Bloch-vectors k⃗ is specified via the quantization condition imposed by periodic
boundary conditions: The periodicity of the Bloch wave function Eq. 1.52 implies

ei k⃗ T⃗
super
q = 1 for q ∈ {1, 2, 3}

⇒ k⃗j1,j2,j3 =

3∑
q=1

g⃗q
jq
Nq

with jq ∈ {0, 1, . . . , Nq} (1.54)

where the primitive reciprocal lattice vectors g⃗j are defined by

g⃗i T⃗j = 2πδi ,j for i , j ∈ {1, 2, 3} (1.55)

The discrete k-point set are the reciprocal lattice points of the supercell.

8The eigenvalues and eigenstates are periodic with the reciprocal lattice. Therefore the Hamilton matrix elements
do not necessarily vanish for two Bloch vectors related by a reciprocal-lattice translation vector.
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Table 1.2: Symbols used for real and reciprocal lattice vectors

real space lattice
T⃗1, T⃗2, T⃗3 primitive lattice vectors
T matrix made from the three primitive lattice vectors
t⃗ general lattice vector

reciprocal space lattice
g⃗1, g⃗2, g⃗3 primitive lattice vectors
g matrix made from the three primitive lattice vectors
G⃗ general lattice vector

g⃗i T⃗j = 2πδi ,j or G†T = 2π111

For atom-centered basissets {|χα,t⃗⟩}, Bloch’s theorem has an appearance that differs slightly
from Eq. 1.52, namely

ψk⃗(r⃗ , σ)
Eq. 1.52
=

un,k (r⃗)︷ ︸︸ ︷
1√∑
t⃗ ′

∑
t⃗,α

χα,t⃗(r⃗ , σ)e
−i k⃗(r⃗−t⃗)cα(k⃗) e

i k⃗ r⃗

=
1√∑
t⃗ ′

∑
t⃗,α

χα,t⃗(r⃗ , σ)cα(k⃗)e
i k⃗ t⃗ (1.56)

where t⃗i1,i2,i3 = T⃗1i1+T⃗2i2+T⃗3i3 is an arbitrary real-space lattice vector. The orbital |χα,t⃗⟩ is centered
at site R⃗α + t⃗, where Rα is the position of the equivalent atom in the first unit cell. The orbital
index α identifies the orbitals of a specific site and may consist of the angular-momentum and spin
quantum numbers (ℓ,m, σ). The complex-valued coefficients are denoted by cα(k⃗).

In the normalization factor, I use the symbol
∑

t⃗ , meaning
∑

t⃗∈T 1 = N1, N2, N3, which counts
the lattice translation vectors t⃗ ∈ T in the supercell 9 used in Eq. 1.53. The set T is usually not
made explicit.

Eq. 1.56 corresponds to constructing first a basisset of Bloch states |χα,k⃗⟩ out of the individual
local orbitals |χα,t⃗⟩ and their corresponding projector functions |πα,k⃗⟩.

|χα,k⃗⟩ =
1√∑
t⃗ ′

∑
t⃗

|χα,t⃗⟩ei k⃗ t⃗

|πα,k⃗⟩ =
1√∑
t⃗ ′

∑
t⃗

|πα,t⃗⟩ei k⃗ t⃗ (1.57)

which satisfy the bi-orthogonality condition

⟨πα,k⃗ |χβ,k⃗ ′⟩ = δα,βδk⃗ ,k⃗ ′ . (1.58)

Caution is required because the same symbol is used for the Bloch waves |χα,k⃗⟩ and the site-centered
orbitals |χα,t⃗⟩. The two basissets are distinguished by the type of their indices, namely t⃗ versus k⃗ .
The Kronecker symbol δk⃗ ,k⃗ ′ refers to the discrete set of k-points, which result from the quantization
condition, respectively, the periodic boundary conditions for a large but finite supercell.

9The set T is contains all lattice translation vectors t⃗j1,j2,j3 = T⃗1j1 + T⃗2j2 + T⃗3j3 with j1 ∈ {0, 1, . . . , N1}, j2 ∈
{0, 1, . . . , N2}, and j3 ∈ {0, 1, . . . , N3}. where N1, N2, N3 define, together with the primitive lattice translations, the
supercell.
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In the basis of Bloch orbitals, the Ansatz for the eigenstates of the Hamiltonian has the form

|ϕn,k⃗⟩ =
∑
α

|χα,k⃗⟩cα,n(k⃗) (1.59)

A k-dependent Hamiltonian in the discrete basis is obtained by transforming onto k-dependent
orbitals given in Eq. 1.57.

Let me now rewrite the Schrödinger equation for a Bloch wave function |ϕn(k⃗)⟩. I represent
Hamilton and overlap matrix elements in the form10

ĥ =
∑
α,t⃗

|πα,t⃗⟩⟨χα,t⃗ |︸ ︷︷ ︸
=1̂

ĥ
∑
β,t⃗ ′

|χβ,t⃗ ′⟩⟨πβ,t⃗ ′ |︸ ︷︷ ︸
=1̂

=
∑
α,β

∑
t⃗,t⃗ ′

|πα,t⃗⟩ ⟨χα,t⃗ |ĥ|χβ,t⃗ ′⟩︸ ︷︷ ︸
h
α,t⃗,β,t⃗′

⟨πβ,t⃗ ′ |

1̂ =
∑
α,t⃗

|πα,t⃗⟩⟨χα,t⃗ |︸ ︷︷ ︸
=1̂

1̂
∑
β,t⃗ ′

|χβ,t⃗ ′⟩⟨πβ,t⃗ ′ |︸ ︷︷ ︸
=1̂

=
∑
α,β

∑
t⃗,t⃗ ′

|πα,t⃗⟩ ⟨χα,t⃗ |χβ,t⃗ ′⟩︸ ︷︷ ︸
S
α,t⃗,β,t⃗′

⟨πβ,t⃗ ′ | (1.60)

and I exploit lattice-translation symmetry of ĥ, namely hα,t⃗,β,t⃗ ′ = hα,⃗0,β,t⃗ ′−t⃗ .
Let me now set up the generalized eigenvalue for the periodic Hamiltonian:

0 =
(
ĥ − ϵn(k⃗)1̂

)
|ϕn(k⃗)⟩

Eq. 1.56
=

(∑
α,β

∑
t⃗,t⃗ ′

|πα,t⃗⟩hα,t⃗,β,t⃗ ′⟨πβ,t⃗ ′ |︸ ︷︷ ︸
ĥ

−ϵn(k⃗)
∑
α,β

∑
t⃗,t⃗ ′

|πα,t⃗⟩

S
α,t⃗,β,t⃗′︷ ︸︸ ︷

⟨χα,t⃗ |χβ,t⃗ ′⟩⟨πβ,t⃗ ′ |︸ ︷︷ ︸
1̂

)∑
γ,t⃗ ′′

|χγ,t⃗ ′′⟩e
i k⃗ t⃗ ′′ 1√∑

t̄

cγ,n(k⃗)︸ ︷︷ ︸
|ϕn(k⃗)⟩

=
∑
α

∑
t⃗

|πα,t⃗⟩
∑
β,γ

∑
t⃗ ′,t⃗ ′′

(
hα,t⃗,β,t⃗ ′ − ϵn(k⃗)Sα,t⃗,β,t⃗ ′

)
⟨πβ,t⃗ ′ |χγ,t⃗ ′′⟩︸ ︷︷ ︸

δβ,γδt⃗′ ,t⃗′′

ei k⃗ t⃗
′′ 1√∑

t̄

cγ,n(k⃗)

=
∑
α,t⃗

|πα,t⃗⟩ei k⃗t
1√∑

t̄

∑
β

[∑
t⃗ ′

(
hα,⃗0,β,t⃗ ′−t⃗ − ϵn(k⃗)Sα,⃗0,β,t⃗ ′−t⃗

)
ei k⃗(t⃗

′−t⃗)
]
cβ,n(k⃗)

=
∑
α

∑
t⃗

|πα,t⃗⟩ei k⃗t
1√∑

t̄︸ ︷︷ ︸
|πα,k⃗ ⟩ Eq. 1.57

∑
β

[∑
t⃗ ′′

hα,⃗0,β,t⃗ ′′e
i k⃗ t⃗ ′′

︸ ︷︷ ︸
=:hα,β(k⃗)

−ϵn(k⃗)
∑
t⃗ ′′

Sα,⃗0,β,t⃗ ′′e
i k⃗ t⃗ ′′

︸ ︷︷ ︸
=:Sα,β(k⃗)

]
cβ,n(k⃗)

=
∑
α

|πα,k⃗⟩
∑
β

[
hα,β(k⃗)− ϵn(k⃗)Sα,β(k⃗)

]
cβ,n(k⃗) (1.61)

Given that the projector functions are linear independent, all coefficients must vanish so that we
obtain the Schrödinger equation in matrix form∑

β

[
hα,β(k⃗)− ϵn(k⃗)Sα,β(k⃗)

]
cβ,n(k⃗) = 0 (1.62)

with

hα,β(k⃗)
def
= ⟨χα,k⃗ |ĥ|χβ,k⃗⟩

Eq. 1.57
=

∑
t⃗

hα,⃗0,β,t⃗e
i k⃗ t⃗ and (1.63)

Sα,β(k⃗)
def
= ⟨χα,k⃗ |χβ,k⃗⟩

Eq. 1.57
=

∑
t⃗

Sα,⃗0,β,t⃗e
i k⃗ t⃗ . (1.64)

10It is often difficult to decide where the orbitals go and where the projector functions. The notation is completely
symmetric with respect to an interchange between the two. As a rule of thumb, one uses orbitals to expand the wave
functions, and since operators act on wave functions, operators are expanded in projector functions.
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Notably, there is no coupling of states having a different Bloch vectors, which is the essence of
Bloch’s theorem.

We are almost done: Let us now impose the normalization on the eigenstates ⟨ϕm(k⃗)|ϕn(k⃗ ′)⟩ =
δm,nδk⃗ ,k⃗ ′

⟨ϕm(k⃗)|ϕn(k⃗ ′)⟩ =
∑
α,β

c∗α,m(k⃗)⟨χα(k⃗)|χβ(k⃗ ′)⟩cβ,n(k⃗ ′)

Eq. 1.57
=

∑
α,β

c∗α,m(k⃗)
1∑
⃗̄t

∑
t⃗,t⃗ ′

e−i k⃗ t⃗⟨χα,t⃗ |χβ,t⃗ ′⟩e
i k⃗ ′ t⃗ ′cβ,n(k⃗ ′)

=
∑
α,β

c∗α,m(k⃗)
1∑
⃗̄t

∑
t⃗

e−i(k⃗−k⃗
′)t⃗

︸ ︷︷ ︸
δ
k⃗ ,k⃗ ′

∑
t⃗ ′

⟨χα,t⃗ |χβ,t⃗ ′⟩e
i k⃗ ′(t⃗ ′−t⃗)

︸ ︷︷ ︸
Sα,β(k⃗ ′)

cβ,n(k⃗ ′)

= δk⃗ ,k⃗ ′
∑
α,β

c∗α,m(k⃗)Sα,β(k⃗)cβ,n(k⃗) (1.65)

The orthonormality between states having different Bloch-vector is inherent in the Ansatz of Bloch
wave function.11 The orthonormality of states with the same Bloch-vector needs to be enforced by
setting

∑
α,β

c∗α,m(k⃗)Sα,β(k⃗)cβ,n(k⃗) = δm,n (1.66)

11States with different Bloch vector have different eigenvalues of the symmetry operator and are therefore orthogonal.
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COOKING RECIPE FOR NON-INTERACTING ELECTRONS ON A LATTICE

This implies the following recipe to construct the eigenvalues and eigenstates of the Hamiltonian of
a lattice.

1. Extract the real-space Hamilton hα,⃗0,β,t⃗ ′ and overlap Sα,⃗0,β,t⃗ ′ matrix elements connecting the
orbitals in the first unit cell t⃗ = 0⃗ to those in a unit cell displaced by a real-space lattice
translation vector t⃗ ′.

2. Determine the k-dependent Hamiltonian and overlap matrix from the matrix elements in real
space

hα,β(k⃗) =
∑
t⃗

hα,⃗0,β,t⃗e
i k⃗ t⃗ (1.67)

Sα,β(k⃗) =
∑
t⃗

Sα,⃗0,β,t⃗e
i k⃗ t⃗ (1.68)

3. Solve the generalized eigenvalue problem and obtain k-dependent energies ϵn(k⃗) and the eigen-
vectors cα,n(k⃗)

0 =
∑
β

[
hα,β(k⃗)− ϵn(k⃗)Sα,β(k⃗)

]
cβ,n(k⃗) (1.69)

with the normalization condition∑
α,β

c∗α,m(k⃗)Sα,β(k⃗)cβ,n(k⃗) = δm,n (1.70)

4. Construct eigenstates of the Hamiltonian from the eigenvectors

|ϕn(k⃗)⟩ =
∑
α

∑
t⃗

|χα,t⃗⟩ei k⃗ t⃗
1√∑
t⃗ ′︸ ︷︷ ︸

|χα,k⃗ ⟩

cα,n(k⃗) (1.71)

1.2 Functionals and their derivatives

In the lecture notes, I also use derivatives of a functional with respect to the bra or ket of a wave
function. This is a straightforward, but uncommon generalization of functional derivatives. Let me
motivate the notation here.

I found it convenient to write down the variation of functionals, which define functional derivatives,
rather than using the usual rules for functional derivatives.

1. normal derivative: For a simple function f (r⃗) of a vector argument r⃗ , the first variation is

δf (r⃗) =
∑
j

δf

δrj
δrj +O(δr

2) (1.72)

The derivative is defined as the prefactor of the variation of the argument.

∂f

∂rj

def
=
δf

δrj
(1.73)
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2. functional derivative: Making the index of the argument continuous, i.e. j ⇝ s, turns the
vector r⃗ into a function r(s) and the function f (r⃗) into a functional F [r ].

δF [r ] =

∫
ds

δF

δr(s)︸ ︷︷ ︸
=∂F/∂r(s)

δr(s) +O(δr2) (1.74)

which defines the functional derivative
∂F

∂r(s)

def
=

δF

δr(s)
(1.75)

It is common to differentiate a derivative from a functional derivative using the symbol ∂ for
a partial derivative, δ for functional derivatives and d for total derivatives. Because, I consider
these as variations of the same theme, I do not follow this distinction, at least not rigorously.
Rather I use δ, when I have infinitesimal, but discrete displacements of a variable in mind, and
∂ for derivatives.

3. Wirtinger derivative: For complex-valued arguments, the concept of Wirtinger derivatives
is useful. The concept is described in more detail in appendix A.3 on p. 386. It shows that the
variation of a general function of a complex number, can be expressed by the variations with
respect to those of the complex number and its complex conjugate. The complex number and
its complex conjugate are treated as if they were independent. This is, however, only a formal
“trick”. It reflects that a complex number consists of two independent real numbers.

In the following, I demonstrate the principle writing a function f (c) once as function of complex-
valued argument, and once as function with two real arguments, which represent real and
imaginary part of c .

f (c⃗) = f̄ (Re[c ], Im[c ])

δf (c⃗) =
δf̄

δRe[c ]
δRe[c ] +

δf̄

δIm[c ]
δIm[c ]

=
δf̄

δRe[c ]

δc + δc∗

2
+

δf̄

δIm[c ]

δc − δc∗

2i

=
1

2

( δf̄

δRe[c ]
− i

δf̄

δIm[c ]

)
︸ ︷︷ ︸

δf
δc

δc +
1

2

( δf̄

δRe[c ]
+ i

δf̄

δIm[c ]

)
︸ ︷︷ ︸

δf
δc∗

δc∗ (1.76)

This motivates the definition of the Wirtinger derivatives

∂f

∂c

def
=
1

2

( δf̄

δRe[c ]
− i

δf̄

δIm[c ]

)
∂f

∂c∗
def
=
1

2

( δf̄

δRe[c ]
+ i

δf̄

δIm[c ]

)
(1.77)

4. Derivative with respect to a bra or ket: Next we talk about functionals of complex functions
such as quantum mechanical wave functions.

δF [φ(x⃗), φ∗(x⃗)] =

∫
d4x

δF

δφ(x⃗)︸ ︷︷ ︸
δF

δ⟨x⃗ |φ⟩

δφ(x⃗)︸ ︷︷ ︸
⟨x⃗ |δφ⟩

+

∫
d4x

δF

δφ∗(x⃗)︸ ︷︷ ︸
δF

δ⟨φ|x⃗⟩

δφ∗(x⃗)︸ ︷︷ ︸
⟨δφ|x⃗⟩

+O(δφ2)

=

∫
d4x

〈 δF
δ|φ⟩

∣∣∣x⃗〉〈x⃗∣∣δφ〉+ ∫ d4x
〈
δφ
∣∣x⃗〉〈x⃗∣∣∣ δF

δ⟨φ|

〉
+O(δφ2)

=
δF

δ|φ⟩ |δφ⟩+ ⟨δφ|
δF

δ⟨φ| +O(δ|φ⟩
2)

(1.78)
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This motivates the following definition of the derivative with respect to a bra or a ket.

δF

δ|φ⟩
def
=

∫
d4x

δF

δ⟨x⃗ |φ⟩ ⟨x⃗ | =
∫
d4x

δF

δφ(x⃗)
⟨x⃗ |

δF

δ⟨φ|
def
=

∫
d4x |x⃗⟩

δF

δ⟨φ|x⃗⟩ =
∫
d4x |x⃗⟩

δF

δφ∗(x⃗)
(1.79)

The same principles can be carried further to include derivatives with respect to operators or other
objects.

1.3 N-particle wave functions

1.3.1 N-particle states

In order to describe N particles instead of only one, we need N position coordinates and N spin
indices. Thus, the wave function of a N-particle state is

ψ(x⃗1, . . . , x⃗N) = ⟨x⃗1, . . . , x⃗N |ψ⟩ (1.80)

The absolute square of a two-particle wave function is the probability density for the first electron
to be at x⃗1 with position r⃗1 with spin σ1 and another one to be at x⃗2 with position r⃗2 with spin σ2.

One basis set, which spans the N-particle Hilbert space, is {|x⃗1, . . . , x⃗N⟩}. The orthonormality
has the form

⟨x⃗1, . . . , x⃗N |x⃗ ′1, . . . , x⃗ ′N⟩ = δ(x⃗1 − x⃗ ′1) · · · δ(x⃗N − x⃗ ′N) (1.81)

and the completeness relation is

1̂ =

∫
d4x1 · · ·

∫
d4xN |x⃗1, . . . , x⃗N⟩⟨x⃗1 . . . , x⃗N | (1.82)

1.3.2 Product states

A product state of a set with N one-particle wave functions has the form

Ψa,...,z(x⃗1, . . . , x⃗N) = ⟨x⃗1, . . . , x⃗N |Ψa,...,z ⟩ = ϕa(x⃗1) · · ·ϕz(x⃗N) (1.83)

Product states are useful, because they can be expressed simply by specifying N one-particle wave
functions |ϕj ⟩.

Product states are often written in the form of a ⊗.

|x⃗1, x⃗2, . . . , x⃗N⟩ = |x⃗1⟩ ⊗ |x⃗2⟩ ⊗ · · · ⊗ |x⃗N⟩
|ϕa, ϕb, . . . , ϕz ⟩ = |ϕa⟩ ⊗ |ϕb⟩ ⊗ · · · ⊗ |ϕz ⟩ (1.84)

I will not use the form on the right-hand side.
The set of all N-particle product states, that can be formed from a complete-and-orthonormal

one-particle basisset, is again a complete-and-orthonormal basis set in the N-particle Hilbert space.
Note, however, that the most general N-particle state is a superposition of all these product states.

An attempt to visualize the restrictions of product states is given in figure 1.1.
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Fig. 1.1: Demonstration of product states and the superposition of product states. The grey-scale
values F (x, y) of the picture of Erwin Schrödinger is approximated by finite sums of product wave
functions in the form F (x, y) =

∑M
j=1 fj(x)gj(y) for M = 1, 2, 4 in the top row and for M = 8, 16 and

the original figure in the bottom row. The functions fj(x) and gj(y) have been optimized individually
to minimize the mean square deviation from the grey-scale values.

1.3.3 Slater determinants

The particles can be divided into classes of identical particles. Any physical Hamilton operator is
symmetric under exchange of two identical particles. If that were not the case, it would be possible
to distinguish the two particles which would make them non-identical.

Thus, the physical wave function is an eigenstate of the permutation operator between two
identical particles. The permutation operator has the eigenvalues +1 and −1. Particles described by
the permutation eigenvalue +1 are bosons, and those with permutation eigenvalue −1 are fermions.
Fermionic wave functions are antisymmetric under exchange of two particles, while bosonic wave
functions are symmetric under particle exchange.

Fermionic wave functions can be constructed from N one-particle wave functions ϕi(x⃗) with
i ∈ {1, . . . , N} as antisymmetrized product state.

ΨF (x⃗1, . . . , x⃗N)︸ ︷︷ ︸
⟨x⃗1,...,x⃗N |ΨF ⟩

=
1√
N!

N∑
i1,...,iN=1

ϵi1,...,iNϕi1(x⃗1) · · ·ϕiN (x⃗N) (1.85)

where ϵi1,...,iN is the fully antisymmetric tensor.
The fully antisymmetric tensor, also called Levi-Civita symbol, is defined by
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• It has the value 1 if the indices are in ascending order.

ϵ1,2,...,N = 1 (1.86)

• any permutation of two indices of the fully antisymmetric tensor changes its sign.

• the antisymmetric tensor is zero whenever two indices are equal.

Thus, every non-zero matrix element of the antisymmetric tensor corresponds to a permutation of
the numbers (1, 2, . . . , N). Because there are N! permutation of the indices 1, 2, . . . , N, the sum
contributes N! non-zero terms. Whenever the one-particle states ϕj(x⃗) are orthonormal, all terms
in the sum Eq. 1.85 are orthonormal. Thus, the factor 1/

√
N! establishes the normalization of

the final function. Non-orthonormal one-particle states can be used as well, but then the resulting
many-particle wave function is not normalized.

The fully antisymmetric tensor can be used to evaluate the determinant of a matrix A via

det |A| =
N∑

i1,...,iN=1

ϵi1,...,iNAi1,1Ai2,2 · · ·AiN ,N (1.87)

Thus, the antisymmetrized product wave function can also be expressed as a determinant of the
matrix with elements Ai ,j = ϕi(x⃗j).

ΨF (x⃗1, . . . , x⃗N) =
1√
N!

∑
i1,...,iN

ϵi1,...,iNϕi1(x⃗1) · · ·ϕiN (x⃗N)

=
1√
N!
det

∣∣∣∣∣∣∣∣∣∣
ϕ1(x⃗1) ϕ1(x⃗2) . . . ϕ1(x⃗N)

ϕ2(x⃗1) ϕ2(x⃗2) . . . ϕ2(x⃗N)
...

...
...

ϕN(x⃗1) ϕN(x⃗2) . . . ϕN(x⃗N)

∣∣∣∣∣∣∣∣∣∣
(1.88)

This is the reason for calling the antisymmetrized product wave functions Slater determinants.
The normalization factor 1/

√
N! makes sense12 only for orthonormal one-particle wave functions

|ϕj⟩. While it is perfectly allowed to construct antisymmetrized wave functions from non-orthonormal
one-particle wave functions, it is very inconvenient in practice. For example, the normalization of the
resulting wave function is much more complicated.

For bosons, we need to symmetrize, rather than antisymmetrize, the product state under particle
exchange, which can be accomplished by replacing the determinant by the permanent replacing the
fully antisymmetric tensor by its absolute value.

ΨB(x⃗1, . . . , x⃗N) =
1√

N!
∏Nd
k=1(nk !)

∑
i1,...,iN

∣∣ϵi1,...,iN ∣∣ ϕi1(x⃗1) · · ·ϕiN (x⃗N)

=
1√

N!
∏Nd
k=1(nk !)

perm

∣∣∣∣∣∣∣∣∣∣
ϕ1(x⃗1) ϕ1(x⃗2) . . . ϕ1(x⃗N)

ϕ2(x⃗1) ϕ2(x⃗2) . . . ϕ2(x⃗N)
...

...
...

ϕN(x⃗1) ϕN(x⃗2) . . . ϕN(x⃗N)

∣∣∣∣∣∣∣∣∣∣
(1.89)

The normalization of the permanent is non-trivial13, because some of the orbitals may be identical to
each other. Let me assume that the permanent is made out of Nd distinct orbitals. The multiplicity
of the k-th set of distinct orbitals shall be nk , saying that the k-th orbital is occupied by nk particles.
The total number of particles in the permanent is

∑Nd
k=1 nk = N.

12For a non-orthonormal basisset, the resulting Slater determinant would not me normalized.
13No derivative of this factor is provided here.
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The bosonic wave function is non-zero also if two orbitals are identical. For example, if |ϕα⟩ =
|ϕβ⟩, the permanent is

⟨x⃗1, x⃗2|ψBα,β⟩ =
1√
2
[ϕα(x⃗1)ϕβ(x⃗2) + ϕβ(x⃗1)ϕα(x⃗2)] ⇒ ⟨x⃗1, x⃗2|ψBα,α⟩ = ϕα(x⃗1)ϕα(x⃗2) ̸= 0

For fermions, on the other hand, the Slater determinant of two identical one-particle orbitals is the
zero state

⟨x⃗1, x⃗2|ψFα,β⟩ =
1√
2
[ϕα(x⃗1)ϕβ(x⃗2)− ϕβ(x⃗1)ϕα(x⃗2)] ⇒ ⟨x⃗1, x⃗2|ψFα,α⟩ = 0

1.4 Many-particle states and Fock space

Many-particle physics deals with situations where the particle number changes or where the wave
function consists of contributions with different particle numbers. Therefore, we need to overcome
the limitation of wave functions with fixed particle numbers. This extension will lead us to the concept
of the Fock space.

Examples of problems which require states with different particle numbers are the following:

• A physical process may change the number of particles. An example would be an electron-
positron collision, where two particles disappear while two photons are created.

• The number of particles in a so-called open system may change as particles migrate from the
system under study and into the environment and vice versa.

• The number of particles may be variable, because the system is coupled to a thermodynamic
particle reservoir. The situation is analogous to that of an open system, mentioned above. The
main difference is that the coupling to the particle reservoir is considered infinitesimally small,
so that the time scale of the particle exchange is considered infinite.

In order to describe systems with variable particle numbers, we need to generalize the concept of
the N-particle Hilbert space to that of the Fock space. The Fock space is the union of all Hilbert
spaces with N particles, where N can vary from zero to infinity. The zero-particle state is the so-called
vacuum state. The vacuum state describes a system without particles, which is the true vacuum.14

The problem of the Fock space is that its states can no more be represented as wave functions
in real space, because we cannot construct a function with a variable number of arguments. In order
to describe a wave function in Fock space, we need to form the projection of the state onto each
N-particle channel. For each N-particle channel we obtain a normalized N-particle wave function and
a complex factor. The absolute square of this factor is the probability for the system to contain N
particles. The phase factor describes the phase relations or the entanglement15 between different
N particle channels.

A basis for the Fock space is

|O⟩︸︷︷︸
vacuum st.

∪ {|x⃗1⟩}︸ ︷︷ ︸
1p-Hilbert space

∪ {|x⃗1, x⃗2⟩}︸ ︷︷ ︸
2p-Hilbert space

∪{|x⃗1, x⃗2, x⃗3⟩}︸ ︷︷ ︸
3p-Hilbert space

∪ . . . (1.91)

14The vacuum state is a normalized state and describes a physical situation, namely the vacuum, which does not
have any particles in it. Thus, it is different from the zero state, which has a norm equal to 0, and which does not
describe any physical situation.

15Two subsystems are called entangled, when the state of the combined system is a sum of the wave functions of the
two parts |Ψ⟩ = |ΨA⟩+ |ΨB⟩eiϕ with a defined relative phase ϕ. The expectation values of an observable Ô depends
on the relative phase

⟨Ψ|Ô|Ψ⟩ = ⟨ΨA|Ô|ΨA⟩+ ⟨ΨB |Ô|ΨB⟩+ Re
[
⟨ΨA|Ô|ΨB⟩eiϕ

]
(1.90)

In an ensemble of wave functions, in which all relative phases contribute equally, the last term in the observable
vanishes. This implies that the quantum mechanical coupling between the subsystems is absent and the two subsystems
are not entangled. The phase relation is unimportant also, when the system is described by a product state |Ψ⟩ =
|ΨA,ΨB⟩.Editor: This is a first draft. Clean this up.
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where the x⃗j = (r⃗j , σj) denotes the combined position-and-spin argument. With A ∪ B, I denote the
union of the two sets A and B.

The basisset is orthonormal, that is, (1) two states with the same particle number N satisfy the
same orthonormality conditions as those in the N-particle Hilbert space. (2) States with different
particle numbers are orthonormal.

⟨x⃗1, . . . , x⃗N |x⃗ ′1, . . . , x⃗ ′N ′⟩ =

{
0 for N ̸= N ′

δ(x⃗1 − x⃗ ′1) · · · δ(x⃗N − x⃗ ′N) for N = N ′

(1.92)

One way to rationalize the orthonormality between states with differing particle number is that
states with a given particle number are eigenstates of a particle-number operator. Eigenstates of a
hermitian operator with different eigenvalues are orthonormal.16

The completeness relation in Fock space has the form

1̂ =

∞∑
N=0

∫
d4x1 . . .

∫
d4xN |x⃗1, . . . , x⃗N⟩⟨x⃗1, . . . , x⃗N | (1.93)

1.4.1 Occupation-number representation

The Slater determinants formed from a given complete, ortho-normal one-particle basis set span the
complete Fock space. The occupation-number representation is a convenient notation to describe
this basis of many-particle states.

We start from an orthonormal set of one-particle basis functions |ϕj⟩ which are arranged in a
well-defined order, that is with indices increasing from left to right. Each subset of these functions
specifies one Slater determinant. This subset is specified by a vector σ⃗ of occupation numbers
σ1, σ2, . . .. The index j of the occupation number σj refers to one of the one-particle wave functions
|ψj⟩. Each occupation number σj can be either zero or one. The one-particle states with occupation
number equal to one are used to build the Slater determinant |σ⃗⟩.

OCCUPATION NUMBERS AND SLATER DETERMINANTS

The occupation-number representation is defined such the one-particle orbitals in the Slater-
determinant are arranged in the same order as the non-zero occupation numbers in the string σ⃗
of occupation numbers.

The Slater determinants formed in this way form a complete and orthonormal basis set of the
Fock space, that is

1̂ =
∑
σ⃗

|σ⃗⟩⟨σ⃗| =
1∑

σ1=0

1∑
σ2=0

· · · |σ1, σ2, . . .⟩⟨σ1, σ2, . . . | (1.94)

The fact that Slater determinants form a complete basis in Fock space is the reason why Slater
determinants are relevant even for interacting electron systems. Typically the eigenstates of the
Hamiltonian for non-interacting electrons are Slater determinants. This is, however, not the case for
interacting electrons.

A general many-particle state must be represented by a superposition of such Slater determinants.
A general state in the Fock space has the form

|Φ⟩ =
∑
σ⃗

|σ⃗⟩ ⟨σ⃗|Φ⟩︸ ︷︷ ︸
cσ⃗

=
∑
σ⃗

|σ⃗⟩cσ⃗ (1.95)

16This may not be a proof, because we probably need the orthonormality before we can define a hermitian particle-
number operator.
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1.4.2 Many-particle states of non-interacting electrons

If the one-particle basis used to define the Slater determinants are the eigenstates |ϕj⟩ of the non-
interacting Hamiltonian ĥ, the Slater determinants are eigenstates of that Hamiltonian and the
particle-number operator17 N̂

ĥ|σ⃗⟩ = |σ⃗⟩Eσ⃗ and N̂|σ⃗⟩ = |σ⃗⟩Nσ⃗ (1.96)

with

Eσ⃗ =
∑
j

ϵjσj and Nσ⃗ =
∑
j

σj . (1.97)

The energy levels ϵj are the eigenvalues of the Hamiltonian ĥ in the one-particle Hilbert space, i.e.

ĥ|ϕj ⟩ = |ϕj ⟩ϵj . (1.98)

1.4.3 Size of Hilbert spaces

Consider a finite set of n one-particle states. The one-particle Hilbert space has n dimensions. The
N-particle Hilbert space of distinguishable orbitals has Nn dimensions. The N-particle Hilbert space
of fermionic wave functions has18 n(n−1)...(n−N+1)

1·2···N = n!
(n−N)!(N!) =

(
n
N

)
dimensions. The bosonic

N-particle Hilbert space is larger and has d = (N+n−1)!
N!(n−N)! dimensions.19

Table 1.3: Dimensions d of different spaces of quantum mechanical wave functions based on a n-
dimensional one-particle Hilbert space. N is the number of particles in the N-particle wave function.

one-particle Hilbert space d = n

N-particle Hilbert space, distinguishable particles d = nN

N-particle Hilbert space, fermions d = n!/[(n − N)!N!]
N-particle Hilbert space, bosons d = (N + n − 1)!/[N!(n − 1)!]
Fock space, fermions d = 2n

We see that the Fock space formed by a one-particle basisset of only 10 orbitals has dimension
1024. This is appropriate to describe the d-shell of a transition metal atom. The Hamiltonian for such
a system has one million matrix elements, which can still be handled on a computer. If we consider
10 such atoms, i.e. 100 one-particle orbitals, the Fock space has dimension of order d > 1030. This
is beyond the capability of any computer. The rapid increase of the dimensionality of the problem has
been coined as dimensional bottleneck of many-particle physics. It implies that, when dealing with
many-particle physics, it is not sufficient to wait for larger computers: Each additional one-particle
orbital doubles dimension of the problem and usually increases the computational by a factor four or
eight.

17The eigenstates of the Hamiltonian can be represented as eigenstates of the particle-number operator, if the
Hamiltonian commutates with the particle-number operator. In that case, the Hamilton operator conserves the particle
number. Examples for a Hamilton operator, that does not conserve the particle number are the following: (1) A Hamil-
tonian that describes the annihilation of an electron-positron pair under creation of two photons. (2) A Hamiltonian
describing a subsystem embedded into a bath, which can provide particles to the subsystem or accept particles leaving
the subsystem.

18We can pick from n one-particle states as the first orbital. The second orbital can be picked from the (n − 1)
remaining one-particle states, because each orbital may occur at most once in the Slater determinant. In the set of
two-particle wave functions obtained in this way, each wave function is included twice. One of them has the orbitals in
the reversed order. Therefore, I need to divide by two. In the end there are n!/(n − N)! product states of N distinct
orbitals irrespective of their order. This number is divided by the number N! of permutations of the N orbitals, which
yields the final dimension of the fermionic N-particle Hilbert space formed in a n-dimensional one-particle basisset.

19For bosons the dimension of a N-particle state is d = (N+n−1)!
N!(n−N)! . See https://everettyou.github.io/teaching/

PHYS212B/SecondQuantization.pdf

https://everettyou.github.io/teaching/PHYS212B/SecondQuantization.pdf
https://everettyou.github.io/teaching/PHYS212B/SecondQuantization.pdf
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1.5 Home study and practice: Simple one-particle problems

In order to explore the role of the formalism described in the book, we need a few simple systems
with non-interacting particles as model systems.

The models are selected to be minimal models. A minimal model is the most simple model
describing a certain effect. The idea is to capture the essence of an effect without obscuring it by
the complexity of the calculations.

One of the most important models for the many-particle physics of extended systems is the so-
called Hubbard model.[15, 16, 17] This model consists of a regular grid of hydrogen atoms, with
electrons that strongly interact when they meet on the same hydrogen atom. While the purpose of
the Hubbard model is to study interacting systems, in the models discussed here, we will discard the
interaction. As we proceed towards interacting systems, we will study the role of interactions. Here,
we will select two variants of the Hubbard model, namely the hydrogen molecule and the linear chain.

The jellium model is our model for a continuous system. In contrast to the Hubbard model, the
atomic structure is absent in this model.
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1.5.1 Hydrogen molecule

Introduction

The hydrogen molecule is the smallest non-trivial system for the study of electron correlation. Most
calculations for this system can be done analytically, which makes it an ideal system to test the
understanding and the workings of new concepts. It is also a cross link between the study of strong
correlations in physics and chemistry. On the one-hand, the hydrogen dimer is the smallest Hubbard
model.[15] As the interaction between the electrons is increased, one can study the mechanisms
behind the so-called Mott-Hubbard insulator. On the other hand, when the hopping parameter is
reduced in size, the hydrogen model describes the dissociation of a chemical bond. Because the ratio
of interaction and hopping is large in this limit, one arrives at basically the same effects of strong
correlations.

The first exercise is meant as an appetizer. We will frequently return to the hydrogen molecule
during this lecture. Here, we study the hydrogen molecule without electron-electron interactions.

Problem

Consider a simplified hydrogen molecule. On each of the two sites, two orbitals are considered, one
for spin up and the other for spin down.
The Hamiltonian has the form

ĥ =
∑

σ∈{↑,↓}

2∑
R=1

|πR,σ⟩ ϵ̄ ⟨πR,σ|︸ ︷︷ ︸
atomic energies

−
∑

σ∈{↑,↓}

(
|π1,σ⟩ t̄ ⟨π2,σ|+ |π2,σ⟩ t̄ ⟨π1,σ|

)
︸ ︷︷ ︸

hopping

(1.99)

where ϵ̄ is the so-called atomic level and t̄ is the so-called hopping parametera The orbital index
α = (R, σ) selects a particular atom R ∈ {1, 2} and a spin index σ ∈ {↑, ↓}. The |πα⟩ are the

projector functions, which correspond to the local orbitals |χα⟩, i.e. ⟨πα|χβ⟩
Eq. 1.43
= δα,β. Despite

the fact that we distinguish orbitals |χα⟩ and projector functions ⟨πα|, we consider orthonormal local
orbitals |χα⟩, that is ⟨χα|χβ⟩ = δα,β.

1 Determine the eigenvalues and eigenstates of the Hamiltonian in the basis of local orbitals
|χR,σ⟩, that is with the ansatz |ψn⟩ =

∑
α |χα⟩cα,n. The state index n is a composite index

containing a spin quantum number and a non-spin index j ∈ {b, a}.

aI will use the sign convention that the hopping parameter has the same sign as the overlap matrix element of the
orbitals. That is, the hopping parameter t̄ between two s-orbitals is positive, while that between two p-orbitals pointing
along the bond axis is negative.Editor: Caution: this adjustment may not be uniform in the lecture notes.

Solution

1 Determine the eigenvalues and eigenstates of the Hamiltonian in the basis of local orbitals
|χR,σ⟩, that is with the ansatz |ϕn⟩ =

∑
α |χα⟩cα,n. The state index n is a composite index

containing a spin quantum number and a non-spin index j ∈ {b, a}.

The result is as follows: The single-electron levels are

• the two lower, bonding states |ϕb,σ⟩ for the two spin directions with energy ϵb = ϵ̄− |t̄|

|ϕb,σ⟩ =
1√
2

(
|χ1,σ⟩+ |χ2,σ⟩sgn(t̄)

)
(1.100)
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• and the two upper, antibonding states |ϕa,σ⟩ with energy ϵa = ϵ̄+ |t̄|.

|ϕa,σ⟩ =
1√
2

(
|χ1,σ⟩ − |χ2,σ⟩sgn(t̄)

)
(1.101)

For the hydrogen molecule, the orbitals are s orbitals, which have a positive overlap along the
bond. Per our convention20, the hopping parameter t̄ has the same sign as the overlap matrix
element. For the hydrogen molecule, the hopping parameter t̄ is therefore positive.21

,σ

χ2,σχ1,σ

ε
aϕ

bϕ

,σ

|t|

|t|

,σ

ϕ
b ,σ

x

ϕa

Fig. 1.2: Schematic representation of the energy level diagram (left) and the orbitals (left and right)
of a hydrogen molecule. The atomic energy levels (outer bars) are split into a bonding (lower bar) and
an antibonding (upper bar) state as the distance between the atoms approaches the bond distance.
The orbital representation on the left is derived from an iso-contour plot of the wave function, with
the color selecting the positive or negative contour value. Yellow and blue represent two signs of the
wave function. On the right, the bonding state |ϕb,σ⟩ and the antibonding state |ϕa,σ⟩ are drawn
along the bond axis.

20The convention that the sign of the hopping parameter t̄ is equal to that of the overlap matrix element between
the two orbitals, is not generally adapted.

21In contrast, the overlap between two p-orbitals, which are oriented along the bond, is negative. Consequently, also
the hopping matrix element t̄ < 0 is negative. In this case, Eq. 1.100, would describe the upper, rather than the lower
orbital, and it would be called the antibonding orbital. Analogously, Eq. 1.101 would be lower in energy and would be
called the bonding orbital.
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1.5.2 General diatomic molecule

Introduction

The general diatomic molecule is the model for a general 2-dimensional Hamiltonian. This problem
is so important that its behavior should be known, even without doing the calculations. Whenever
the coupling between two states stands out one can approximate the behavior by a 2-dimensional
problem.

This problem will also make you familiar with a couple general rules, which do not require any
calculation.

• Level repulsion: The presence of an off-diagonal matrix element between two states will lead
to a repulsion of the energy levels. This repulsion will become weaker with the initial energy
separation of the orbitals.

• Charge sum rule: The weight of an orbital summed over all eigenstates adds up to unity.

• Energy sum rule: the sum of all energy levels is equal to the sum of diagonal elements of the
Hamiltonian.

• The character of an eigenstate is dominated by that basis-orbital, which is closest in energy.

These rules appear very simple, but later they will be key to understand the workings of Green’s
functions, which will be the topic of this course.

Problems with two orbitals will be important in these lecture notes, where we try to experience
many-particle physics with minimal problems.

Problem

Exercise: Generalize the hydrogen molecule to a molecule with two distinct orbitals. That is, the
“atomic energy levels” ϵ̄α of both sites are distinct. Determine energy levels and eigenstates. Plot the
energy levels as function of the hopping parameter. Identify the degenerate and the non-degenerate
limit. What are the characteristic energy scales of the problem? Observe and describe the character
of the wave functions in the limit of small and large hopping parameters, i.e. t̄ → 0 and t̄ →∞.

Solution

The solution can also be found in section 2.3 of ΦSX:Quantum mechanics of the chemical bond[18].
In the following, I often suppress the spin index. Editor: Caution! The order of site and

spin indices, respectively k- and spin indices is not consistent in the following.
The spin index as quantum number is part of the orbital index, which should stand
in front of the lattice translation.

The model Hamiltonian, we investigate, is

h =

(
ϵ̄1 −t̄
−t̄ ϵ̄2

)
and S = 1 =

(
1 0

0 1

)
(1.102)

Eigenvalues

We diagonalize the Hamiltonian by finding the zeros of the determinant of H− ϵ1.22

22The condition that the determinant vanishes, that is det[H − ϵO] = 0 determines the eigenvalues of the system.
We need to determine the zeros of a polynomial of the energy. This polynomial is called the characteristic polynomial
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The zero’s of the characteristic polynomial

0 = (ϵ̄1 − ϵ)(ϵ̄2 − ϵ)− t̄2 (1.103)

determine the eigenvalues ϵ− and ϵ+ of the two-center bond

ϵ± =
ϵ̄1 + ϵ̄2
2

±

√(
ϵ̄1 − ϵ̄2
2

)2
+ t̄2 (1.104)

The eigenvalues are shown in fig. 1.3 for an avoided crossing: The hopping parameter t̄ is fixed
and the diagonal elements ϵ̄1(x) and ϵ̄2(x) depend on some unspecified variable x .

• To the left and to the right of the graph, the spacing |ϵ̄2(x)− ϵ̄1(x)| is large compared to the
hopping t̄, which is the non-degenerate limit, |ϵ̄1 − ϵ̄2| ≫ t̄.

• In the center of the graph, the diagonal Hamilton elements cross as function of x . This is the
degenerate limit, |ϵ̄1 − ϵ̄2| ≪ |t̄|.

The effect sees is, what I call level repulsion: Without hopping, the eigenvalues are equal to the
diagonal elements. As the absolute value of the hopping is increased, the energy levels are displaced
away from each other. The displacement is large when the energy levels are close, and it becomes
negligible if the initial states are separated by a large amount.

• In the degenerate limit the spacing of the Hamilton eigenvalues are is twice the hopping pa-
rameter t̄, i.e.

ϵ± ≈ ϵ̄1/2 ± |t̄| (1.105)

• In the non-degenerate limit the eigenvalues are shifted, in second-order perturbation theory of
the Hopping parameter, by |t̄|2

|ϵ̄2−ϵ̄1| away from each other, i.e

ϵ± ≈ ϵ̄1/2 ±
|t̄|2

|ϵ̄1 − ϵ̄2|
(1.106)

where ϵ̄1/2 is the lower atomic energy level for the bonding state with ± = − and the upper
atomic energy level for the antibonding state with ± = +. This equation is worth to remember
for back-on-the-envelope considerations.

The mean value of the energy levels remains unchanged.23

If we start from one electron in each orbital, the energy gain consists of two parts. First we gain
an amount ϵ̄2 − ϵ̄1 by transferring the electron from the upper orbital at ϵ̄2 to the lower orbital at
ϵ̄1. This is the ionic contribution, because a cation and an anion are formed. Secondly, the lower
orbital is lowered through hybridization with the higher orbital and we gain 2t̄2

ϵ̄2−ϵ̄1 for the electron
pair. This covalent contribution becomes smaller the larger the initial energy separation. Thus, if
the ionic contribution is large, the covalent contribution is usually small.

Eigenvectors

The eigenvectors are obtained from(
ϵ̄1 − ϵ± −t̄
−t̄ ϵ̄2 − ϵ±

)(
c1,±

c2,±

)
= 0 (1.107)

23This holds exactly, when the overlap matrix is the unity. It does not hold when the overlap matrix deviates from
unity.
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Fig. 1.3: Energy levels ϵ−, ϵ+ (green) as function of some parameter, which tunes the diagonal
elements ϵ̄1, ϵ̄1 of the Hamiltonian at a fixed hopping parameter t̄. Note the level repulsion, which
is strongest, when the diagonal elements come close. The nature of the wave functions far from the
avoided crossing, is as if the coupling of the states were absent.
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Fig. 1.4: Orbital diagram (left)and schematic cut through the bonding wave function and antibonding
wave function for a non-degenerate bond. The level shifts t̄2

|ϵ1−ϵ2 are approximate, and become
accurate in the non-degenerate limit.

where we insert the corresponding eigenvalues. For a two-dimensional Hamiltonian it is convenient
to choose an ansatz that directly guarantees the orthonormality of the two eigenstates.

Namely, we exploit cos2(x) + sin2(x) = 1 (x ∈ R)

(
c1,−

c2,−

)
=

(
cos(γ

sin(γ)

)
and

(
c1,+

c2,+

)
=

(
− sin(γ
cos(γ)

)
(1.108)
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Insertion of this Ansatz yields

0
!
= (ϵ̄1 − ϵ−) cos(γ)− t̄ sin(γ)

tan(γ) =
ϵ̄1 − ϵ−
t̄

Eq. 1.104
= −

1

t̄

 ϵ̄1 + ϵ̄2
2

−

√(
ϵ̄1 − ϵ̄2
2

)2
+ t̄2 − ϵ̄1


= −

 ϵ̄2 − ϵ̄1
2t̄

−

√
1 +

(
ϵ̄2 − ϵ̄1
2t̄

)2
γ = atan

−
 ϵ̄2 − ϵ̄1
2t̄

−

√
1 +

(
ϵ̄2 − ϵ̄1
2t̄

)2 (1.109)

Insertion of γ into the Ansatz leads to the desired result. This result appears cumbersome because
of the trigonometric functions. However, the expression avoids divisions by zero, which otherwise
tend to show up.

-4 -3 -2 -1 1 2 3 4

-1

-0,5

0,5

1

Fig. 1.5: Coefficients for the bonding (blue) and antibonding (orange) states of a two-center bond
as function of ϵ̄2−ϵ̄1

2t̄ . The blue-orange dashed line is cos(γ), the full blue line is sin(γ) and the full

orange line is sin(γ). γ
(
ϵ̄2−ϵ̄1
2t̄

)
is the mixing angle of the two orbitals. See text for discussion.

Let me summarize a few general observations, which are worth remembering. They will come up
again later on. The reader may verify them for the example at hand. (The intention here is not to
provide a derivation.)

• The eigenvectors are determined completely by the ratio | ϵ1−ϵ22t̄ |. |ϵ1 − ϵ2| is the relevant
energy scale of the extreme non-degenerate limit, while 2|t̄| is the energy-level spacing in the
degenerate limit, the relevant energy scale in that limit.

• In the degenerate limit, the weight of the orbitals is equally distributed over both sides, i.e.
|cα,±| = 1√

2
for α ∈ {1, 2}.

• In the lower (bonding) wave function, the two atomic orbitals add up in the bonding region
between the two atoms, while the upper (antibonding) wave function has a node plane in the
bonding region. The energy difference between the bonding and antibonding orbitals is due to
the difference in kinetic energy, which is proportional to the squared gradient of the wave func-
tion: The kinetic energy of a wave function is

∫
d4x ψ∗(x⃗)−ℏ

2∇⃗2
2me

ψ(x⃗) = +ℏ2
2me

∫
d4x

∣∣∇⃗ψ(x⃗)∣∣2.
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This shows up in our calculation as follows: For a positive hopping t̄ = −h1,2 > 0, the bonding
orbital has coefficients with equal sign, while the coefficients of antibonding orbital have opposite
sign. For negative hopping t̄ = −h12 < 0, the coefficients of the bonding orbital change sign
and the antibonding orbitals have the same sign. The hopping is positive if the atomic orbitals
point towards each other with the same sign as in the hydrogen molecule. When two orbitals
point towards each other with the opposite sign, such as two p-orbitals pointing along the bond
axis, the hopping parameter is negative.

• In a given wave function, the weight of that atomic orbital dominates, which has the closest
atomic energy level. That is, for ϵ̄1 < ϵ̄2, the wave function of the bonding state (at ϵ−) is
concentrated on orbital 1, and the contribution of orbital 2 is smaller. The antibonding orbital
(at ϵ+) has its main contribution on atom 2.

• There are sum rules, namely that the sum ϵ−+ ϵ+ of the energy eigenvalues is identical to the
sum of the atomic levels ϵ̄1+ϵ̄2. It can be shown that, for orthonormal atomic levels, the sum of
eigenvalues is equal to the trace of the Hamiltonian matrix, i.e.

∑
n ϵn =

∑
n ϵ̄n = Tr[h] = Tr[ĥ]

for arbitrary dimensions. This implies that the energy gain of the bonding orbital is compensated
by the energy loss of the antibonding orbitals, when both are equally occupied.

• A second sum rule is that the total weight of each orbital, counting its contribution to all
eigenstates, filled and empty, is the same before and after the bond formation. In our case, this
implies c2α,− + c

2
α,+ = 1 for both atomic orbitals |χα⟩ with α ∈ {1, 2}. Also this is a general

result, which holds when the overlap matrix is unity.

What we observed are examples for two sum rules that are generally valid. They are presented
here without proof.

NOTIONS ON DIAGONALIZATION

For an eigenvalue problem with a hermitian Hamiltonian h(
h − ϵn111)c⃗n = 0 (1.110)

with eigenvalues ϵn and eigenvectors c⃗n, the following statements hold:

• energy sum rule: ∑
n

ϵn = Tr[h] (1.111)

• charge sum rule: ∑
n

|cj,n|2 = 1 ∀j (1.112)

Important note: This statements do not hold for a generalized eigenvalue problem, that is in the
presence of an overlap matrix that differs from the unit matrix.
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1.5.3 Linear chain of hydrogen atoms

The most simple model for an extended system is the linear chain. The linear chain describes hydrogen
atoms placed on an equi-spaced one-dimensional grid with spacing alat. The spacing alat is the lattice
constant.

We impose periodic boundary conditions. That is, we require the wave function to become
identical after n beads. This describes either (1) a ring with Ns beads or (2) an infinite system with
n k-points. Consider orthonormal local orbitals |χj,σ⟩ with j = 1, . . . Ns , where Ns is the number of
sites. Choose, whether the calculated eigenstates are normalized per one-atom unit cell of the linear
chain or for the Ns -bead ring.

Problem

The linear chain has the Hamiltonian

ĥ =
∑

σ∈{↑,↓}

∞∑
j=−∞

|πσ,j⟩ϵ̄⟨πσ,j |︸ ︷︷ ︸
atomic energies

−
∑

σ∈{↑,↓}

∞∑
j=−∞

(
|πσ,j⟩t̄⟨πσ,j+1|+ |πσ,j+1⟩t̄⟨πσ,j |

)
︸ ︷︷ ︸

hopping

(1.113)

where j is the site index.

1. determine the eigenstates and eigenvalues of the linear chain with periodic boundary conditions
with a repeat unit of Ns beads.

Solution

1. determine the eigenstates and eigenvalues of the linear chain with periodic boundary conditions
with a repeat unit of Ns beads.

The linear chain is a worked example in section 6.7 of ΦSX:Quantum mechanics of the chemical
bond.[18]. Here, I follow the recipe described in section 1.1.8 on p. 13.

In our problem, the primitive real-space lattice vector is T⃗ = alate⃗x , where the lattice constant alat
is the distance between the beads and e⃗x is a unit vector pointing along the chain (which is oriented
in x-direction). The general lattice vectors are t⃗j = T⃗ · j = e⃗xalat · j with integer j .

In our problem, there are only two spin orbitals per unit cell. Therefore, the orbital index (α) is
the same as the spin index σ. Bloch theorem already determines the wave functions, namely

|ϕn,k⃗⟩ =
∑

σ∈{↑,↓}

1√
Ns

∞∑
j=−∞

|χσ,j⟩ei k⃗ e⃗xalat·jcσ,n(k⃗) (1.114)

Ns is the number of sites in the unit cell, which determines the set of k-points and the normalization
of the wave functions.

In order to practice the recipe described in section 1.1.8 on p. 13, let me proceed in small steps.
I leave out many explanations, because they are already given in section 1.1.8.

The recipe goes as follows:

1. “Extract the real-space Hamilton hα,⃗0,β,t⃗ ′ and overlap Sα,⃗0,β,t⃗ ′ matrix elements connecting the
orbitals in the first unit cell t⃗ = 0⃗ to those in a unit cell displaced by a real-space lattice
translation vector t⃗ ′.”
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I obtain

h0,σ,0,σ′ = ϵ̄δσ,σ′

h0,σ,1,σ′ = −t̄δσ,σ′
h0,σ,−1,σ′ = −t̄δσ,σ′

S0,σ,j,σ′ = δσ,σ′δj,0 (1.115)

2. “Determine the k-dependent Hamiltonian and overlap matrix from the matrix elements in real
space”

hσ,σ′(k⃗)
Eq. 1.67
=

∞∑
j=−∞

hσ,0,σ′,je
ikxalatj = δσ,σ′

(
ϵ̄− 2t̄ cos(kxalat)

)
Sσ,σ′(k⃗)

Eq. 1.68
=

∞∑
j=−∞

Sσ,0,σ′,je
ikxalatj = δσ,σ′ (1.116)

3. “Solve the generalized eigenvalue problem and obtain k-dependent energies ϵn(k⃗) and the eigen-
vectors cα,n(k⃗) satisfying the normalization condition”

The k-dependent energy levels are

ϵn(k⃗) = ϵ̄− 2t̄ cos(kxalat) (1.117)

and the eigenvectors c⃗n(kx) = (c↑,n(kx), c↓,n(kx)) are c⃗1(kx) = (1, 0) and c⃗2(kx) = (0, 1). The
first band (n=1) refers to the states with spin ↑ and the second band (n=2) has the spin ↓.
The normalization condition ∑

σ,σ′∈{↑,↓}

c∗σ,m(k⃗)Sσ,σ′(k⃗)cσ′,n(k⃗) = δm,n (1.118)

is satisfied.

4. “Construct eigenstates of the Hamiltonian from the eigenvectors”

The wave function is

|ϕn(k⃗)⟩
Eq. 1.71
=

∑
σ

1√∑
t⃗ ′

∑
t⃗

|χσ,t⃗⟩ei k⃗ t⃗︸ ︷︷ ︸
|χσ,k⃗ ⟩

cσ,n(k⃗) =
∑
j

|χσ,j⟩
1√
Ns
eikxalatj (1.119)

where Ns is the number of beads in the (super) unit cell, which defines the quantization condition
for the k-points and the normalization of the eigenstates. The wave function extends over all
space, but the wave function repeats every Ns sites.

The dispersion relation ϵn(kx) of the linear chain and the resulting density of states is shown
in figure 1.6. The shape of the density of states with the raised band edges is characteristic for
quasi-one-dimensional structures in the material. This shape explains, why one-dimensional system
tend to distort in order to open the band gap, such as in a Peierls distortion.

Editor: This concept needs to be explained. Consider the following line of thought:
Consider the G vector connecting the two k-points for which the bands intersect the
Fermi level. If a perturbation has a contribution with this G-vector, a band gap
opens at the Fermi level. Out of the plane waves ei

G
2
r and e−i

G
2
r, we can form a lower

state of the form cos(G2 r) and an upper state sin(G2 r). The density of the lower state
is proportional to cos(Gr), which is a charge density wave with a wave vector G. If



1 NON-INTERACTING ELECTRONS 35

the electrons interact, this charge-density wave produces a perturbing potential with
the same wave length, namely G, which was the perturbation causing the charge density
wave in the first place. The band edges on both sides of the Fermi level have the
spiked form of a one-dimensional density of states. This tells that the charge density
wave is strong, stronger than in higher dimensions. This is the underlying reason
for the observation that one-dimensional problems tend to undergo phase transitions.
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Fig. 1.6: Dispersion relation of linear chain of hydrogen atoms with periodic boundary conditions.
The green points correspond to the energy levels of a ring with 14 atoms. In the middle figure we
show the energy levels, and on the right the schematic density of states D(ϵ) for the infinite chain.

The boundary condition imposes

⟨πσ,Ns |ϕn(k)⟩ = ⟨πσ,0|ϕn(k)⟩
Eq. 1.114⇒ eikxalat·Ns = 1 ⇒ kxalat · Ns = 2πm

⇒ k⃗m = e⃗x
2π

Nsalat
·m (1.120)

Only the k-points from the interval − π
alat

< km ≤ π
alat

are considered, because the wave functions of
km and km + Ns are identical.
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1.5.4 Insulating linear chain

Introduction

While the linear chain is the minimal problem for a metallic system, we can also form the minimal
model for an insulating system by doubling the periodicity of the half-filled linear chain.

In the most general form, this is the so-called Rice-Mele model[19], which is used to describe
ferroelectric materials. When the atomic energy levels alternate, but the hopping parameters remain
constant, the model describes an ionic insulator. If the hopping parameters vary, but the energy levels
are constant, the model describes a covalent insulator. This latter special case, alternating hopping
but constant energy levels, leads to the so-called Su-Schrieffer-Heeger (SSH) model [20], which
is the minimal model system for a topological insulator.

One purpose of this exercise is to train Bloch-theorem for a case with more than one atom in the
unit cell. Secondly, we become familiar with a frequently used toy model, for which we can investigate
the role of interactions. Later, we will see that there are insulators, so-called Mott insulators, which
turn insulating only due to interaction. The model described here allows to set the Mott insulator
apart from the regular “band” insulators.

Problem

lat latlat

t’ t t’ t

ε1

ε2

a a a

t

Fig. 1.7: Scheme to demonstrate the Hamiltonian of the alternating linear chain. It describes a chain
with two atoms per unit cell with different ionicity, that is atomic energy levels ϵ̄1 and ϵ̄2. The atoms
are connected by weak and strong bonds as characterized by the two hopping parameters t̄ and t̄ ′.
With alat I denote the lattice constant.

1 Calculate the band structure of the linear chain with two distinct sites per unit cell. Both,
the “atomic energies” ϵ̄1, ϵ̄2 and the hopping parameters t̄ , t̄ ′ alternate. Alternating atomic
levels describe a material with ionic character, while alternating hoppings describe materials
with covalent bonds.

2 Determine the k-dependent wave functions.

Discussion

1 Calculate the band structure of the linear chain with two distinct sites per unit cell. Both,
the “atomic energies” ϵ̄1, ϵ̄2 and the hopping parameters t̄ , t̄ ′ alternate. Alternating atomic
levels describe a material with ionic character, while alternating hoppings describe materials
with covalent bonds.

The solution is a worked example in section 4.5 in ΦSX: Introduction to Solid State Theory[1],
which has been included below. In contrast to the previous exercise for the linear chain, I do not
express the Hamiltonian as abstract operator using the projector and orbital states, but I go directly
to the matrix equation.
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Let us consider the example of a linear chain made from atoms with one s-type orbital. There
shall be two atoms per unit cell. The lattice constant shall be alat. The orbitals are denoted by (α, j),
where α ∈ {1, 2} denote the two orbitals and j is the number of lattice displacements by alat from
the origin to the current site.

The two atoms in the unit cell have orbital energies ϵ̄1 and ϵ̄2. We denote the hopping matrix
element between orbitals (1, j) and (2, j) by t̄ and the one between (2, j) and (1, j + 1) by t̄ ′. In the
context of Slater-Koster matrix elements, both are matrix elements of the type −hssσ.

The difference of the atomic energy levels ϵ̄2− ϵ̄1 describes relative electronegativity of the two
atoms. The atom with the lower electron level is more electronegative than the one with the higher
level. Without hopping, the electrons would accumulate at the more electronegative atom. This is
analogous to rock salt (NaCl), where the sodium atom holds on only weakly to its valence electron,
while the lowest unoccupied orbital of the chlorine atom is much stronger bound to the atom core.
Therefore, sodium donates its electron to the chlorine atom, so that two ions Na+ and Cl− are
formed.

The different hopping parameters describe that two of the atoms are pairwise closer together.
That is, we describe a chain of molecules.

For the sake of simplicity, we only consider wave functions with one spin direction. The bands of
the two spin direction are identical, because there is no magnetic field. When we consider one spin
direction, the wave-function component of the other spin direction is zero.

The infinite Hamiltonian has the form

h =



...
...

...
. . . ϵ̄1 −t̄ 0 0 . . .

. . . −t̄ ϵ̄2 −t̄ ′ 0 . . .

. . . 0 −t̄ ϵ̄1 −t̄ 0 0 . . .

. . . 0 0 −t̄ ϵ̄2 −t̄ ′ 0 . . .

. . . 0 −t̄ ′ ϵ̄1 −t̄ . . .

. . . 0 0 −t̄ ϵ̄2 . . .
...

...
...

...


(1.121)

The Hamilton matrix elements can also be written as

hi ,j =

(
ϵ̄1 −t̄
−t̄ ϵ̄2

)
δi ,j +

(
0 0

−t̄ ′ 0

)
δi+1,j +

(
0 −t̄ ′
0 0

)
δi−1,j (1.122)

where i and j are the indices of the lattice translations t⃗j = alat · j . The components of the 2 × 2
matrices hi ,j refer to the orbital indices in the primitive unit cell, while i , j identify a particular unit
cell.

When we transform the Hamiltonian into the Bloch representation using Eq. 1.67, we obtain the
k-dependent Hamiltonian with t⃗j = alat · j

h(k⃗)
Eq. 1.67
=

∑
j

h(0, j)eikalatj =

(
ϵ̄1 −t̄ − t̄ ′e−ikalat

−t̄ − t̄ ′eikalat ϵ̄2

)
(1.123)

The eigenvalues ϵn(k) and eigenvectors cα(k) are obtained from the characteristic equation



38 1 NON-INTERACTING ELECTRONS

det |h(k)− ϵ111| = 0.

(ϵ̄1 − ϵ)(ϵ̄2 − ϵ)−
(
−t̄ − t̄ ′e−ikalat

)(
−t̄ − t̄ ′e+ikalat

)
= 0

ϵ2 − 2
ϵ̄1 + ϵ̄2
2

ϵ+
( ϵ̄1 + ϵ̄2
2

)2
−
( ϵ̄1 + ϵ̄2
2

)2
+ ϵ̄1ϵ̄2 = t̄

2 + t̄ ′
2
+ 2t̄ t̄ ′ cos(kalat)(

ϵ−
ϵ̄1 + ϵ̄2
2

)2
=
( ϵ̄1 − ϵ̄2
2

)2
+ t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat)

ϵn(k) =
ϵ̄1 + ϵ̄2
2

±
√( ϵ̄1 − ϵ̄2

2

)2
+ t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat) (1.124)

The first band n = 1 is obtained with ± = − and the second band is obtained with ± = +.

ε1 ε2

ε1 ε2

k

0

ε

2
2

( )
2
+(t−t’)2

2
2

2
( )

2
+(t+t’)

2a
π π

a2a
ππ

a

Fig. 1.8: Band structure of the alternating linear chain. See text for the definition of the symbols.
The indices of the hopping parameters have been dropped. Editor: the hopping parameters
in the figure need a bar

Let us investigate some special cases

• chain of decoupled molecules: We set one hopping parameter to zero, i.e. t̄ ′ = 0 . The result
are two k-independent bands for the molecular orbitals

ϵn(k) =
ϵ̄1 + ϵ̄2
2

±
√( ϵ̄1 − ϵ̄2

2

)2
+ t̄2 (1.125)

• both atoms and hopping parameters are identical, i,e, ϵ̄1 = ϵ̄2 and t̄ = t̄ ′.

ϵn(k) = ϵ̄1 ±
√
2t̄2 + 2t̄2 cos(kalat) = ϵ̄1 ± |t̄|

√
2 + 2 cos(kalat)︸ ︷︷ ︸√
4 cos2(kalat/2)

= ϵ̄1 ±
∣∣∣2t̄ cos(1

2
kalat

)∣∣∣ (1.126)

This is the band structure of a mono-atomic chain

ϵ(k) = ϵ̄1 + 2t̄ cos

(
kalat

2

)
folded back into the first Brillouin zone.

• for alternating orbital energies or alternating hopping matrix elements, The band gap at the
zone boundary opens, so that an insulator is obtained if the orbitals are half filled.
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Fig. 1.9: Folding back of the band structure into the reciprocal cell of a doubled real-space unit
cell. The example is shown for the one-dimensional molecule acetylene, which undergoes a Peierls
distortion, which doubles the unit cell. Only the p-orbitals perpendicular to the molecular plane
are considered. Editor: The commonly used picture of folding back is not exactly
how the band structure is deformed. Rather it is a shift of the band structure
by π/2. A new graph may be useful.

Note that t̄ and t̄ ′ are negative, because it is approximately equal to the overlap matrix element
multiplied with the potential in the bond-center. The potential is negative.

2 Determine the k-dependent wave functions.

The eigenvectors c⃗± are obtained from[
h(k)− ϵ±(k)111

]
c⃗±(k⃗) = 0 (1.127)

where the k-dependent Hamiltonian is taken from Eq. 1.123. We parameterize the eigenstates in
terms of a mixing angle γ(k⃗), i.e.(

c1,−(k)

c2,−(k)

)
=

(
cos(γ(k))

sin(γ(k))eiφ(k)

)
and

(
c1,+(k)

c2,+(k)

)
=

(
− sin(γ(k))e−iφ(k)

cos(γ(k))

)
(1.128)

which ensures the normalization and the orthonormality of the two states
We use the k-dependent Hamiltonian Eq. 1.123 and the eigenvalue Eq. 1.124.

0 =
[
h11(k)− ϵ−(k)

]
cos(γ(k)) + h12(k) sin(γ(k))e

iφ(k)

=

(
ϵ̄1 − ϵ̄2
2

+

√( ϵ̄1 − ϵ̄2
2

)2
+ t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat)

)
cos(γ(k)) +

(
−t̄ − t̄ ′e−ikalat

)
sin(γ(k))eiφ(k)

(1.129)

eiφ(k) =

(
t̄ + t̄ ′e−ikalat

|t̄ + t̄ ′e−ikalat |

)∗
φ(k) = −atan

(
Im(t̄ + t̄ ′e−ikalat)

Re(t̄ + t̄ ′e−ikalat)

)
= −atan

(
t̄ ′ sin(−kalat)

t̄ + t̄ ′ cos(−kalat)

)
= atan

(
sin(kalat)

t̄/t̄ ′ + cos(kalat)

)
(1.130)
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(
ϵ̄1 − ϵ̄2
2

+

√( ϵ̄1 − ϵ̄2
2

)2
+ t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat)

)
cos(γ(k)) =

∣∣∣∣t̄ + t̄ ′e−ikalat

∣∣∣∣ sin(γ(k))
(1.131)

γ(k) = atan


ϵ̄1−ϵ̄2
2 +

√(
ϵ̄1−ϵ̄2
2

)2
+ t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat)∣∣∣∣t̄ + t̄ ′e−ikalat

∣∣∣∣


= atan

 ϵ̄1 − ϵ̄2

2

√
t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat)

+

√√√√√1 +
 ϵ̄1 − ϵ̄2

2

√
t̄2 + t̄ ′

2
+ 2t̄ t̄ ′ cos(kalat)

2

(1.132)

Editor: finish it by inserting it into the expression for the eigenvectors
Editor: exploit

|t̄ ± t̄ ′eikalat |2 = t̄2 + t̄ ′2 ± 2t̄ t̄ ′ cos(kalat) (1.133)
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1.5.5 Free-electron gas or jellium model

Introduction

The jellium model, also called free-electron gas, describes a system of electrons with a homoge-
neous charge background ensuring overall charge neutrality.

In the jellium model, the atom-cores are smeared out into a neutralizing charge background, which
effectively removes the effects of the atomic structure. We can still exploit the complete translational
and rotational symmetry of free space. The Coulomb potential due to neutralizing charge background
is captured by a constant potential V0, which acts on the electrons. Usually, V0 is set to zero, by
using it as the zero of the energy scale. A global constant can be added to the potential because of
the gauge symmetry of electric potential.24 The gauge symmetry says that such a global potential
shift has no effect on the observable properties of the system.

The Hamiltonian for the free-electron gas is

ĥ =
∑
σ

ˆ⃗p 2

2me
+ V0 (1.134)

where me is the electron mass.
When the Fermi level lies within the spectrum of the free-electron gas, i.e. µ > V0 (or better

µ− V0 ≫ kBT ), we call it a degenerate electron gas. The degenerate electron gas is a model for
a metal.

The free-electron gas is not only useful to describe the behavior of metals, but it is also valuable
to understand semi-conductors and insulators. In those cases, the free-electron gas is a model for
electrons near the band edges, where the bands can be approximated by parabolic bands. These
situations are described by a dilute electron gas, as opposed to the degenerate electron gas. A
dilute electron gas is characterized by a Fermi level that lies below the bottom of the band, i.e.
µ < V0 (or better V0 − µ≫ kBT ).

By changing the sign of the kinetic energy, for example by using a negative mass, the free-electron
gas is a model for holes (missing electrons) in the valence band of a semiconductor.

Outloook on magnetism: This exercise contributes one ingredient to the understanding of mag-
netism:

• For the non-interacting electron gas, we find that the energy is lowest if the electron gas has no
magnetic moment. We can evaluate the magnetic susceptibility of this non-interacting electron
gas.

• The Pauli prinicple reduces the effective Coulomb repulsion of electrons with equal spin, because
electrons with equal spin come close to each other only rarely. One consequence is Hund’s
rule, which says that electrons in a angular momentum shell of an atom tend to align with
parallel spin. The same effect makes electrons with the same spin favorable also in an electron
gas. The Coulomb interaction in combination with the Pauli principle favors a ferromagnetic
alignment of the spins.

What keeps the electron gas to be magnetic is the kinetic energy of the electron gas that is calculated
here. Hence, whether an electron gas is magnetic or not is decided by the balance between kinetic
energy and the Coulomb interaction.

Problem

Let us describe the free-electron gas with periodic boundary conditions in a cubic box with side
length L. The wave functions shall be normalized with in the box. As we approach the final result,
we let L go to infinity.

24See gauge symmetry of the electromagnetic potentials in ΦSX: Elektrodynamik.[21].
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1 Calculate the band structure of the free-electron gas

2 Calculate the density of states of the free-electron gas with a specified electron density.

3 Calculate the energy of the non-magnetic electron gas

4 Calculate the energy of the spin-polarized electron gas as function of the spin polarization
ns/nt , where ns = n↑ − n↓ is the spin density and nt = n↑ + n↓ is the total electron density.
Without restriction of generality (WroG), the magnetization is oriented along the z-direction.

Discussion

Band structure

1 Calculate the band structure of the free-electron gas

The wave functions are

|ψk⃗ ,σ⟩ =
∑
σ′

∫
V

d3r |r⃗ , σ′⟩
1√
L3
ei k⃗ r⃗δσ,σ′ (1.135)

The integration region V is a three-dimensional cubic box of side-length L. The box is both, the
normalization volume, and the supercell defining the periodic boundary conditions.

ψ(r⃗ + e⃗jL, σ) = ψ)r⃗ , σ) (1.136)

where e⃗j is the unit vector pointing along the j-th cartesian coordinate.
The boundary conditions limit the wave vectors to a discrete set

k⃗i1,i2,i3 =
2π

L

 i1i2
i3

 with integer i1, i2, i3 ∈ I (1.137)

The one-particle energies are

ϵσ(k⃗) = ⟨ψk⃗ ,σ|ĥ|ψk⃗ ,σ⟩ = V0 +
ℏ2k⃗2

2me
(1.138)

This defines the dispersion relation, i.e. the band structure of the free-electron gas.

Density of states

2 Calculate the density of states of the free-electron gas

The density of states D(ϵ) is best evaluated[1] indirectly from the number-of-states function 25

N (ϵ) as D(ϵ) = ∂ϵN (ϵ).
The number of states of the free-electron gas is obtained from the the occupied region of k-space.

In a free electron gas, the occupied states lie within a sphere with ϵ < (ℏk)2/2me . The k-points

25

D(ϵ) =
∑
n

δ(ϵ− ϵn) =
∑
n

∂ϵθ(ϵ− ϵn) = ∂ϵ
∑
n

θ(ϵ− ϵn) = ∂ϵN (ϵ) (1.139)

The number-of-states function N (ϵ) is defined as the number of states with energy below ϵ. The particle number NT,µ
is only loosely related to the number of states function N (ϵ). The relation is NT=0,µ = N (µ).
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Fig. 1.10: Band structure of free, non-interacting electrons. The lattice is an fcc-cell with a lattice
constant of 4.05 Å corresponding to aluminum. The high symmetry points are given in units of 2πalat

.
The numbers indicate the degeneracy beyond spin-degeneracy. On the right-hand side, the band
structure of aluminum is shown in comparison.

are determined by the periodic boundary conditions. The reciprocal-space volume per k-point is
∆k3 = (2π/L)3.

N (ϵ) =

 ∑
σ∈{↑,↓}


︸ ︷︷ ︸

2

︷ ︸︸ ︷
4π

3

(1
ℏ
√
2me(ϵ− V0)︸ ︷︷ ︸
k(ϵ)

)3
occupied rec.space volume

(
2π

L

)−3
︸ ︷︷ ︸
∆k−3

θ(ϵ− V0)

= V︸︷︷︸
L3

 ∑
σ∈{↑,↓}


︸ ︷︷ ︸

2

(√
2me
2πℏ

)3
4π

3
(ϵ− V0)

3
2 θ(ϵ− V0) (1.140)

The Heaviside step function θ(ϵ − V0) has been included because the number of states is zero for
energies below the parabola ϵσ(k) in Eq. 1.138, i.e. for ϵ ≤ V0.

The density of states is thus

D(ϵ) = ∂ϵN (ϵ) = V︸︷︷︸
L3

 ∑
σ∈{↑,↓}


︸ ︷︷ ︸

2

(√
2me
2πℏ

)3
2πθ(ϵ− V0)

√
ϵ− V0 (1.141)

My convention to define the number of states and the density of states as extensive quantities
is uncommon. Usually, the numbers are divided by volume or calculated for a specified unit cell of a
crystal. I have chosen my convention to avoid ambiguity: Because of the volume occurring in the
expression, it is apparent that it is an extensive quantity. By scaling the result, one obtains the other
choices.

The square-root behavior of the density of states in Eq. 1.141 is characteristic for the density of
states of parabolic bands in three dimensions. This behavior is regularly observed near band edges in
three dimensions.26

Let us now turn to the thermodynamic properties.
26The dimensionality has a large impact in the shape of the density of states.
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Energy of the non-magnetic electron gas

3 Calculate the energy of the non-magnetic electron gas with a specified electron density.

Editor:

E(N) = stat
µ
E(µ)− µ(N (µ)− N)

E(Nt , Ns) = stat
B,V

E(µ↑, µ↓)− µeB(N↑ − N↓ − Ns) + V (N↑ + N↓ − Nt) (1.142)

The energy calculated from the density of states depends on the chemical potential µ. The
particle number as function of chemical potential allows one to obtain the chemical potential.

Let me express particle number and the energy as an integral over the density of states, that has
obtained earlier in Eq. 1.141. The chemical potential is the Fermi level.

N (µ) =
∫ µ

−∞
dϵ D(ϵ) and E(µ) =

∫ µ

−∞
dϵ D(ϵ)ϵ (1.143)

The density of states of the free-electron gas in three dimensions, Eq. 1.141, can be written as

D(ϵ) = Cθ(ϵ− V0)
√
ϵ− V0 with C = L3

 ∑
σ∈{↑,↓}


︸ ︷︷ ︸

2

(√
2me
2πℏ

)3
2π (1.144)

N (µ) Eq. 1.143
= C

2

3
(µ− V0)

3
2︸ ︷︷ ︸∫ µ

V0
dϵ
√
ϵ−V0

⇒ µ− V0 =
(
3N (µ)
2C

) 2
3

E(µ)
Eq. 1.143
= V0N (µ) +

2

5
C(µ− V0)

5
2︸ ︷︷ ︸

C
∫ µ
V0
dϵ ϵ
√
ϵ−V0

= V0N (µ) +
2C

5

(
3N (µ)
2C

) 5
3

= V0N (µ) +
2

5
C−

2
3

(
3N (µ)
2

) 5
3

Eq. 1.144
= V0N (µ) +

[
L3
( ∑
σ∈{↑,↓}

)(√
2me
2πℏ

)3
2π

]
︸ ︷︷ ︸

C

− 2
3 2

5

(
3

2

) 5
3

L5
(
N (µ)
L3

) 5
3

= V0N (µ) + L3
1
2

∑
σ∈{↑,↓}

− 23 [2( 2
4π2

) 3
2

2π

]− 2
3 3

10
2︸︷︷︸

2
5
· 3
2

(
2

3

)− 2
3

︸ ︷︷ ︸
2
3(
3
2)
5
3

ℏ2

me

(
N (µ)
L3

) 5
3

= V0N (µ)︸ ︷︷ ︸
Epot

+L3
3

10

(
1

2

∑
σ∈{↑,↓}

)− 2
3
(
3π2

) 2
3 ℏ2

me

(
N (µ)
L3

) 5
3

︸ ︷︷ ︸
Ekin

(1.145)

I use the factor 12
∑

σ∈{↑,↓} to make the spin-degeneracy explicit, while keeping the expression for a
non-spin polarized electron gas simple, because this factor equals unity.

Thus, the potential energy per volume is

1

L3
Epot = V0nt (1.146)
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and the kinetic energy per volume is

1

L3
Ekin(nt) =

3

10

(
3π2

) 2
3 ℏ2

me
n
5
3
t (1.147)

where nt
def
= 1

L3N (µ) is the total (both spin directions) electron density.

Energy functional for the spin-polarized electron gas

4 Calculate the energy of the spin-polarized electron gas as function of the spin polarization
ns/nt , where ns = n↑ − n↓ is the spin density and nt = n↑ + n↓ is the total electron density.
Without restriction of generality (WroG), the magnetization is oriented along the z-direction.

Next we can also determine the energy as function of the spin polarization. The spin polarization
is the ratio between the spin density ns and the total density nt . The spin density for an electron gas
polarized in z direction is ns = n↑ − η↓.

1

L3

(
Ekin(n↑) + Ekin(n↓)

)
Eq. 1.147
=

3

10

(
3π2

) 2
3 ℏ2

me

1

2

(
(2n↑)

5
3 + (2n↓)

5
3

)
(1.148)

With n↑ = 1
2(nt + nS) and n↓ = 1

2(nt − nS), we obtain

KINETIC ENERGY OF THE NON-INTERACTING FREE ELECTRON GAS

This is the Thomas-Fermi expression for the kinetic energy of a non-interacting homogeneous electron
gas at zero Kelvin.

1

L3
Ekin(nt , ns) =

3

10

(
3π2

) 2
3 ℏ2

me
n
5
3
t︸ ︷︷ ︸

E(nt ,0)/L3

·
1

2

((
1 +

ns
nt

) 5
3

+

(
1−

ns
nt

) 5
3

)
︸ ︷︷ ︸

≈1+(2
2
3−1)

(
ns
nt

)2
(1.149)

where nt
def
= 1

L3N (µ) = n↑ + n↓ is the total electron density (both spin directions)and ns = n↑ − n↓
is the spin density .
The spin dependence of the kinetic energy is shown in Fig. 1.11. The dependence of the spin
polarization can fairly well be approximated by a simple parabola.

This expression is significant to understand the interacting homogeneous electron gas. It is
further used in the Thomas-Fermi approximation of electrons. The Thomas-Fermi approximation is
a predecessor of the Density Functional Theory (DFT), for which its inventor Walter Kohn received
the Nobel price in chemistry 1998.
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Fig. 1.11: Dependence of the kinetic energy of the free-electron gas on the spin polarization ns/nt .
The dashed line is the approximation by a simple parabola, which is surprisingly accurate.



Chapter 2

Weakly interacting electrons

In order to explore the role of interactions, let us start with small interactions. The interaction energy
can be obtained in first-order perturbation theory using the wave functions of the non-interacting
system, namely Slater determinants. Slater determinants have a particularly simple structure, which
allows one to express most quantities in terms of one-particle wave functions.

Because the Coulomb interaction between electrons is strong, one may question the reliability of
such an approach. This concern is justified. However, in practice we do not start the perturbation
theory from a truly non-interacting system: Rather, we choose an effective one-particle potential and
a renormalized interaction. The effective potential considers also the electron-electron repulsion and
the renormalized interaction takes into account that the interaction is screened by the electron gas
between two charges. Both effects lead to substantially reduced effective interaction, which usually
can be well described by perturbation theory.

One such description using one-particle wave functions is the self-consistent Hartree-Fock method.
The Hartree-Fock method [22, 23, 24] is an electronic-structure method that is the work-horse of
quantum chemistry. Today it plays an important role as a starting point of more accurate and involved
methods.

“One may get the impression that modern many-body theory, of which one hears so much, goes
far beyond Hartree-Fock, and that therefore we should not bother with such old-fashioned stuff.
This is not at all true– in fact, modern many-body theory has mostly just served to show us how,
where, and when to use Hartree-Fock theory and how flexible and useful a technique it can be.” P.W.
Anderson, 1963[25]

Another description using one-particle wave functions is density-functional theory(DFT). In
contrast to the Hartree-Fock approximation, density functional theory is formally exact, albeit limited
to ground states, respectively equilibrium ensembles. This method is the workhorse for first-principles
calculations and widely used for quantitative calculations of materials and molecules considering the
quantum nature of the electronic structure. Despite the different foundation of density functional
theory and the Hartree-Fock method, they exhibit many similarities that provide a insights for first-
principles calculations.

Let me return to the Hartree-Fock method discussed in this chapter: The basic idea of the
Hartree-Fock method is to restrict the wave functions to Slater determinants[22]. The wave function
is borrowed from a non-interacting system, but one chooses the very best non-interacting system for
that purpose.

After having defined Slater determinants in the previous chapter, in this chapter we will gain some
familiarity with them. We will see, how non-interacting many-particle systems can be described by
a set of one-particle wave functions. Furthermore, we will become familiar with the most important
contributions of the electron interaction, namely Hartree energy and exchange energy.

Then we will explore the energetics. I will directly step into the finite temperature formalism, in
order to prepare the ground for the finite temperature Green’s function formalism discussed later.

47
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While being slighly more complex, the finite-temperature point of view avoids a number of difficulties
inherent in the zero-temperature formalism. We will learn the implications of the mean-field approx-
imation, which is inherent in Hartree-Fock approximation. While density functional theory does not
make the mean-field approximation, the understanding of the Hartree-Fock approximation sheds light
onto concepts of density-functional theory.

In this chapter, I will also introduce the concept spectral function, which can be probed experi-
mentally. Besides determining the state the system is in, understanding the response of the system
to an external perturbation is the second most important goal of theoretical solid state physics, if
not of all physics.

• The state is often determined assuming thermal equilibrium.1 Thermal equilibrium is based on
the energy of the system.

• The response of the system requires the understanding of excited states. The latter are de-
scribed by the spectral function.

2.1 Expectation values of Slater determinants

The development of a suitable notation had a large impact on many-partcle physics. We will later
use the occupation-number representation and, creation and annihilation operators. Until then, we
need to live with a conventional notation, which is a bit clumsy for many-particle physics. This means
that it may not be worth trying to memorize formulas in this notation. Nevertheless, it will remain
important to be able to translate the expressions from the elegant, but also abstract, notations into
the conventional wave function notation.

2.1.1 One- and two-particle operators

The total energy2 for an N-electron system has the form

E = ENN + ⟨Ψ|ĥ + Ŵ |Ψ⟩ (2.1)

where

ENN(R⃗1, . . . , R⃗M)
def
=
1

2

M∑
i ̸=j

e2ZiZj

4πϵ0|R⃗i − R⃗j |
(2.2)

is the electrostatic repulsion between the nuclei. The operators acting on the electrons can be divided
into a one-particle operator ĥ and a two-particle operator Ŵ .

The operator ĥ in Eq. 2.1 describes the kinetic energy and the potential energy of the electrons in
an external potential. The external potential describes the electrostatic attraction between electrons
and nuclei with atomic number Zj and position R⃗j

vext(r⃗) = −
M∑
j=1

e2Zj

4πϵ0|r⃗ − R⃗j |
(2.3)

In the following, I will use the unit operator in Fock space

1̂ =

∞∑
N=0

∫
d4x1 · · ·

∫
d4xN |x⃗1, . . . , x⃗N⟩⟨x⃗1, . . . , x⃗N | (2.4)

1Non-equilibrium states are usually constructed by a controlled perturbation of thermal equilibrium state.
2We consider here the Born-Oppenheimer Hamiltonian ĤBO(R) Eq. 2.4 of ΦSX: Introduction to Solid State Theory.
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where |x⃗1, . . . , x⃗N⟩ = |x⃗1⟩ ⊗ . . .⊗ |x⃗N⟩ is a product state.3 The term for N = 0 is the vacuum state
|O⟩. The vacuum state cannot be described by a wave function, but only by a single complex number.

The Hamiltonian ĥ is called a one-particle operator, because it acts on all particles, but only on
one at a time. To make the distinction to an operator in one-particle Hilbert space explicit, I will call
such operators also one-particle-at-a-time operators .

Let ĥj be the Hamiltonian acting on the j-th electron of an N-particle state

ĥj =

∫
d4x1 · · ·

∫
d4xN |x⃗1, . . . , x⃗N⟩

[
−ℏ2

2me
∇⃗2r⃗j + vext(r⃗j)

]
⟨x⃗1, . . . , x⃗N | (2.5)

Each electron has the same kinetic energy and experiences the same external potential. The operator
acting on all the electrons is the sum

ĥ =

∞∑
N=0

N∑
j=1

ĥj (2.6)

The second operator in Eq. 2.1, Ŵ , describes the Coulomb interaction between the electrons.
The Coulomb interaction cannot be decomposed in a sum over all electrons. Rather, we need to
consider electron pairs

Ŵ =

∞∑
N=0

1

2

N∑
i ̸=j

Ŵi ,j (2.7)

with

Ŵi ,j =

∫
d4x1 · · ·

∫
d4xN |x⃗1, . . . , x⃗N⟩

e2

4πϵ0|r⃗i − r⃗j |
⟨x⃗1, . . . , x⃗N | (2.8)

As above, the indices i and j denote the two interacting electrons. Because two particles need to
be considered at a time, the operator Ŵ is called a two-particle operator. The two-particle term is
the cause for the dazzling complexity of many-particle physics.

To make the definition of one- and two-particle operators more concise, let me consider a general
operator Â in the Fock space space

Â =

∞∑
N=0

∫
d4x1 · · ·

∫
d4xN |x⃗1, . . . , x⃗N⟩⟨x⃗1, . . . , x⃗N |︸ ︷︷ ︸

1̂

× Â

∞∑
N ′=0

∫
d4x ′1 · · ·

∫
d4x ′N ′ |x⃗ ′1, . . . , x⃗ ′N ′⟩⟨x⃗ ′1, . . . , x⃗ ′N ′ |︸ ︷︷ ︸

1̂

=

∞∑
N,N ′=0

∫
d4x1 · · ·

∫
d4xN

∫
d4x ′1 · · ·

∫
d4x ′N ′

× |x⃗1, . . . , x⃗N⟩⟨x⃗1, . . . , x⃗N |Â|x⃗ ′1, . . . , x⃗ ′N ′⟩⟨x⃗ ′1, . . . , x⃗ ′N ′ | (2.9)

A matrix element ⟨x⃗1, . . . , x⃗N |Â|x⃗ ′1, . . . , x⃗ ′N ′⟩ has therefore N + N ′ arguments.

• If the matrix element of an operator has the special form

⟨x⃗1, . . . , x⃗N |Â|x⃗ ′1, . . . , x⃗ ′N ′⟩ = δN,N ′
N∑
i=1

A(x⃗i , x⃗ ′i)︸ ︷︷ ︸
⟨x⃗i |Â|x⃗ ′ i ⟩

N∏
j=1

j ̸=i

δ(x⃗j − x⃗ ′j) (2.10)

we call the operator a one-particle operator.
3Some caution is required to distinguish product states from Slater determinants and permanents.
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• If the matrix element of an operator has the special form

⟨x⃗1, . . . , x⃗N |Â|x⃗ ′1, . . . , x⃗ ′N ′⟩ = δN,N ′
1

2

N∑
i ,j=1

A(x⃗i , x⃗j , x⃗
′
i , x⃗
′
j)︸ ︷︷ ︸

⟨x⃗i ,x⃗j |Â|x⃗ ′ i ,x⃗ ′ j ⟩

N∏
k=1

k /∈{i ,j}

δ(x⃗k − x⃗ ′k) (2.11)

we call the operator a two-particle operator.

The term “one-particle operator” is ambiguous, which makes it confusing.

• On the one hand, it may be a true one-particle operator in the one-particle Hilbert space. It
acts on states that describe exactly a single electron.

• On the other hand, it may be a one-particle-at-a-time operator in the N-particle Hilbert space
or the Fock space. Such an operator acts on many-particle states, but it acts on one electron
at a time. The result is a sum over the contributions from the individual particles.

Let us now work out the expectation values for the one-particle and two-particle operators for a
Slater determinant.

2.1.2 Expectation value of a one-particle operator with a Slater determinant

Here, we will work out the expectation value of a one-particle-at-a-time operator for a Slater deter-
minant. An example for such a one-particle operator is the non-interacting part of the Hamiltonian.

Explicit example for the two-particle wave function

The two-particle Slater determinant |Ψ⟩ of two one-particle orbitals |ϕa⟩ and |ϕb⟩ has the form

⟨x⃗1, x⃗2|Ψ⟩︸ ︷︷ ︸
Ψ(x⃗1,x⃗2)

=
1√
2

[
⟨x⃗1|ϕa⟩⟨x⃗2|ϕb⟩ − ⟨x⃗1|ϕb⟩⟨x⃗2|ϕa⟩

]
︸ ︷︷ ︸

ϕa(x⃗1)ϕb(x⃗2)−ϕb(x⃗1)ϕa(x⃗2)

(2.12)

As a specific example for a one-particle operator, I choose the particle-density operator n̂(r⃗)
defined as

n̂(r⃗) =
∑

σ∈{↑,↓}

∫
d4x1

∫
d4x2 |x⃗1, x⃗2⟩

[
δ( x⃗︸︷︷︸
(r⃗ ,σ)

−x⃗1) + δ( x⃗︸︷︷︸
(r⃗ ,σ)

−x⃗2)
]
⟨x⃗1, x⃗2| (2.13)

The electron density n(r⃗) at position r⃗ of a Slater determinant |Ψ⟩ with two particles in the
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one-particle orbitals ϕa(x⃗) and ϕb(x⃗) is

n(r⃗) = ⟨Ψ|n̂(r⃗)|Ψ⟩
Eq. 2.13
=

∑
σ∈{↑,↓}

∫
d4x1

∫
d4x2 Ψ

∗(x⃗1, x⃗2)
[
δ(x⃗ − x⃗1) + δ(x⃗ − x⃗2)

]
Ψ(x⃗1, x⃗2)

Ψ(x⃗1,x⃗2)=−Ψ(x⃗2,x⃗1)
=

∑
σ∈{↑,↓}

{∫
d4x1

∫
d4x2 Ψ

∗(x⃗1, x⃗2)δ(x⃗ − x⃗1)Ψ(x⃗1, x⃗2)

+

∫
d4x1

∫
d4x2 Ψ

∗(x⃗2, x⃗1)δ(x⃗ − x⃗2)Ψ(x⃗2, x⃗1)
}

x⃗1↔x⃗2
=

∑
σ∈{↑,↓}

2

∫
d4x1

∫
d4x2 Ψ

∗(x⃗1, x⃗2)δ(x⃗1 − x⃗)Ψ(x⃗1, x⃗2)

Eq. 2.12
=

∑
σ∈{↑,↓}

{
2

∫
d4x1

∫
d4x2

1√
2

[
ϕa(x⃗1)ϕb(x⃗2)− ϕb(x⃗1)ϕa(x⃗2)

]∗
× δ(x⃗ − x⃗1)

1√
2

[
ϕa(x⃗1)ϕb(x⃗2)− ϕb(x⃗1)ϕa(x⃗2)

]}
=

∑
σ∈{↑,↓}

{∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗1)ϕ

∗
b(x⃗2)δ(x⃗ − x⃗1)ϕa(x⃗1)ϕb(x⃗2)

−
∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗1)ϕ

∗
b(x⃗2)δ(x⃗ − x⃗1)ϕb(x⃗1)ϕa(x⃗2)

−
∫
d4x1

∫
d4x2 ϕ

∗
b(x⃗1)ϕ

∗
a(x⃗2)δ(x⃗ − x⃗1)ϕa(x⃗1)ϕb(x⃗2)

+

∫
d4x1

∫
d4x2 ϕ

∗
b(x⃗1)ϕ

∗
a(x⃗2)δ(x⃗ − x⃗1)ϕb(x⃗1)ϕa(x⃗2)

}
=

∑
σ∈{↑,↓}

{
⟨ϕa|x⃗⟩⟨x⃗ |ϕa⟩ ⟨ϕb|ϕb⟩︸ ︷︷ ︸

=1

−⟨ϕa|x⃗⟩⟨x⃗ |ϕb⟩ ⟨ϕb|ϕa⟩︸ ︷︷ ︸
=0

−⟨ϕb|x⃗⟩⟨x⃗ |ϕa⟩ ⟨ϕa|ϕb⟩︸ ︷︷ ︸
=0

+⟨ϕb|x⃗⟩⟨x⃗ |ϕb⟩ ⟨ϕa|ϕa⟩︸ ︷︷ ︸
=1

}
=

∑
σ∈{↑,↓}

(
ϕ∗a(x⃗)ϕa(x⃗) + ϕ

∗
b(x⃗)ϕb(x⃗)

)
(2.14)

This result can be generalized to arbitrary one-particle operators. The derivation of the general
result is provided in appendix H.2.1 on 543. It is summarized as follows:

EXPECTATION VALUE OF A ONE-PARTICLE OPERATOR WITH A SLATER DETERMINANT

The expectation value of a general one-particle operator Â =
∑N

j=1 âj with a (N-particle) Slater
determinant |σ⃗⟩ built from orthonormal one-particle orbitals |ϕj⟩ with occupation numbers σj is

⟨σ⃗|
Nσ⃗∑
j=1

âj |σ⃗⟩
Eq. H.5
=

N∑
j=1

⟨ϕj |â|ϕj⟩ =
∞∑
j=1

σj⟨ϕj |â|ϕj⟩ , (2.15)

that is, a sum over the one-particle states in the Slater determinant, respectively, the sum over
occupied one-particle states. Occupied are the one-particle orbitals with occupation numbers σj = 1.

Let me mention a few observations:

• The number of terms is drastically reduced just because we have used an orthonormal set of
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one-particle wave functions. A Slater determinant for N electrons is a sum of N! product states.
An expectation value has (N!)2 terms, not even considering the number (N) of terms in the
operator itself. This is a daunting large number of terms. By exploiting the orthonormality of
the one-particle orbitals, the number of terms for a N-particle system is reduced from N(N!)2

to only N. For large systems, this is an enormous simplification. This simplification is the sole
reason for (often) using orthonormal basissets in many-particle physics.

• The sum over particles is turned into a sum over orbitals. Eq. 2.15 is the reason that the
sum of orbitals, is often considered as a sum over electrons. This statement is a misnomer,
because we cannot attribute an electron to a specific one-particle orbital. Nevertheless, it offers
a physical intuitive picture, which may be useful as long as one is aware of its limitations.

• The anti symmetry of the wave function ensures that the same expectation value is obtained,
whether we work out a property of the first, the second, or any other electron.4

2.1.3 One-particle-reduced density matrix

The physics of non-interacting and weakly interacting particles can be described well by the one-
particle-reduced density matrix ρ̂(1). The superscript “(1)” distinguishes the one-particle-reduced
density matrix from the von-Neumann density matrix ρ̂vN introduced earlier in Eq. 2.54.

The one-particle-reduced density matrix of a general ensemble of many-particle wave functions
|Φq⟩ with probabilities Pq is defined such that any expectation value

〈
A
〉

of a one-particle operator
Â is obtained as trace of the product of the operator and ρ̂(1), i.e.〈

A
〉
=
∑
q

Pq⟨Φq |Â|Φq⟩ = Tr
[
ρ̂(1)Â

]
. (2.16)

Note, that the operator Â on the left side (middle) is an operator in Fock space, which acts on each
particle individually, while the one on the right side it is an operator in the one-particle Hilbert space.
Unlike the similar Eq. 2.56 with the von-Neumann density matrix, the expression Eq. 2.16 above only
holds for one-particle operators.

For the sake of completeness, let me include the expression for the one-particle-reduced density
matrix of a many-particle wave function |Ψ⟩

ρ̂(1) =

∫
d4x

∫
d4x ′

∣∣∣x⃗〉〈Ψ∣∣∣( ∞∑
N=0

N

∫
d4x2 · · ·

∫
d4xN

∣∣x⃗ , x⃗2, . . . x⃗N〉〈x⃗ ′, x⃗2, . . . , x⃗N∣∣)∣∣∣Ψ〉︸ ︷︷ ︸
ρ(1)(x⃗ ′,x⃗)

〈
x⃗ ′
∣∣∣

(2.17)

which can be verified5 with the help of Eq. 2.9 and Eq. 2.10. Notice, that the coordinates x⃗ and x⃗ ′

are seemingly interchanged. Notice also, that the |Ψ⟩ is a state in Fock space, while ρ̂(1) is a state
in the one-particle Hilbert space.

The language of second quantization introduced later will offer a much more elegant and intuitive
expression Eq. 3.57 for the one-particle-reduced density matrix.

4The wave function is, up to a sign, the same when the coordinates of the coordinates of the first and the second
electron are interchanged. The sign drops out for expectation values, because the wave function enters twice. Example:
Using the anti symmetry of the wave function ψ(x, x ′) = −ψ(x ′, x) one can convert the density ρ1 of the first particle
ρ1(x) =

∫
dx ′ ψ∗(x, x ′)ψ(x, x ′) = (−1)2

∫
dx ′ ψ∗(x ′, x)ψ(x ′, x) = ρ2(x) into the density ρ2(x) of the second.

5The sum
∑∞
N=0 sums over the different particle numbers beginning with the vacuum (zero-particle) state. The

factor N is because the term spelled out considers only the density matrix of the first particle x⃗1 → x⃗ , x⃗ ′. The
contribution of the other particle x⃗j → x⃗ , x⃗ ′ is not spelled out because the particles are indistinguishable and therefore
produce the same result. The contribution of the other particles is taken into account by multiplying the result for the
first particle with the number N of particles.
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Natural orbitals and occupations: The one-particle-reduced density matrix is an operator in the
one-particle Hilbert space. Because it is hermitian, it has real-valued eigenvalues and orthonormal
eigenstates. The eigenstates |ϕn⟩ of the one-particle-reduced density matrix are called natural
orbitals[26] and the eigenvalues fn are called occupations[26].

ρ̂(1)|ϕn⟩ = |ϕn⟩fn (2.18)

ONE-PARTICLE-REDUCED DENSITY MATRIX

Expressed in terms of natural orbitals |ϕn⟩ and occupations fn, the one-particle-reduced density matrix
of a general ensemble of many-particle wave functions can be written as

ρ̂(1) =
∑
n

|ϕn⟩fn⟨ϕn| . (2.19)

The occupations fn are the eigenvalues and the natural orbitals |ϕn⟩ are the eigenstates of the
one-particle-reduced density matrix as defined in Eq. 2.18.

The expectation values of one particle operators are obtained by the well-known form〈
A
〉
= Tr

[
ρ̂(1)Â

]
=
∑
n

fn⟨ϕn|Â|ϕn⟩ (2.20)

For a thermal ensemble of non-interacting electrons, the occupations are given by the Fermi distri-
bution

fT,µ(ϵ)
def
=
(
1 + eβ(ϵ−µ)

)−1
(2.21)

shown in figure 2.1.
For interacting electrons, the occupations differ from zero and one even at zero temperature.
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Fig. 2.1: Fermi distribution function Eq. 2.21 and common limits.

Slater determinants and idempotency of the one-particle-reduced density matrix: The com-
parison of Eq. 2.15 with Eq. 2.20 shows that the one-particle-reduced density matrix of a Slater
determinant is

ρ̂(1) =

∞∑
n=0

|ϕn⟩σn⟨ϕn| (2.22)

where σn is the occupation number of the n-th orbital from which the Slater determinant is built. The
comparison shows also that these one-particle orbitals are also the natural orbitals. Furthermore, the
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occupations fn of a Slater determinant are the occupation numbers σn ∈ {0, 1}, which have integer
values.

Because the occupations of a Slater determinant are either zero or one, the one-particle-reduced
density matrix of a Slater determinant is idempotent6, i.e.(

ρ̂(1)
)2
= ρ̂(1) . (2.24)

The reverse is also true: An idempotent one-particle-reduced density matrix corresponds to a single
Slater determinant.

Notice a possible confusion with the idempotency of the von-Neumann density matrix ρ̂vN =∑
q |Φq⟩Pq⟨Φq |. Idempotency of the von-Neumann density matrix implies that the system is in a

pure state 7. Idempotency of the one-particle-reduced density matrix is a stronger statement: It not
only says that we deal with a single many-particle wave function, but also that this wave function
can be expressed as a single Slater determinant.

The one-particle orbitals, from which the Slater determinant is built, are also its natural orbitals.8

N-representability: The occupations for a general fermionic many-particle wave function or any
ensemble of them lies in the interval between zero and one[27]. That is,

0 ≤ fn ≤ 1 (2.25)

for any fermionic many-particle wave function or any ensemble of them. The converse statement
is also true: any hermitian matrix with eigenvalues between zero and one can be represented as
one-particle reduced density matrix of a fermionic wave function.[27] A matrix with this property is
called N-representable.

Real-space-and-spin representation: Below, I will express the one-particle-reduced density matrix
in terms of their real-space-and-spin components x⃗ = (r⃗ , σ) respectively x⃗ ′ = (r⃗ ′, σ′), with position
r⃗ and spin index σ ∈ {↑, ↓}

ρ(1)(x⃗ , x⃗ ′) = ⟨x⃗ |ρ̂(1)|x⃗ ′⟩ (2.26)

Caution is required because the same symbol “σ” is used for the spin index and the occupation number
of a Slater determinant.

The electron density can be obtained from the one-particle-reduced density matrix as

n(r⃗) =
∑

σ∈{↑,↓}

ρ(1)(x⃗ , x⃗) (2.27)

To become familiar with the expressions, let me write down the expectation values of a few
common operators.

• electron density

n(r⃗) = Tr
[
ρ̂(1)

∑
σ∈{↑,↓}

|r⃗ , σ⟩⟨r⃗ , σ|

︸ ︷︷ ︸
n̂(r⃗)

]
Eq. 2.19
=

∑
σ∈{↑,↓}

∑
n

⟨r⃗ , σ|ϕn⟩fn⟨ϕn|r⃗ , σ⟩

=
∑

σ∈{↑,↓}

∑
n

fnϕ
∗
n(r⃗ , σ)ϕn(r⃗ , σ) (2.28)

6 (
ρ̂(1)

)2
=
∑
m,n

|ϕm⟩σm ⟨ϕm|ϕn⟩︸ ︷︷ ︸
δm,n

σn⟨ϕn| =
∑
n

|ϕn⟩σ2n⟨ϕn|
σn∈{0,1}
=

∑
n

|ϕn⟩σn⟨ϕn| = ρ̂(1) . (2.23)

7A pure state is an ensemble with only a single many-particle wave function |Φq⟩
8Because the occupations are highly degenerate, there is a large flexibility of choosing the natural orbitals.
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• kinetic energy

Ekin = Tr
[
ρ̂(1)
ˆ⃗p2

2m

]
Eq. 2.19
=

∑
n

fn

〈
ϕn

∣∣∣ ˆ⃗p2
2me

∣∣∣ϕn〉 (2.29)

2.1.4 Expectation value of a two-particle operator with a Slater determinant

Let us now turn to the two-particle term. We introduce the symbol 9 Ŵ for the interaction operator.
For the Coulomb interaction, the interaction acts pairwise on two particles at a time. The two-particle
matrix elements W (x⃗ , x⃗ ′) of the Coulomb interaction is

W (x⃗ , x⃗ ′) =
e2

4πϵ0|r⃗ − r⃗ ′|
(2.30)

where e is the elementary charge and ϵ0 is the electric constant or vacuum permittivity. The
Coulomb interaction is independent of the spin index. Furthermore it is local in the two coordinates.10

While a general derivation for the interaction energy of a Slater determinant is given in the
appendix, let me work out here the interaction energy for a two-particle Slater determinant.

9The letter W stems for the German word “Wechselwirkung” for interaction.
10A general two-particle operator has the form

Ŵ1,2 =

∫
dx1 · · ·

∫
dxN

∫
dx ′1 · · ·

∫
dx ′N |x⃗1, . . . , x⃗N⟩⟨x⃗1, . . . , x⃗N |Ŵ1,2|x⃗ ′1, . . . , x⃗ ′N⟩⟨x⃗ ′1, . . . , x⃗ ′N |

=

∫
dx1 · · ·

∫
dxN

∫
dx ′1

∫
dx ′2|x⃗1, . . . , x⃗N⟩⟨x⃗1, . . . , x⃗N |Ŵ1,2|x⃗ ′1, x⃗ ′2, x⃗3, . . . , x⃗N⟩⟨x⃗ ′1, x⃗ ′2, x⃗3, . . . , x⃗N |

=

∫
dx1 · · ·

∫
dxN

∫
dx ′1

∫
dx ′2|x⃗1, . . . , x⃗N⟩⟨x⃗1, x⃗2|Ŵ1,2|x⃗ ′1, x⃗ ′2⟩⟨x⃗ ′1, x⃗ ′2, x⃗3, . . . , x⃗N | (2.31)

Thus, a general two-particle operator is nonlocal in the two particle coordinates and therefore its matrix elements
depends on four arguments.
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Eint = ⟨Ψ|Ŵ |Ψ⟩ = ⟨Ψ|
1

2

2∑
i ,j=1

i ̸=j

Ŵi ,j |Ψ⟩

=

∫
d4x1

∫
d4x2 Ψ

∗(x⃗1, x⃗2)
1

2

[
W (x⃗1, x⃗2) +W (x⃗2, x⃗1)

]
Ψ(x⃗1, x⃗2)

Ψ(x⃗1,x⃗2)=−Ψ(x⃗2,x⃗1)
=

∫
d4x1

∫
d4x2 Ψ

∗(x⃗1, x⃗2)W (x⃗1, x⃗2)Ψ(x⃗1, x⃗2)

Eq. 2.12
=

∫
d4x1

∫
d4x2

1√
2

[
ϕa(x⃗1)ϕb(x⃗2)− ϕa(x⃗2)ϕb(x⃗1)

]∗
· W (x⃗1, x⃗2)

1√
2

[
ϕa(x⃗1)ϕb(x⃗2)− ϕa(x⃗2)ϕb(x⃗1)

]
=

1

2

∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗1)ϕ

∗
b(x⃗2)W (x⃗1, x⃗2)ϕa(x⃗1)ϕb(x⃗2)

−
1

2

∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗1)ϕ

∗
b(x⃗2)W (x⃗1, x⃗2)ϕa(x⃗2)ϕb(x⃗1)

−
1

2

∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗2)ϕ

∗
b(x⃗1)W (x⃗1, x⃗2)ϕa(x⃗1)ϕb(x⃗2)

+
1

2

∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗2)ϕ

∗
b(x⃗1)W (x⃗1, x⃗2)ϕa(x⃗2)ϕb(x⃗1)

=

∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗1)ϕ

∗
b(x⃗2)

1

2

[
W (x⃗1, x⃗2) +W (x⃗2, x⃗1)

]
ϕa(x⃗1)ϕb(x⃗2)

−
∫
d4x1

∫
d4x2 ϕ

∗
a(x⃗1)ϕ

∗
b(x⃗2)

1

2

[
W (x⃗1, x⃗2) +W (x⃗2, x⃗1)

]
ϕa(x⃗2)ϕb(x⃗1)

=
1

2

∑
i ,j∈{a,b}

∫
d4x1

∫
d4x2 ϕ

∗
i (x⃗1)ϕ

∗
j (x⃗2)

1

2

[
W (x⃗1, x⃗2) +W (x⃗2, x⃗1)

]
ϕi(x⃗1)ϕj(x⃗2)︸ ︷︷ ︸

Hartree

−
1

2

∑
i ,j∈{a,b}

∫
d4x1

∫
d4x2 ϕ

∗
i (x⃗1)ϕ

∗
j (x⃗2)

1

2

[
W (x⃗1, x⃗2) +W (x⃗2, x⃗1)

]
ϕj(x⃗1)ϕi(x⃗2)︸ ︷︷ ︸

exchange

(2.32)

In the last step, I added terms with i = j to the first term and subtracted them again from the
second term. As shown in section 2.2.1 below, this has the advantage that the first term is simply
the electrostatic selfenergy of the electron density.

Interesting is the term with the negative sign. It differs from the first term in that the arguments
of the orbitals on the right-hand side are interchanged. This is why the term is called the exchange
term. The exchange term is a direct consequence of the Pauli principle, that is, the antisymmetry
of the wave function.

The general expectation value for a two-particle operator with a Slater determinant is worked out
in appendix H.2.2 on p. 545. The result for the expectation value of the interaction energy is as
follows.
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EXPECTATION VALUE OF THE INTERACTION WITH A SLATER DETERMINANT

The expectation value of an interaction Ŵ = 1
2

∑N
i ̸=j Ŵi ,j with a Slater determinant |σ⃗⟩ built from

orthonormal one-particle orbitals |ϕj⟩ with occupation numbers σj is

⟨σ⃗|Ŵ |σ⃗⟩ Eq. H.7
=
1

2

∞∑
i ,j=1

σiσj

[
⟨ϕi , ϕj |Ŵ |ϕi , ϕj ⟩︸ ︷︷ ︸

Hartree

−⟨ϕi , ϕj |Ŵ |ϕj , ϕi ⟩︸ ︷︷ ︸
exchange

]
(2.33)

The terms i = j have been included in the sum, because the two terms cancel each other.
The matrix elements used in the above equation Eq. 2.33 are matrix elements of two-particle product
wave functions with the, e.g., Coulomb interaction

⟨ϕa, ϕb|Ŵ |ϕc , ϕd⟩
Eq. H.8
=

∑
σ,σ′∈{↑,↓}

∫
d3r

∫
d3r ′ ϕ∗a(r⃗ , σ)ϕ

∗
b(r⃗
′, σ′)

e2

4πϵ0|r⃗ − r⃗ ′|
ϕc(r⃗ , σ)ϕd(r⃗ ′, σ

′)

(2.34)

We can already look ahead and inspect the Feynman diagrams related to exchange and correlation.
The diagrams related to the scattering processes are shown in fig. 2.2 on p. 57. The corresponding
energy diagrams are shown in figure 11.1 on p. 332.

Hartree Exchange

Wijij Wijji

i

i

j

j

j

j

i

i

Fig. 2.2: The left diagram describes that two particles are scattered by the Coulomb interaction.
The right diagram describes the same process, but the two electrons are exchanged. The second
process is possible, because the two electrons are indistinguishable so that we cannot detect if the
two electrons are still the same or not.

The equations that trace the matrix elements between Slater determinants to one particle orbitals,
such as Eq. 2.15 and Eq. 2.34, are the so-called Slater-Condon rules. The expectation values shown
here are due to Slater, while Condon generalized the expression to matrix elements between two
different Slater determinants. They will be summarized in section 3.5 on p. 132 and they are derived
in appendix H on p. 543.
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2.2 Total energy of a Slater determinant

TOTAL ENERGY OF A SLATER DETERMINANT

The total energy of a Slater determinant |σ⃗⟩ formed from orthonormal one-particle orbitals |ϕj⟩ with
occupation numbers σj is

⟨σ⃗|ĥ + Ŵ |σ⃗⟩ =
∞∑
j=1

σj⟨ϕj |ĥ|ϕj⟩︸ ︷︷ ︸
kinetic energy and external potential

+
1

2

∞∑
i ,j=1

σiσj

=⟨ϕi ,ϕj |Ŵ |ϕi ,ϕj ⟩ (Eq. 2.34)︷ ︸︸ ︷∫
d4x

∫
d4x ′

e2ϕ∗i (x⃗)ϕ
∗
j (x⃗
′)ϕi(x⃗)ϕj(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree energy

−
1

2

∞∑
i ,j=1

σiσj

=⟨ϕi ,ϕj |Ŵ |ϕj ,ϕi ⟩ (Eq. 2.34)︷ ︸︸ ︷∫
d4x

∫
d4x ′

e2ϕ∗i (x⃗)ϕ
∗
j (x⃗
′)ϕj(x⃗)ϕi(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
exchange energy

(2.35)

ĥ is the one-particle Hamiltonian, which describes the kinetic energy and the external potential
imposed by the nuclei. Ŵ is the interaction term of the Hamiltonian.

The surprising fact of Eq. 2.33 is the appearance of two terms for the interaction. Therefore, let
us try to give some physical meaning to the two contributions.

2.2.1 Hartree energy

The first interaction term in Eq. 2.33 is the so-called Hartree energy. The Hartree energy turns out
to be the classical electrostatic interaction of the electron density.

EH =
1

2

∞∑
i ,j=1

σiσj

∫
d4x

∫
d4x ′ ϕ∗i (x⃗)ϕ

∗
j (x⃗
′)

e2

4πϵ0|r⃗ − r⃗ ′|
ϕi(x⃗)ϕj(x⃗ ′)

=
1

2

∫
d3r

∫
d3r ′

 ∞∑
i=1

σi
∑

σ∈{↑,↓}

ϕ∗i (x⃗)ϕi(x⃗)


︸ ︷︷ ︸

n(r⃗)

e2

4πϵ0|r⃗ − r⃗ ′|

 ∞∑
j=1

σj
∑

σ′∈{↑,↓}

ϕ∗j (x⃗
′)ϕj(x⃗ ′)


︸ ︷︷ ︸

n(r⃗ ′)

(2.36)

The sum over orbitals can be combined to the electron density Eq. 2.28. The occupations of a
Slater determinant are either zero or one, so that the sum is limited to N-orbitals. Thus, w obtain
the final expression for the Hartree energy expressed in terms of the electron density n⃗(r⃗)

HARTREE ENERGY

EH =
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(2.37)

The Hartree energy corresponds to the electrostatic self energy11 of a charge density ρ(r⃗) = −en(r⃗).
11The electrostatic expression is based on infinitesimal charges making up the charge density, so that the interaction

of the charges with themselves can be ignored. The contribution due to the finite charge of an electron is considered
in the exchange term discussed below.
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The Hartree potential is defined as functional derivative of the Hartree energy with respect to
the electron density vH(r⃗) = δEH[n]/δn(r⃗), which results in

vH(r⃗) =

∫
d3r ′

e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
or as operator V̂H =

∫
d4x |x⃗⟩vH(r⃗)⟨x⃗ | (2.38)

2.2.2 Exchange energy

The Hartree energy is clearly not the correct electrostatic energy of an N-electron system, because
it describes the interaction of N electrons with N electrons. Instead, each electron can only interact
with N− 1 other electrons. Thus, the Hartree term also includes, incorrectly, the interaction of each
electron with itself. This so-called self interaction is subtracted by the so-called exchange energy,
the second interaction term in Eq. 2.33

EX = −
1

2

∞∑
i ,j=1

σiσj

∫
d4x

∫
d4x ′ ϕ∗i (x⃗)ϕ

∗
j (x⃗
′)

e2

4πϵ0|r⃗ − r⃗ ′|
ϕj(x⃗)ϕi(x⃗ ′)

= −
1

2

∫
d4x

∫
d4x ′

[ ∞∑
i=1

σiϕi(x⃗ ′)ϕ
∗
i (x⃗)

]
︸ ︷︷ ︸

ρ(1)(x⃗ ′,x⃗)

e2

4πϵ0|r⃗ − r⃗ ′|

 ∞∑
j=1

σjϕj(x⃗)ϕ
∗
j (x⃗
′)


︸ ︷︷ ︸

ρ(1)(x⃗ ,x⃗ ′)

(2.39)

With the one-particle-reduced density matrix ρ̂(1), Eq. 2.19 with integer occupations fn = σn for
the Slater determinant, we arrive at the final expression for the exchange energy

EXCHANGE ENERGY

EX = −
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|
(2.40)

The exchange potential is defined as functional derivative of the exchange energy with respect
to the one-particle-reduced density matrix vX(x⃗ , x⃗ ′) = δEX [ρ(1)]/δρ(x⃗ ′, x⃗), which results in

vX(x⃗ , x⃗ ′) = −
e2ρ(1)(x⃗ , x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
or as operator V̂X =

∫
d4x

∫
d4x ′ |x⃗⟩vX(x⃗ , x⃗ ′)⟨x⃗ ′|

(2.41)

Density matrix as projection: The one-particle-reduced density matrix of a Slater determinant is
a projection operator12 P̂occ onto the occupied one-particle orbitals.

P̂occ =

∞∑
j=1

|ϕj⟩σj ⟨ϕj |
Eq. 2.22
= ρ̂

(1)
σ⃗ (2.42)

If the interaction would be constant and repulsive, the exchange potential would simply shift the oc-
cupied states downward in energy. The spatial dependence of the interaction destroys this projection
to a certain extent. Nevertheless, because the interaction is largest at short distances, electrons will
favor “similar orbitals” .

As long as the one-particle orbitals making up the Slater determinant are either spin-up or spin-
down orbitals, the exchange energy breaks up strictly in a sum of two terms, namely one for spin-up
electrons and the other for spin-down electrons. While there are exchange-energy terms between

12A projection operator is idempotent , i.e. it obeys P̂ 2 = P̂ .
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orbitals of like spin, there are none between orbitals of opposite spin. Thus, the exchange energy
favors electrons which align ferromagnetically. Hund’s rule, discussed below in section 2.8.5, is an
expression of this effect.

Attraction vs. repulsion: It may be puzzling in the discussion of the exchange energy, that electrons
tend arrange themselves preferably in “similar” orbitals despite the facts that (1) they stay away from
each other due to the Pauli principle, and that (2) they repel each other via the Coulomb repulsion.
The puzzle is resolved by noting that the repulsive features are captured by the Hartree energy, while
the exchange energy compensates for the self-interaction of electrons that is included in the Hartree
term. Because an electron does not interact with itself, this self interaction is removed again by
the exchange energy. By considering changes that leave the Hartree term unaffected, we turn the
focus on the attractive exchange term, which is responsible for the seemingly attractive behavior of
electrons.

2.2.3 Non-interacting energy

The non-interacting energy in Eq. 2.35 describes the kinetic energy and the potential energy in an
external potential. Because its Hamiltonian ĥ is a one-particle operator, it is conveniently expressed
in terms of the one-particle-reduced density matrix as

E1P
Eq. 2.35
=

∞∑
j=1

σj⟨ϕj |ĥ|ϕj⟩ = Tr[ρ̂(1)ĥ] (2.43)

2.2.4 Total energy of a Slater determinant

The preceding sections show that the total energy of a Slater determinant can be expressed as
density-matrix functional: the energy is a functional of the one-particle-reduced density matrix
ρ̂(1).
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TOTAL ENERGY OF A SLATER DETERMINANT

The total energy of a Slater determinant |σ⃗⟩ formed from orthonormal one-particle orbitals |ϕj⟩ is

⟨σ⃗|ĥ + Ŵ |σ⃗⟩ = Tr
[
ρ̂(1)ĥ

]
︸ ︷︷ ︸

E1P

+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EH

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EX

(2.44)

ĥ is the one-particle Hamiltonian, which describes the kinetic energy and the external potential
imposed by the nuclei.
The one-particle-reduced density matrix

ρ̂(1)
Eq. 2.19
=

∞∑
j=1

|ϕj⟩fj⟨ϕj | (2.45)

can be expressed in terms of occupations fj and natural orbitals |ϕj⟩. For Slater determinants, the
one-particle-reduced density matrix is idempotent,

(
ρ̂(1)
)2
= ρ̂(1). In other words, the occupations

for a Slater determinant are either zero or one, i.e. fj ∈ {0, 1} and they are equal to the occupation
numbers σj .
The density is obtained from the one-particle-reduced density matrix as n(r⃗) =

∑
σ∈{↑,↓} ρ

(1)(x⃗ , x⃗).

2.3 Exchange-correlation hole

2.3.1 Two-particle density and exchange-correlation hole

The first term of the interaction energy of a Slater determinant, the Hartree energy, is fairly easy
to understand. The second term, the exchange energy, is, however, puzzling. Nevertheless, it can
be expressed in intuitive manner in terms an exchange hole. Let me describe the underlying physics
behind this term.

The notion of an exchange(-correlation) hole is not limited to the Hartree-Fock Theory. Let me
therefore introduce this concept from a general point of view.

The exchange captures the effects described within Hartree-Fock theory, while the terms beyond
Hartree Fock theory are called correlation. Both effects together are called exchange and correlation.
Analogously, there is an exchange hole, a correlation hole13 and the sum, the exchange correlation
hole.

Consider the distribution of electrons when one of the electrons is at a specific location and has
a specific spin. I call this electron the spectator electron and denote its coordinates with r⃗0. If the
system contains N electrons in total, there will only be N−1 other electrons. Thus, the electron with
coordinates r⃗0 will not see the total density, but only the density of the N − 1 other electrons. The
difference between the total density and that of the other N−1 electrons is the exchange-correlation
hole.

The interaction energy of a system of interacting electrons can be expressed rigorously by the

13The correlation hole is not a hole in the literal sense, because it integrates to zero
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two-particle density14 n(2)(r⃗ , r⃗ ′). Like the electron density n(1)(r⃗) describes the density of electrons
at a given point in space, the two-particle density describes the density of pairs of electrons15, with
one electron at r⃗ and the other one at r⃗ ′. The two-particle density is thus a density in six-dimensional
space.

TWO-PARTICLE DENSITY

The two-particle density n(2)(r⃗0, r⃗ ′) is the electron density of the remaining N−1 electrons at position
r⃗ ′, as “seen” by an spectator electron at site r⃗0.

With the two-particle density n(2)(r⃗ , r⃗ ′), the interaction energy can be written rigorously as

Eint
def
= ⟨Φ|Ŵ |Φ⟩ =

1

2

∫
d3r

∫
d3r ′

e2n(2)(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

= EH +

=:Uxc︷ ︸︸ ︷∫
d3r n(1)(r⃗)

1

2

∫
d3r ′

e2

4πϵ0|r⃗ − r⃗ ′|

(
n(2)(r⃗ , r⃗ ′)

n(1)(r⃗)
− n(1)(r⃗ ′)

)
︸ ︷︷ ︸

hole density hxc (r⃗ , r⃗ ′)

(2.47)

while the Hartree energy can be expressed by the one-particle density n(1)(r⃗) as

EH =
1

2

∫
d3r

∫
d3r ′

e2n(1)(r⃗)n(1)(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(2.48)

The symbol Uxc has been used to discriminate the potential energy of exchange and correlation Uxc
from the exchange and correlation energy Exc . The exchange and correlation energy (of DFT) has
an additional kinetic-energy contribution, that describes the loss of kinetic energy while adapting the
exchange correlation hole for a finite interaction. This kinetic energy contribution is only present in
the correlation, but not for exchange.

HOLE DENSITY

The hole density hxc(r⃗0, r⃗ ′) for the spectator electron at site r⃗0 is

hxc(r⃗0, r⃗ ′)
def
=
n(2)(r⃗0, r⃗ ′)

n(1)(r⃗0)
− n(1)(r⃗ ′) (2.49)

14Two-particle density

n(2)(r⃗ , r⃗ ′) =

∫
d4Nx |Ψ(x⃗1, . . . , x⃗N)|2

N∑
i ,j=1
i ̸=j

δ(r⃗ − r⃗i )δ(r⃗ ′ − r⃗j )

= N(N − 1)
∑
σ,σ′

∫
d4x3 · · · d4xN |Ψ(x⃗ , x⃗ ′, x⃗3 . . . , x⃗N)|2 (2.46)

15There are different definitions of the two-particle density, which differ by a factor 2. In our case, the two-particle
density counts the pair (1, 2) and the pair (2, 1) as distinct. Thus, our two-particle density integrates up to twice the
number of electron pairs. Other definitions normalize the two-particle density so that it integrates to the number of
electron pairs, namely N(N − 1)/2.
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POTENTIAL ENERGY OF EXCHANGE AND CORRELATION

Uxc =

∫
d3r n(1)(r⃗)

1

2

∫
d3r ′

e2hxc(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
potential XC-energy per electron

(2.50)

It is as if each electron at r⃗ is surrounded by a positive charge density, namely 12eh(r⃗ , r⃗
′). This

positive charge density counteracts the Coulomb repulsion described by the Hartree energy.
The exchange-correlation hole of a real material, namely silicon, is shown in fig. 2.3.
What has been gained? Once the exchange and correlation hole is known, the interaction energy

can be evaluated without any approximations. In order to know the exchange-correlation hole, one
needs to solve the complete many-particle problem. However, already rather simple models for its
shape are quite successful to estimate the exchange-correlation energy.

The successes of Density-Functional Theory(DFT) [29, 30], one of the most successful theories
for quantitative electronic-structure calculations of real materials from first principles, rests on the
successful modeling of the exchange-correlation hole.

2.3.2 Properties of the exchange-correlation hole

The most important features of the exchange correlation hole are the following

• charge sum rule: The integrated exchange-correlation hole corresponds exactly to one hole.∫
d3r hxc(r⃗ , r⃗ ′) = −1 (2.51)

• negativity: The exchange correlation hole must not exceed the electron density

−n(r⃗) ≤ hxc(r⃗ , r⃗ ′) ≤ 0 (2.52)

The reason is that the density of the remaining N − 1 electrons must not be negative.

• near sightedness: The exchange correlation hole vanishes at large distances of |r⃗ − r⃗ ′|. There
is no proof and violations are not excluded.

Size of the exchange-correlation hole

The size of the exchange-correlation hole in a material is typically that of a chemical bond, that is, of
an atomic distance. The size can be seen in fig. 2.3, which shows the exchange hole in silicon. The
size can be rationalized by the fact that a chemical bond typically has one electron per spin, which is
the charge in the exchange-correlation hole according to the charge sum rule.

Far away from a material the electron density is small and therefore the exchange-correlation hole is
very large. This is because the density of the N−1 other electrons can never be negative and thus, the
hole density can never be larger in absolute value than the electron density, i.e. n(r⃗)+hxc(r⃗ , r⃗0) ≥ 0.

If the material nearest to the reference electron is an atom or a molecule, the reference electron
“sees” a positive ion. Thus, the exchange-correlation hole is the difference between the atom or
molecule and its singly positive cation. A rough estimate for this density is the density of the highest
occupied natural orbital of that atom or molecule.

If the reference electron is far away from a material and the next material is a surface, the
exchange correlation hole is located at the surface.
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Fig. 2.3: Top: exchange hole in the 110 plane of silicon[28]. The cross indicates the position of the
reference electron. In the bond, the exchange-correlation hole is centered on the reference electron,
while in the tail region it is located off-center. Bottom: Valence charge density of silicon in the (110)
plane. (With friendly permission by Mark Hybertsen)

These considerations provide an intuitive understanding of the exchange correlation hole, but they
also indicate that the shape of the exchange correlation hole can depend in a complicated manner
on the environment of the reference electron.

A lot more is understood about the exchange correlation hole. For further information on the
properties of the exchange correlation hole see, for example Burke[31].
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2.4 Energetics and thermodynamics in the Hartree-Fock approx-
imation

In this section, we explore the energetics in the Hartree-Fock approximation. In the previous section,
we have learned that the total energy of an interacting system can be expressed in terms of one-
particle wave functions, if the wave function is a Slater determinant. Slater determinants are wave
functions of non-interacting systems. The Hartree-Fock approximation attempts to describe an
interacting system in terms of wave functions of non-interacting systems. The goal is to find that
non-interacting system, which is suited best for that purpose.

Let me directly venture into the finite temperature formalism. This will prepare for the later
chapters, which rest on the finite temperature description. The finite temperature formalism using
ensembles avoids a number of nagging conceptional problems related to degenerate ground states
and symmetry breaking.

Let me start this section with an introduction to thermodynamics of quantum systems. Some of
it has been mentioned already in the first chapter. For this lecture, it will be important that we agree
on some fundamental concepts from thermodynamics.

2.4.1 Ensembles of quantum states

ENSEMBLE

The fundamental entity of statistical mechanics is the ensemble
{
(|Φq⟩, Pq)

}
. An ensemble is a set

of many-particle wave functions |Φq⟩ with their probabilities Pq. Each many-particle wave function
describes a possible state of the system. Its probability Pq describes the likelihood that the system is
in this specific state |Φq⟩.
The wave functions of the ensemble are normalized. The probabilities are positive and add up to one.

⟨Φq |Φq⟩ = 1 and Pq ≥ 0 and
∑
q

Pq = 1 . (2.53)

The many-particle wave functions |Φq⟩ are called the microstates. The ensemble itself is called the
macrostate. Note, that the terms “micro” and “macro” do not distinguish small and large systems
in this context!

An ensemble is represented completely by its von-Neumann density matrix [32] (Eq. 6.1 of
ΦSX: Statistical Physics[33]).

ρ̂vN =
∑
q

|Φq⟩Pq⟨Φq | (2.54)

The von-Neumann density matrix is (1) hermitean, (2) positive definite, and (3) has a unit trace, i.e.

ρ̂vN =
(
ρ̂vN
)†

and ∀|Ψ⟩ ⟨Ψ|ρ̂vN |Ψ⟩ ≥ 0 and Tr
[
ρ̂vN
]
= 1 . (2.55)

The von-Neumann density matrix contains the complete physical information on the system. The
expectation value of any operator Â is obtained from

⟨A⟩ =
∑
q

Pq
〈
Φq
∣∣Â∣∣Φq〉 = Tr[ρ̂vNÂ] . (2.56)

Two ensembles {Pq, |Φq⟩} with the same von-Neumann density matrix are equivalent, even though
their microstates and probabilities may differ. They are equivalent, because there is no physical
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observable that could differentiate between them.16 This leaves some freedom in choosing the
probabilities Pq and microstates |Φq⟩.

A particular choice for the microstates are the eigenstates of the von-Neumann density matrix.
The resulting microstates are orthonormal. The corresponding probabilities, which are the eigen-
values of the von-Neumann density matrix, are also different. Each ensemble can therefore also be
represented by a set of orthonormal microstates and their probabilities, that satisfy

⟨Φq |Φq′⟩ = δq,q′ and Pq ≥ 0 and
∑
q

Pq = 1 . (2.57)

2.4.2 von-Neumann entropy

Thermodynamics in the sense of equilibrium statistical physics is rootet in the concept ofthermal
equilibrium. Thermal equilibrium lives from the basic assumption that all states are in principle
accessible and equally likely. This means that a system, which is left alone for a sufficiently long
time, will end up in a maximally unbiased ensemble. This connection between statistics and dynamics
is the ergodic theorem.[34] (See also [35])

In order to discuss bias, we need to quantify the amount of uncertainty about the state of a system.
This measure of uncertainty is the entropy. The entropy of a quantum system is the von-Neumann
entropy S [32] (Eq. 6.8 of ΦSX: Statistical Physics[33]).

S
(
ρ̂vN
)
= −kBTr

[
ρ̂vN ln

(
ρ̂vN
)]

(2.58)

If the microstates |Φq⟩ are chosen as the eigenstates of the von-Neumann density matrix, they
are orthonormal, which allows to express the von-Neumann entropy in terms of the corresponding
probabilities Pq as

S
(∑

q

|Φq⟩Pq⟨Φq |
)

Eq. 2.58
= −kB

∑
q

Pq ln(Pq) only, if ⟨Φq |Φq′⟩ = δq,q′ (2.59)

This is, up to a factor, equivalent to Shannon’s entropy[36] obtained from information theory.

2.4.3 Thermal ensembles and maximum-entropy principle

Finding the most unbiased ensemble is the essence of the maximum-entropy principle. [37, 38].
(See also Section 1.5 of ΦSX: Statistical Physics[33]). In order to determine the most unbiased
ensemble, we maximize the von-Neumann entropy under constraints, that describe our state of
knowledge on the system. The ensemble that maximimizes the entropy defines thermal equilib-
rium and is called a thermal ensemble. It is the most unbiased guess for an ensemble considering
everything that we know about the system.17

Given that we know the thermal energy expectation value Ē and the thermal expectation value
of the particle number N̄, the maximum-entropy principle produces the grand-canonical ensemble
with an appropriate temperature T (Ē, N̄) and chemical potential µ(Ē, N̄).

The maximum entropy Smax(Ē, N̄) for a system with a known thermal expectation value Ē for
the energy and N̄ for the particle number18 , is obtained by a constrained search over all ensembles,
respectively all allowed19 von-Neumann density matrices, that are consistent with our knowledge of

16Two ensembles with the same von-Neumann density matrix yield the same expectation values for any observable,
17The reader may notice that I adhere to the subjective interpretation of probabilities: The probabilities describe the

state of our mind, rather than a physical property of the system. A system does not care about what we know about
it.

18The particle-number operator can be defined in terms of a complete set of Slater determinants |σ⃗⟩ as N̂ =∑
σ⃗ |σ⃗⟩

(∑
σ⃗ σn

)
⟨σ⃗|

19A von-Neumann density matrix is hermitean, positive semi-definite and has a unit trace, as stated in Eq. 2.55.
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Ē and N̄.20

Smax(Ē, N̄) = max
ρ̂vN
stat
T,µ

{ S(ρ̂vN)︷ ︸︸ ︷
−kBTr

[
ρ̂vN ln

(
ρ̂vN
) ]
−
1

T

( E(ρ̂vN)︷ ︸︸ ︷
Tr
[
ρ̂vN(ĥ + Ŵ )

]
−Ē
)
+
µ

T

( N(ρ̂vN)︷ ︸︸ ︷
Tr
[
ρ̂vNN̂

]
−N̄
)}

Eq. 2.61
= stat

T,µ

[
−
1

T

{
ΩT,µ − Ē + µN̄

}]
(2.60)

where the grand potential ΩT,µ is defined below in Eq. 2.61. The constraints are enforced using the
method of Lagrange multipliers. The Lagrange multipliers 1T and µ

T are expressed by the temperature
T and chemical potential µ.

The grand potential ΩT,µ in Eq. 2.60 is obtained as an ensemble minimum.

ΩT,µ = min
ρ̂vN

{ E(ρ̂vN)︷ ︸︸ ︷
Tr[ρ̂vN(ĥ + Ŵ )]

−TS(ρ̂vN)︷ ︸︸ ︷
+kBT Tr

[
ρ̂vN ln

(
ρ̂vN
)] −µN(ρ̂vN)︷ ︸︸ ︷
−µTr[ρ̂vNN̂]

}
(2.61)

The minimum condition for the grand potential ΩT,µ yields the density matrix for a system in
thermal equilibrium with a heat bath and a particle reservoir.

ρ̂vNT,µ =
e
− 1
kBT

(
ĥ+Ŵ−µN̂

)
Tr
[
e
− 1
kBT

(
ĥ+Ŵ−µN̂

)] (2.62)

In terms of (orthonormal) eigenstates of the Hamiltonian and particle number, the thermal von-
Neumann density matrix Eq. 2.62 can be expressed in terms of Boltzmann factors.

ρ̂vNT,µ
Eq. 2.62
=

∑
q

∣∣∣Φq〉 e
− 1
kBT

(
Eq−µNq

)
∑

q′ e
− 1
kBT

(
Eq′−µNq′

)
︸ ︷︷ ︸

Pq(T,µ)

〈
Φq

∣∣∣
with (ĥ + Ŵ )|Φq⟩ = |Φq⟩Eq and N̂|Φq⟩ = |Φq⟩Nq (2.63)

So much to the reminder of the Statistical Mechanics of quantum systems.

2.4.4 Ensembles of Slater determinants

In a world, where we can only evaluate expectation values of single Slater determinants, the natural
choice for an approximation is to limit the search for the maximum entropy to ensembles of Slater
determinants. Let me investigate this approximation and, furthermore, let me only consider ensembles
of Slater determinants that are constructed from one common one-particle basis.21

Let me work out the energy for this subclass of ensembles. The ensemble is characterized by
Slater determinants |σ⃗⟩ and their probabilities Pσ⃗. The Slater determinants are in a basis of an
arbitrary orthonormal one-particle orbitals |ϕn⟩. The energy of the ensemble is the weighted sum of

20With “stat”, I denote the stationary condition, which is analogous to the maximum and minimum conditions, but
also allows for saddle points.

21This additional limitation to Slater determinants from a common one-particle basis is taken for convenience. It
might be interesting to explore the consequences of lifting this limitation.
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the energies of the individual Slater determinants from Eq. 2.35.

E =
∑
σ⃗

Pσ⃗⟨σ⃗|ĥ + Ŵ |σ⃗⟩

Eq. 2.35
=

∞∑
n=1

fn︷ ︸︸ ︷∑
σ⃗

Pσ⃗σn⟨ϕn|ĥ|ϕn⟩︸ ︷︷ ︸
kinetic energy and external potential

+
1

2

∞∑
m,n=1

fmfn︷ ︸︸ ︷
⟨σm⟩⟨σn⟩+

(
⟨σmσn⟩−⟨σm⟩⟨σn⟩

)︷ ︸︸ ︷
⟨σmσn⟩︷ ︸︸ ︷∑

σ⃗

Pσ⃗σmσn

( ⇝Hartree︷ ︸︸ ︷
⟨ϕmϕn|Ŵ |ϕmϕn⟩

⇝exchange︷ ︸︸ ︷
−⟨ϕmϕn|Ŵ |ϕnϕm⟩

)
︸ ︷︷ ︸

interaction energy

Eq. 2.44
=

∑∞
n=1 fn⟨ϕn |ĥ|ϕn⟩︷ ︸︸ ︷
Tr
[
ρ̂(1)ĥ

]︸ ︷︷ ︸
one-particle energy

+

1
2

∑∞
m,n=1 fmfn

(
⟨ϕmϕn |Ŵ |ϕmϕn⟩−⟨ϕmϕn |Ŵ |ϕnϕm⟩

)︷ ︸︸ ︷
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree energy

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
exchange energy︸ ︷︷ ︸

mean-field energy

+
1

2

∞∑
m,n=1;m ̸=n

(
⟨σmσn⟩ − ⟨σm⟩⟨σn⟩

)(
⟨ϕmϕn|Ŵ |ϕmϕn⟩ − ⟨ϕmϕn|Ŵ |ϕnϕm⟩

)
︸ ︷︷ ︸

energy due to correlated occupation-number fluctuations

(2.64)

I introduced the notation ⟨σmσn⟩
def
=
∑

σ⃗ Pσ⃗σmσn and ⟨σn⟩
def
=
∑

σ⃗ Pσ⃗σn = fn. The one-particle orbitals
|ϕn⟩ are the natural orbitals22 of the ensemble. The electron density n(r⃗) =

∑
n fn
∑

σ∈{↑,↓} ϕ
∗
n(x⃗)ϕn(x⃗)

and the one-particle reduced density matrix ρ(1)(x⃗ , x⃗ ′) =
∑

n⟨x⃗ |ϕn⟩fn⟨ϕn|x⃗ ′⟩ are those of the ensem-
ble.

The first term, marked mean-field energy, has the same form as the total energy of a single
Slater determinant given in Eq. 2.44 on p. 61. It differs only by the fact that the occupations fn of
the ensemble are fractional, while the occupations σn of a single Slater determinants are either zero
or one.

The second term, which is due to correlated occupation-number fluctuations,∑
σ⃗

Pσ⃗σmσn −
(∑

σ⃗

Pσ⃗σm

)(∑
σ⃗

Pσ⃗σn

)
=
〈
σmσn

〉
−
〈
σm
〉〈
σn
〉︸ ︷︷ ︸〈(

σm−fm
)(
σn−fn

)〉 (2.65)

is easily overlooked, because it magically drops out of many expressions. There is no such term
in the energy Eq. 2.44 of a single Slater determinant: Slater determinants do not have fractional
occupations and, therefore, they do do not exhibit occupation-number fluctuations.

2.4.5 Thermal ensembles of Slater determinants

For an ensemble of Slater determinants |σ⃗⟩ with probabilities Pσ⃗, one can proceed along two distinct
routes:

• In the so-called Thermal Single-Determinant Approximation (TSDA) [39], one proceeds
as described above and arrives at Eq. 2.64: The search in the maximum-entropy principle is
limited to ensembles of Slater determinants constructed from a common one-particle basisset.
The energy is the ensemble average of the energies ⟨σ⃗|ĥ + Ŵ |σ⃗⟩, Eq. 2.35 and Eq. 2.44, of
the Slater determinants.

22The natural orbitals are the eigenstates of the one-particle-reduced density matrix of the ensemble.
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Let me denote the one-particle-reduced density matrix of the Slater determinant |σ⃗⟩ by ρ̂(1)σ⃗ .
Eq. 2.64 can be written in the form

E =
∑
σ⃗

Pσ⃗ E
HF
[
ρ̂
(1)
σ⃗

]
︸ ︷︷ ︸
⟨σ⃗|ĥ+Ŵ |σ⃗⟩

(2.66)

where23

EHF [ρ̂(1)]
def
= Tr

[
ρ̂(1)ĥ

]
+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|
(2.67)

• Less accurate, but much easier is to handle is the mean-field approximation called the Ther-
mal Hartree-Fock Approximation (THFA) [40]. Here, one restricts the search for the
maximum-entropy state to ensembles of Slater determinants and, furthermore, to those with-
out correlated occupation-number fluctuations, that is, with

〈
σmσn

〉
=
〈
σm
〉〈
σn
〉
.24

This energy amounts to

E = EHF
[∑

σ⃗

Pσ⃗ρ̂
(1)
σ⃗︸ ︷︷ ︸

ρ̂(1)

]
(2.68)

with EHF from Eq. 2.67. Eq. 2.68 is a mean-field approximation. The averaged (mean)
one-particle-reduced density matrix is simply that of the ensemble. The reader is encouraged
to compare this expression Eq. 2.68 to the one Eq. 2.66 for the TSDA.

The mean-field approximation exists in many different contexts. Therefore it is important
to always specify the quantity that becomes the mean field. In this case, the mean field is
the one-particle reduced density matrix averaged over the Slater determinants, respectively the
averaged potential. In the Thermal Hartree-Fock Approximation (THF) all electrons experience
the same mean potential, while in the Thermal Single-Determinant Approximation (TSDA),
each Slater determinant experiences its own potential.

The mean-field approximation can be described in two different ways:

– ensembles with occupation-number fluctuations are excluded from the constrained search.

– all Slater determinants in the ensemble experience the same effective potential.

Both statements are equivalent. They are different points of view on the same procedure.

2.4.6 Boltzmann entropy

In the mean-field approximation Eq. 2.68, the energy depends only on the one-particle-reduced density
matrix of the ensemble. Much of the information contained in the von-Neumann density matrix does
not enter the mean-field energy.

However, the von-Neumann entropy Eq. 2.58 depends on the full von-Neumann density matrix,
which is not available. How do we then arrive at the equilibrium ensemble?

The best we can do is to choose the most unbiased ensemble for a specific one-particle reduced
density matrix ρ̂(1). The resulting maximum entropy for a given one-particle reduced density matrix
is what I call the Boltzmann entropy25 SB[ρ̂(1)].

23The electron density is given by the one-particle-reduced density matrix as n(r⃗) =
∑
σ∈{↑,↓} ρ

(1)(r⃗ , σ, r⃗ , σ).
24Editor: check this: This implies that the probabilities factorize into a product of probabilities for the individual

one-particle orbitals, i.e. Pσ⃗ =
∏∞
n=1 pn(σn).

25The name “Boltzmann entropy” for this object is not common.
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The Boltzmann entropy SB[ρ̂(1)] is the maximum von-Neumann entropy Eq. 2.58 for ensembles
with a specified one-particle-reduced density matrix.26

SB[ρ̂(1)]
def
= max

ρ̂vN
stat
B

{
−kBTr

[
ρ̂vN ln

(
ρ̂vN
)]
−
∑
α,β

kBBα,β

(
Tr
[
ρ̂vN ĉ†αĉβ

]
− ⟨πβ |ρ̂(1)|πα⟩︸ ︷︷ ︸

ρ
(1)
β,α

)}
(2.69)

The search for the maximum is performed over all allowed27 von-Neumann density matrices ρ̂vN .
The matrix kBB is a Lagrange multiplier and Tr

[
ρ̂vN ĉ†αĉβ

]
is the expectation value for the one-

particle-reduced density matrix element ρ(1)β,α of the corresponding ensemble. The expectation value
is expressed in terms of creation and annihilation operators, that will be introduced only later. For
the time being, it is sufficient to know that the one-particle-reduced density matrix can be obtained
as expectation value of an operator in Fock space.

For fermions, the Boltzmann entropy28 is

SB
[
ρ̂(1)
]
= −kBTr

[
ρ̂(1) ln

(
ρ̂(1)
)
+
(
1̂− ρ̂(1)

)
ln
(
1̂− ρ̂(1)

)]
(2.70)

The fermionic Boltzmann entropy is known better in the form expressed in terms of occupations fn.

SB[{fn}] = −kB
∑
n

[
fn ln(fn) + (1− fn) ln(1− fn)

]
(2.71)

Importantly, the maximum-entropy principle defining the Boltzmann entropy Eq. 2.69 establishes
a unique mapping of the one-particle-reduced density matrix to the corresponding ensemble, respec-
tively, to the von-Neumann density matrix

ρ̂(1)
Eq. 2.69−→ ρ̂vN

[
ρ̂(1)
]
=
∑
σ⃗

|σ⃗⟩

[ ∞∏
n=1

f σnn (1− fn)1−σn
]
⟨σ⃗| (2.72)

where the occupations fn are the eigenvalues of the one-particle-reduced density matrix and the Slater
determinants |σ⃗⟩ are constructed over the natural orbitals.

26See e.g. Eq. 8.39 of ΦSX:Introduction to Solid State Theory[1] or Eq. 8.26 of ΦSX: Statistical Physics.[33].
27Allowed, in this context, are operators in the fermionic Fock space, which are positive semi-definite and have unit

trace.
28See e.g. Eq. 8.39 of ΦSX:Introduction to Solid State Theory[1] or Eq. 8.26 of ΦSX: Statistical Physics.[33].
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The derivation of Eq. 2.72 may not be immediately obvious. It is an expression that one need not
memorize, but one should know that it exists. Let me sketch the derivation here. I begin with the
equilibrium condition in Eq. 2.69, which links the von-Neumann density matrix to the exponential
of an one-particle-at-a-time operator expressed by the Lagrange multipliers B. Remember that the
trace-condition of the allowed von-Neumann density matrices must be taken into account by an
additional constraint or a normalization factor.

ρ̂vN [ρ̂(1)]
Eq. 2.69
=

e−
∑
α,β Bα,β ĉ

†
αĉβ

Tr
[
e−

∑
α′ ,β′ Bα′ ,β′ ĉ

†
α′ ĉβ′
] (2.73)

With the eigenstates and eigenvalues of B∑
α,β

Bα,β ĉ
†
αĉβ
∣∣σ⃗〉 = ∣∣σ⃗〉∑

n

σnbn (2.74)

Eq. 2.73 has the form

ρ̂vN [ρ̂(1)]
Eq. 2.73
=

∑
σ⃗

|σ⃗⟩
e−

∑
n bnσn∑

σ⃗ e
−
∑
j bjσj
⟨σ⃗| =

∑
σ⃗

|σ⃗⟩
[∏
n

e−bnσn

1 + e−bn

]
︸ ︷︷ ︸

Pσ⃗

⟨σ⃗| (2.75)

The occupations are

fn =
∑
σ⃗

Pσ⃗σn =
∑
σ⃗

[∏
j

e−bjσj

1 + e−bj

]
σn =

e−bn

1 + e−bn
⇒ e−bn =

fn
1− fn

⇒
e−bnσn

1 + e−bn
=

(
fn
1− fn

)σn 1

1 + fn
1−fn

= f σnn
(
1− fn

)−σn(
1− fn

)
= f σnn (1− fn)1−σn (2.76)

Insertion into Eq. 2.75 yields the desired Eq. 2.69/

The fact that the probabilities Pσ⃗ are products of probabilities for each orbital shows already that
the occupation-number fluctuations between different natural orbitals are uncorrelated.

The absence of correlated occupation-number fluctuations establishes that the equilibrium en-
semble satisfies the conditions of the thermal Hartree-Fock approximation (THFA) despite using an
extended search space.

2.4.7 Grand potential in the thermal Hartree-Fock approximation

The physical state (ensemble) and its grand potential is determined by a minimization Eq. 2.61. In
the thermal Hartree-Fock approximation (THFA), this search is limited (1) to ensembles of Slater-
determinants and, further, (2) to such ensembles without occupation-number fluctuations Eq. 2.65.

Energy and particle number are determined already by the one-particle-reduced density matrix.
For each one-particle-reduced density matrix there are many ensembles in the search, which have
different entropies. The minimum among those ensembles is determined by the largest entropy,
which is the Boltzmann entropy SB[ρ̂] for that one-particle-reduced density matrix. Thus, the grand
potential can be obtained by a minimization over one-particle reduced density matrices. In other
words, the grand potential of the thermal Hartree-Fock approximation is determined by a minimum
principle of a density-matrix functional.
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MEAN-FIELD APPROXIMATION OF THE HARTREE-FOCK GRAND POTENTIAL

In the mean-field approximation of Hartree-Fock, the grand potential ΩT,µ is the minimum of a
functional of a one-particle-reduced density matrix ρ̂(1), which defines ρ(1)(x⃗ , x⃗ ′) = ⟨x⃗ |ρ(1)|x⃗ ′⟩ and
the electron density n(r⃗) =

∑
σ∈{↑,↓}⟨x⃗ |ρ(1)|x⃗⟩ The grand potential is

ΩHFT,µ = min
ρ̂(1)

{
Tr
[
ρ̂(1)ĥ

]
︸ ︷︷ ︸

E1P

+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree energy EH

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
exchange energy EX

+ kBT Tr

[
ρ̂(1) ln

(
ρ̂(1)
)
+
(
1̂− ρ̂(1)

)
ln
(
1̂− ρ̂(1)

)]
︸ ︷︷ ︸

−TSB heat bath

−µTr
[
ρ̂(1)
]︸ ︷︷ ︸

particle-reservoir

}
(2.77)

The minimum obeys the N-representability constraint 0 ≤ fn ≤ 1 because of the special choice of
the entropy term. This will be confirmed with the final result.

The minimization of the grand potential Eq. 2.77 will provide us with the physical one-particle
reduced density matrix but it does not provide the thermal ensemble, i.e. the von-Neumann density
matrix. However, the definition of the Boltzmann entropy links the one-particle-reduced density
matrix to the corresponding thermal ensemble, namely Eq. 2.72. Explicit expressions will be given in
section 2.4.9 below.

With the ensemble in our hands, we can determine the expectation values of arbitrary observables,
including the interaction energy. While these quantities are well defined in the thermal Hartree-Fock
approximation, they are not necessarily exact.

2.4.8 Selfconsistency

Let me determine the minimum of the grand potential in Eq. 2.77. I will use the variational calculus,
which I find convenient to determine the derivatives with respect to more complex objects such as
functions and operators.29 The equilibrium condition is the requirement that the first variation of
the functional with respect to the one-particle reduced density matrix vanishes. It is equivalent to
the requirement that the gradient vanishes at an extremum of a function.

For the following discussion, I need a name for the density-matrix functional inside the curly
brackets of Eq. 2.77. Let me call it FT,µ[ρ̂(1)]. Thus, Eq. 2.77 is written as ΩHFT,µ = minρ̂(1) FT,µ[ρ̂(1)].
The first variation δFT,µ of FT,µ with the one-particle reduced density matrix ρ̂(1) is obtained via a
Taylor expansion.

FT,µ[ρ̂(1) + δρ̂(1)] = FT,µ[ρ̂(1)] +
∑
α,β

δρ
(1)
α,β

δFT,µ
δρ
(1)
α,β︸ ︷︷ ︸

δFT,µ

+O
(
[δρ̂(1)]2

)
(2.78)

At the minimum of FT,µ, the first variation δFT,µ vanishes. To minimize FT,µ[ρ̂(1)], let me therefore

29The first variation of a function f (x⃗) with respect to an argument x⃗ is the first order term of f (x⃗ + δx⃗)− f (x) =
δf +O(δx⃗2). It can be expressed in terms of the derivative δf = δx⃗∇⃗f
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identify the zeros of the first variation.

0
!
= δFT,µ

Eq. 2.77
= δ

{
Tr
[
ρ̂(1)ĥ

]
+
1

2

∫
d4x

∫
d4x ′

e2
〈
x⃗
∣∣ρ̂(1)∣∣x⃗〉〈x⃗ ′∣∣ρ̂(1)∣∣x⃗ ′〉
4πϵ0|r⃗ − r⃗ ′|

−
1

2

∫
d4x

∫
d4x ′

e2
〈
x⃗
∣∣ρ̂(1)∣∣x⃗ ′〉〈x⃗ ′∣∣ρ̂(1)∣∣x⃗〉
4πϵ0|r⃗ − r⃗ ′|

+kBT Tr

[
ρ̂(1) ln

(
ρ̂(1)
)
+
(
1̂− ρ̂(1)

)
ln
(
1̂− ρ̂(1)

)]
− µTr

[
ρ̂(1)
]}

= Tr

{
δρ̂(1)

[
ĥ +

∫
d4x

∣∣x⃗〉(∫ d4x ′
e2
〈
x⃗ ′
∣∣ρ̂(1)∣∣x⃗ ′〉

4πϵ0|r⃗ − r⃗ ′|

)〈
x⃗
∣∣︸ ︷︷ ︸

V̂H

−
∫
d4x

∫
d4x ′ |x⃗

〉(e2〈x⃗∣∣ρ̂(1)∣∣x⃗ ′〉
4πϵ0|r⃗ − r⃗ ′|

)〈
x⃗ ′
∣∣︸ ︷︷ ︸

V̂X

+kBT
[
ln
(
ρ̂(1)
)
+ 1̂− ln

(
1̂− ρ̂(1)

)
− 1̂
]
− µ1̂

]}
= Tr

{
δρ̂(1)

[
ĥ + V̂H + V̂X︸ ︷︷ ︸
Fock operator F̂

+kBT ln

(
ρ̂(1)
(
1̂− ρ̂(1)

)−1)
− µ1̂

]}
(2.79)

The Hartree potential VH and the exchange potential V̂X have been defined in Eq. 2.38 and Eq. 2.41,
respectively. The Fock operator F̂ [ρ̂(1)] = ĥ + V̂H[ρ̂(1)] + V̂X [ρ̂(1)] is that obtained from the current
one-particle-reduced density matrix and electron density. Remember, that the Fock operator, unlike
“normal” operators, is itself a functional of the one-particle reduced density matrix.

FOCK OPERATOR

F̂
def
= ĥ + V̂H + V̂X

= ĥ +

V̂H︷ ︸︸ ︷∫
d4x

∣∣∣x⃗〉∫ d3r ′
e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
vH(r⃗)

〈
x⃗
∣∣∣

V̂X︷ ︸︸ ︷
−
∫
d4x

∫
d4x ′

∣∣∣x⃗〉 e2ρ(1)(x⃗ , x⃗ ′)
4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
−vX(x⃗ ,x⃗ ′)

〈
x⃗ ′
∣∣∣ (2.80)

The Fock operator is a one-particle operator, which depends on density and one-particle-reduced
density matrix.

The first variation of FT vanishes only when the operator in brackets in Eq. 2.79 is the zero-
operator. This yields the following operator identity, which can be resolved for the one-particle-
reduced density matrix

0̂ = ĥ + V̂H + V̂X + kBT ln
(
ρ̂(1)
(
1̂− ρ̂(1)

)−1)
− µ1̂

⇒ ρ̂
(1)
T,µ =

[
1̂ + e

1
kBT

(
ĥ+V̂H+V̂X−µ1̂

)]−1
(2.81)

This equation cannot be solved directly, because the Fock operator, respectively V̂H+ V̂X , depends
itself on the one-particle reduced density matrix.

SELF-CONSISTENT EQUATION FOR THERMAL HARTREE FOCK

Thus, the two equations

ρ̂
(1)
T,µ

Eq. 2.81
=

[
1̂ + e

1
kBT

(
F̂−µ1̂

)]−1
and F̂ = ĥ + V̂H[ρ̂

(1)
T,µ] + V̂X [ρ̂

(1)
T,µ] (2.82)

need to be solved simultaneously, i.e. self-consistently.
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Using the eigenvalues ϵn and the eigenstates |ϕn⟩ of the Fock operator(
ĥ + V̂H + V̂X

)
|ϕn⟩ = |ϕn⟩ϵn (2.83)

the one-particle-reduced density matrix in THFA has the form

ρ̂
(1)
T,µ

Eq. 2.81
=

∑
n

|ϕn⟩ fT,µ(ϵn)︸ ︷︷ ︸
1

1+eβ(ϵn−µ)

⟨ϕn| (2.84)

where fT,µ(ϵ) =
(
1 + e

1
kBT
(ϵ−µ))−1 is the Fermi function. This one-particle-reduced density matrix

Eq. 2.81 is hermitian and N-representable, i.e. 0 ≤ fn ≤ 1.

2.4.9 Thermal ensemble in the THFA

The minimum principle in Eq. 2.77 specifies only the one-particle-reduced density matrix ρ̂(1)T,µ. To
avoid the limitation to predictions for one-particl-at-a-time observables, we need to access to the
corresponding ensemble, respectively its von-Neumann density matrix.

In the THFA, the von-Neumann density matrix is implicitly specified via the maximum-entropy
principle used to obtain the Boltzmann entropy Eq. 2.70. The ensemble of many-particle states is
that, which maximizes the entropy for the specified one-particle reduced density matrix is given in
Eq. 2.72. The von Neumann density matrix of the THFA is thus obtained by inserting Eq. 2.84 into
2.72.

The thermal von-Neumann density matrix in the THFA is

ρ̂vNT,µ = ρ̂vN [ρ̂
(1)
T,µ]

Eq. 2.72
=

∑
σ⃗

|σ⃗⟩

[ ∞∏
n=1

(
fT,µ(ϵn)

)σn(
1− fT,µ(ϵn)

)1−σn]
⟨σ⃗|

=

∑
σ⃗ |σ⃗⟩e

− 1
kBT

∑
n σn(ϵn−µ)⟨σ⃗|∑

σ⃗ e
− 1
kBT

∑
n σn(ϵn−µ)

=
e−β(ĥ+V̂H+V̂X−µN̂)

Tr
[
e−β(ĥ+V̂H+V̂X−µN̂)

] (2.85)

The corresponding probabilities of the Slater determinants |σ⃗⟩ are

PT,µ,σ⃗ =
1

ZT,µ
e−β

∑
n σn(ϵn−µ) =

1

ZT,µ
e−β⟨σ⃗|F̂−µN̂|σ⃗⟩ (2.86)

where ZT,µ is the partition function, which normalizes the probability distribution, and ϵn are the
eigenvalues of the self-consistent Fock operator F̂ = ĥ + V̂X + V̂H. It is understood, that the Slater
determinants are formed from the eigenstates of the Fock operator.

As already mentioned while discussing the Boltzmann entropy in section 2.4.6 above, the occupation-
number fluctuations in the resulting ensemble are uncorrelated, i.e. ⟨σmσn⟩−⟨σm⟩⟨σn⟩ = 0 for m ̸= n,
so that the contribution of correlated occupation-number fluctuations to the energy of the ensemble
vanishes. 30

30Occupation-number fluctuations in the thermal ensemble of a non-interacting system are uncorrelated.

⟨σmσn⟩T,µ =
∑
σ⃗

e−β
∑
j σj (ϵj−µ)∑

σ⃗′ e
−β

∑
j σ
′
j (ϵj−µ)︸ ︷︷ ︸

=Pσ⃗

σmσn =

∑
σ⃗ σmσn

∏
j e
−βσj (ϵj−µ)∑

σ⃗′
∏
j e
−βσ′j (ϵj−µ)

m ̸=n
=

∑
σm
σme−βσm(ϵm−µ)∑
σm
e−βσm(ϵj−µ)

∑
σn
σne−βσm(ϵn−µ)∑
σn
e−βσn(ϵj−µ)

= ⟨σm⟩︸ ︷︷ ︸
fm

⟨σn⟩︸︷︷︸
fn

for m ̸= n (2.87)
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2.4.10 Possible misconceptions

There is some confusion between the interacting Hamiltonian

Ĥ = ĥ + Ŵ . (2.88)

and the Fock-operator

F̂ [ρ̂(1)] =
δEHF

δρ̂(1)
= ĥ + V̂H + V̂X (2.89)

Sometimes the Fock operator is also called the Hartree-Fock Hamiltonian, which I consider a mis-
nomer. Let me “vaccinate” the reader with a few facts against these misunderstandings.

Energy: The energy E differs in a fundamental way from the expectation value of the Fock operator
F̂ .

E = Tr
[
ρ̂vN
(
ĥ + Ŵ

)]
̸= Tr

[
ρ̂vN

(
ĥ + V̂H[ρ̂

(1)] + V̂X [ρ̂
(1)]
)

︸ ︷︷ ︸
Fock operator

]
(2.90)

even if the Fock operator is obtained from the same ensemble ρ̂vN → ρ̂(1) → V̂H + V̂X → F̂ . Instead,
in the thermal Hartree-Fock approximation THFA, we can use a variant of the Galitski-Migdal-Koltun
sum rule Eq. 8.36, which, however, introduces some factors one-half.

E
Eq. 2.77
= Tr

[
ρ̂vNT,µ

(
ĥ +
1

2
V̂H +

1

2
V̂X

)]
(2.91)

This shows that the difference is not due to an approximation, but a misunderstanding.

Density matrix: On the other hand, the thermal von-Neumann density matrix Eq. 2.85 of the
Thermal Hartree-Fock Approximation is given by the Fock operator, rather than the full Hamiltonian.
Remember that the Fock operator is normally a one-particle operator in the one-particle Hilbert space,
while it is used here as a one-particle-at-a-time operator in the Fock space.

ρ̂vN,THFA
T,µ

Eq. 2.85
=

e−β(ĥ+V̂H+V̂X−µN̂)

Tr
[
e−β(ĥ+V̂H+V̂X−µN̂)

] ̸= e−β(ĥ+Ŵ−µN̂)

Tr
[
e−β(ĥ+Ŵ−µN̂)

] Eq. 2.62
= ρ̂vNT,µ (2.92)

In this case, the left-hand side is an approximation of the right-hand side, namely the thermal Hartree
Fock-approximation. Often it is a fairly good approximation. Why is the replacement in this case
reasonable, but not for the energy? The maximum-entropy principle is sensitive to the derivatives of
the energy, like the Fock operator, but not to the energy itself.

Expectation values: Often one uses the density matrix to extract expectation values

⟨A⟩T,µ = Tr
[
ρ̂vNT,µÂ

]
=
Tr
[
Âe−β(Ĥ+γÂ)

]
Tr
[
e−β(Ĥ+γÂ)

]
∣∣∣∣∣∣
γ=0

∂Ĥ/∂γ=0
=

d

dγ

∣∣∣∣
γ=0

[
−kBT ln Tr

[
e−β(Ĥ+γÂ)

]]
︸ ︷︷ ︸

ΩT,µ(γ)

(2.93)

When one replaces the Hamiltonian by the Fock operator, this does not work any more: the identity
on the right-hand side is no more valid because the γ-derivatives of the Fock operator do not vanish.
31

31Unlike the Hamiltonian Ĥ, the Fock operator depends itself on γ. Therefore, one does not obtain the expectation
value as derivative of the thermodynamic potential.

d

dγ

∣∣∣∣
γ=0

[
−kBT ln Tr

[
e−β(

ˆF (γ)+γÂ)
]]

︸ ︷︷ ︸
ΩT,µ(γ)

=
Tr
[(

dF̂ (γ)
dγ
+ Â

)
e−β(F̂ (γ)+γÂ)

]
Tr
[
e−β(F̂ (γ)+γÂ)

]
∣∣∣∣∣∣
γ=0

̸= Tr
[
ρ̂vN,HFT,µ Â

]
(2.94)
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Energies of Slater determinants: The Galitski-Migdal-Koltun sum rule Eq. 8.36 allows one to
express the energy with the help of the Fock operator. The Fock operator depends on the state, and
it is essential to use the correct Fock operator for the problem at hand.

While it is a poor habit to describe the Hartree and exchange energies as expectation values such
as EH = 1

2

〈
σ⃗|V̂H|σ⃗⟩, let me nevertheless do it in this section for the sake of the ”vaccination”.

We may calculate the energy expectation value for each Slater determinant using the Hartree and
exchange energy from that Slater determinant, namely V̂H,σ⃗ and V̂X,σ⃗.

Eσ⃗ =
〈
σ⃗
∣∣ĥ + Ŵ ∣∣σ⃗〉 Eq. 2.44

=
〈
σ⃗
∣∣ ĥ + 1

2
V̂H,σ⃗ +

1

2
V̂X,σ⃗︸ ︷︷ ︸

1
2

(
ĥ+F̂
)

∣∣σ⃗〉 (2.95)

There is no contribution from correlated occupation-number fluctuations.
However, when the Hartree and exchange potentials of the ensemble are used, namely V̂ THFA

H =∑
σ⃗ P

THFA
σ⃗ V̂H,σ⃗ and V̂ THFA

X =
∑

σ⃗ P
THFA
σ⃗ V̂X,σ⃗, the correlated occupation-number fluctuations are no

more negligible, so that

Eσ⃗ ̸=
〈
σ⃗
∣∣ĥ + 1

2
V̂ THFAH +

1

2
V̂ THFAX

∣∣σ⃗〉 (2.96)

What is missing can be expressed in terms of correlated occupation-number fluctuations as shown in
Eq. 2.64.

When we add up the total energy of the thermal ensemble of the thermal Hartree-Fock approxi-
mation, the correlated occupation-number fluctuations miraculously drop out.∑

σ⃗

PTHFA
σ⃗ ⟨σ⃗|ĥ + Ŵ |σ⃗⟩ =

∑
σ⃗

PTHFA
σ⃗

〈
σ⃗
∣∣ĥ + 1

2
V̂ THFA
H +

1

2
V̂ THFA
X

∣∣σ⃗〉 (2.97)

The miracle is actually constructed, because we imposed the requirement on the THFA that the
correlated occupation-number fluctuations vanish.

2.4.11 Beyond Slater determinants

The ground state of a general many-particle wave function is closely related to an ensemble of Slater
determinants. Consider a general many-particle wave function

|Φ⟩ =
∑
σ⃗

|σ⃗⟩cσ⃗ , (2.98)

which is expanded in a complete set of Slater determinants |σ⃗⟩. In this section, the Slater determinants
are built from the natural orbitals32 |ϕn⟩ of the many-particle wave function.

The energy is

E
def
= ⟨Φ|ĥ + Ŵ |Φ⟩ Eq. 2.98

=
∑
σ⃗,σ⃗′

c∗σ⃗cσ⃗′⟨σ|ĥ + Ŵ |σ
′⟩

=

diagonal in σ⃗, σ⃗′︷ ︸︸ ︷∑
σ⃗

c∗σ⃗cσ⃗︸︷︷︸
Pσ⃗

⟨σ|ĥ + Ŵ |σ⟩

︸ ︷︷ ︸
ensemble of Slater determinants

+

off diagonal in σ⃗, σ⃗′︷ ︸︸ ︷∑
σ⃗,σ⃗′:σ⃗ ̸=σ⃗′

c∗σ⃗cσ⃗′︸ ︷︷ ︸√
Pσ⃗Pσ⃗′e

i(φ
σ⃗′
−φσ⃗ )

⟨σ|ĥ + Ŵ |σ′⟩

︸ ︷︷ ︸
entanglement energy

(2.99)

The absolute squares of the coefficients cσ⃗ act like probabilities Pσ⃗ of the orthonormal set of Slater
determinants: They are positive semi-definite and add they up to one. The coefficients cσ⃗ =

√
Pσ⃗e

iφσ⃗

can be expressed by their absolute value
√
Pσ⃗ and a phase factor eiφσ⃗ .

32The natural orbitals are the eigenstates of the one-particle-reduced density matrix.
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The decomposition allows us to compare a pure state 33 |Φ⟩ with an ensemble {(Pσ⃗, |σ⃗⟩)} of
Slater determinants. A pure state can be represented as superposition of Slater determinants.
A superposition is very different from an ensemble, even if it consist of the same states: This is
already evident from the entropy: A pure state has zero entropy, while an ensemble has a non-zero
entropy, unless it is a pure state. The comparison between a pure state and an ensemble of Slater
determinants is useful, (1) because the energy of an ensemble of Slater determinants more easy to
evaluate than that of the superposition and (2) because the ensemble captures already the dominant
energy contribution. The division of the energy in Eq. 2.99 above allows a systematic comparison
between effective one-particle theories and many-particle quantum mechanics.

As shown above in Eq. 2.64, the energy of an ensemble of Slater determinants can further be
divided into the mean-field energy and the energy of the correlated occupation-number fluctuations.
Thus, the energy expectation value of an arbitrary many-particle wave functions can be decomposed
into the following three contributions, namely the mean-field energy , the energy due to correlated
occupation-number fluctuations, and the entanglement energy.

E = ⟨Φ|ĥ + Ŵ |Φ⟩

=

one-particle energy︷ ︸︸ ︷
∞∑
n=1

fn⟨ϕn|ĥ|ϕn⟩+

Hartree energy︷ ︸︸ ︷
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

exchange energy︷ ︸︸ ︷
−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
mean-field energy

+
1

2

∞∑
m,n=1;m ̸=n

(
⟨σmσn⟩ − ⟨σm⟩⟨σn⟩

)(
⟨ϕmϕn|Ŵ |ϕmϕn⟩ − ⟨ϕmϕn|Ŵ |ϕnϕm⟩

)
︸ ︷︷ ︸

energy due to correlated occupation-number fluctuations

+
∑

σ⃗,σ⃗′:σ⃗ ̸=σ⃗′

√
Pσ⃗Pσ⃗′e

i(φ
σ⃗′−φσ⃗) ⟨σ|ĥ + Ŵ |σ′⟩︸ ︷︷ ︸

=⟨σ|Ŵ−V̂H−V̂X |σ′⟩︸ ︷︷ ︸
entanglement energy

(2.100)

1. The first line denoted as mean-field energy is the energy expression used in the Hartree-Fock
approximation. However, the occupations and natural orbitals differ from those of thermal
Hartree-Fock approximation (THFA). Rather than thermally excited electron-hole pairs present
in the finite-temperature ensemble, the correlated many-particle wave function has quantum
fluctuations. The quantum fluctuations may, for example, be electron-hole pairs formed to
screen the Coulomb interaction between electrons.

2. The second term describes the contribution from correlated occupation-number fluctuations.
They vanish for a single Slater determinant and, per construction, for the equilibrium ensemble
of the thermal Hartree Fock approximation. However, they are present in (1) a general ensemble
of Slater determinants and (2) in a general many-particle wave function or their ensembles.

The factors ⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩ are non-negative for all values (m, n)34

and they vanish for m = n. They are large for electron pairs with opposite spin, because,
for pairs with equal spin, the exchange term (2nd) counteracts the Hartree term (1st). For
electrons pairs with opposite spin, the exchange term vanishes

The correlated occupation-number fluctuations
∑

σ⃗ Pσ⃗(σm− fm)(σn− fn) are non-negative and
vanish

• for completely filled fn = 1 and completely empty fn = 0 orbitals, and
33A pure state corresponds to a single many-particle wave function as opposed to an ensemble, which contains many

micro-states along with their probabilities. A pure state can also be described as an ensemble with probability one for
a specific many-particle wave function.

34This follows from the fact that the electrostatic energy of any two-particle system is positive. This is also true if
the two electrons are in a two-particle Slater determinant with the two orbitals |ϕm⟩ and |ϕn⟩. The factor mentioned
is twice the Coulomb energy of this Slater determinant.
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• statistically independent occupations, i.e. for(
⟨σmσn⟩ =

)∑
σ⃗

Pσ⃗σmσn =
(∑

σ⃗

Pσ⃗σm

)
︸ ︷︷ ︸

fm

(∑
σ⃗

Pσ⃗σn

)
︸ ︷︷ ︸

fn

(
= ⟨σm⟩⟨σn⟩

)
(2.101)

For a given set of occupations fn =
∑

σ⃗ Pσ⃗σm, a wave function with small double occupancy

dm,n
def
=
∑
σ⃗

Pσ⃗σmσn (2.102)

will have a lower energy. That is, electrons with strong Coulomb repulsion try to get out of
each other’s way.

The optimum correlated occupation-number fluctuations ⟨σ1σ2⟩ − ⟨σ1⟩⟨σ2⟩ for two orbitals 35

is shown in figure 2.4.

3. The third term describes the entanglement of the Slater determinants. Let me call it en-
tanglement energy. It describes the hybridization36 of Slater determinants. This is the only
term that depends on the relative phases of the coefficients of different Slater determinants.

Imagine a special case with only two relevant Slater determinants |σ⃗1⟩ and |σ⃗2⟩, so that the
many-particle wave functions have the form |Φ⟩ = |σ⃗1⟩c1+ |σ⃗2⟩c2. Let us treat the two Slater
determinants as basisset in Fock space and evaluate the matrix elements of the interacting
2× 2 Hamiltonian. (assuming orthonormality)

Hα,β = ⟨σ⃗α|ĥ + Ŵ |σ⃗β⟩ for α, β ∈ {1, 2}. (2.104)

We obtain a 2×2 Schrödinger equation.37 We will obtain two eigenvectors c⃗± for two different
energies E±, where ± ∈ {+,−} identifies one or the other eigenstate. The complex coefficients
of the eigenvectors cα,± =

√
P±e

iφα,± contain the phase relation φ2,± − φ1,± between the two
Slater determinants. When the two Slater determinants with different phases contribute with
distinct weight, i.e. Pσ⃗1 ̸= Pσ⃗2 , there will be a finite entanglement energy.

The entanglement energy is the energy gain from optimizing the relative phases of the Slater
determinants as compared to an averaged phases.

This shows that the energy of a general many-particle wave function can be mapped approximately
onto the energy of an ensemble of Slater determinants. The approximation can be described by an
average of the phases of the individual Slater determinants. Averaging over the phases will remove all
off-diagonal elements in the Hamiltonian expressed in terms of Slater determinants, but it will leave
the diagonal elements unchanged.

35Bounds for the correlated occupation-number fluctuations can be derived by considering each pair of states inde-
pendently.

max(0, fm + fn − 1)− fmfn ≤ Pσm ,σn (σm − fm)(σn − fn) ≤ min(1, fm + fn)− fmfn (2.103)

To avoid the double occupancy, one could estimate the occupation-number fluctuations from the lower of the two
bounds, rather than ignoring the term as in the mean-field approximation. The result is shown in fig. 2.4 The
independent-pair approximation relies on P00 + P01 + P10 + P11 = 1, P10 + P11 = f1, P01 + P11 = f2, 0 ≤ Pσ,σ′ ≤ 1.

36Hybridization is the formation of a superposition of orbitals to form a bond orbital or an antibonding orbital. The
difference between a bond and an antibond can be attributed to a phase factor between the two orbitals forming the
bonding and antibonding orbitals. The bond orbital of a hydrogen molecule is (|χ1⟩+χ2⟩)/

√
2 while that of an antibond

is (|χ1⟩−χ2⟩)/
√
2. The plus and minus signs can be described by a relative phase factor eiϕ with a real-valued phase of

ϕ = 0 for the bond and ϕ = π for the antibond. In the present case, it is Slater determinants rather than one-particle
states that hybridize. The underlying concept is the matrix diagonalization, which is common to both cases.

37The problem of diagonalizing the 2 × 2 matrix is the same as that for the diatomic molecule. The difference to
the diatomic molecule is that the Hamiltonian is formed from many-particle Slater determinants and the Hamiltonian
contains also the interaction Ŵ . As in the diatomic molecule, there will be level repulsion and superpositions of the
two Slater determinants analogous to the bonding and the antibonding states of the diatomic molecule.
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0
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Fig. 2.4: Contour plot for the lower bound min{Pσ1 ,σ2}
∑

σ1,σ2
Pσ1,σ2(σ1 − f1)(σ2 − f2) = min(0, f1 +

f2−1)− f1f2 for the occupation-number fluctuations of two orbitals as a function of the occupations
f1 and f2. The plot is drawn for fj ∈ [0, 1]. The function values are zero at the boundaries of the
area and the minimum, at f1 = f2 = 1

2 has the value − 14 . (This graph is repeated in figure F.4 on
p. 512)

2.5 Spectral properties

For non-interacting electrons, the one-particle energies determine both the thermodynamic properties
of the system as well as its spectral properties such as optical absorption and emission. For interacting
electrons this connection of spectral and thermodynamic properties is broken. Therefore, let me
discuss in this section the role of interaction within the Hartree-Fock theory and show how one-
particle energies are related to total energy differences.

2.5.1 Spectroscopies

photoemission

hωh

ωh

e

e

e

vac vac

inverse photoemission optical excitation

ω

Fig. 2.5: Energy vs. position sketch of the photoemmission, inverse photoemission and optical
excitation process. The red square represents the valence band, while the blue square represents the
conduction band. The vacuum level is denoted by “vac”.

For sketches of the different spectroscopic techniques mentioned here, see figure 2.5.

• photoemission: a photon is absorbed, while an electron is emitted out of the system. The
kinetic energy Ekin of the electron, which escapes from the system, is measured. The energy of
the emitted electron is Evac +Ekin, where the vacuum energy Evac is the energy of an electron
at rest in the vacuum. The energy difference of the emitted electron and the absorbed photon
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ℏω is the energy of the electron before the photon absorption, because it is due to the removal
(annihilation) of an electron from the valence band. The photoemission process thus detects
the density of states of the occupied states.38

• inverse photoemission: The system captures an electron while emitting a photon. The elec-
tron injected drops from a high-lying energy level into a low-lying empty orbital. The energy
difference of the emitted photon ℏω and the injected electron Evac +Ekin is due to the addition
(creation) of an electron to the conduction band. The inverse photoemission process thus
detects the density of states of the conduction band.

• optical spectroscopy: a photon is absorbed, while an electron-hole pair is created. That is, an
electron is lifted into an empty orbital. It is described by a simultaneous removal (annihilation) of
an electron from the valence bands and and the simultaneous addition (creation) of an electron
in the conduction bands. While photo-emission and inverse photo-emmission are one-particle
excitations, the optical absorption is an example for a two-particle excitation.

2.5.2 Excitations on the Hartree-Fock Level

Underlying the Hartree-Fock approximation is the assumption that the interaction is a small pertur-
bation of the otherwise non-interacting electron gas. In first order, the wave functions are those of
the unperturbed system, that is Slater determinants, which are the eigenstates of the non-interacting
Hamiltonian.

In a second conceptual step, the non-interacting system is replaced by another non-interacting
system, namely one with an effective potential. The effective potential is given by the Fock operator.

F̂ =
ˆ⃗p2

2me
+ V̂ef f︸︷︷︸
V̂ext+V̂H+V̂X

(2.105)

In Hartree Fock, we take the many-particle states |σ⃗⟩ from the effective non-interacting system,
described by the Fock operator, but we use the energies obtained with full Hamiltonian.

F̂ |σ⃗⟩ = |σ⃗⟩Λσ⃗

EHFσ⃗ = ⟨σ⃗|Ĥ|σ⃗⟩
!!

̸= ⟨σ⃗|F̂ |σ⃗⟩ (2.106)

A common mistake is to mix up the eigenvalues of the Fock operator with the approximate energy
eigenvalues Eσ⃗ of the many-particle system.

Hartree-Fock Theory is one example, where a description based on non-interacting electrons,
nevertheless accounts for the large contributions of the interaction.

An important consequence of the following sections is that the one-particle excitation energies
can be described by the Fock operator, but not other excitations such as two-particle excitations.
Note also, that excitations are energy differences and not many-particle energies themselves. The
following will provide us with a physical interpretation of the Fock operator beyond the minimum
condition for the energy of a Slater determinant.

Editor: Private remark:

Ĥ ≈
∑
σ⃗

|σ⃗⟩Eσ⃗⟨σ⃗| =
∑
σ⃗

|σ⃗⟩⟨σ⃗|ĥ + Ŵ |σ⃗⟩⟨σ⃗| (2.107)

where the Slater determinants are constructed from the natural orbitals of the grand
ensemble. Thus, the approximated depends on the one-particle reduced density matrix
of the system. This approximation allows one in turn to define an approximate grand

potential as density matrix functional. ΩT,µ ≈ −kBT ln
[∑

σ⃗⟨σ⃗|ĥ + Ŵ |σ⃗⟩ − µNσ
]

38Damascelli et al.[41] provide a insightful introduction to angular resolved photoemission spectroscopy (ARPES).
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Editor: The following must be integrated into the text:

Eσ⃗ − EHF =
∑
n

σn⟨ϕn|ĥ|ϕn⟩+
1

2

∑
m,n

σmσn

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
︸ ︷︷ ︸

Eσ⃗ Eq. 2.35

−
{∑

n

fn⟨ϕn|ĥ|ϕn⟩+
1

2

∑
m,n

fnfm

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
︸ ︷︷ ︸

=EHF=ΩHF+TS+µN Eq. 2.77

}

=
∑
n

(σn − fn)⟨ϕn|ĥ|ϕn⟩+
∑
n

(
σn − fn

)∑
m

fm

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
︸ ︷︷ ︸

⟨ϕn |V̂H+V̂X |ϕn⟩︸ ︷︷ ︸∑
n(σn−fn)ϵn with ϵn = ⟨ϕn |ĥ + V̂H + V̂X |ϕ⟩

+
1

2

∑
m,n

(
σn − fn

)(
σm − fm)

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
=
∑
n

(σn − fn)ϵn +
1

2

∑
m,n

(
σn − fn

)(
σm − fm)

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
(2.108)

Here ϵn are the eigenvalues of the Fock operator of the equilibrium state. a

The picture for |σ⃗⟩ emerges of an equilibrium state with additional quasi-particles, namely electrons
and holes. Each quasi-particle has is own energy given by the eigenvalue of the Fock operator. In
addition, the quasi-particle have an interaction between them, that is electrons repel electrons, holes
repel holes and electrons attract holes. The Coulomb interaction is given in the mean-field spirit
with fractional occupations σn − fn. Note, that this does not introduce a mean-field like errors into
Eσ. Rather, the mean-field like treatment of the interaction between the quasi-particles undoes the
mean-field errors in the ground state energy EHF .
It may be convenient to express the energy relative to the grand potential, rather than relative to
the ensemble energy. This can be conveniently done by taking an entropy for the quasi-particles into
account. Note however, that this entropy term does not reflect the entropy of the Slater determinant
|σ⃗⟩, but that of the ground state ensemble.

Eσ⃗ −ΩHF =
∑
n

(σn − fn)ϵn +
1

2

∑
m,n

(
σn − fn

)(
σm − fm)

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
+ kBT

∑
n

|σn − fn| ln(|σn − fn|) + (1− |σn + fn|) ln(1− |σn − fn|)︸ ︷︷ ︸
=fn ln(fn)+(1−fn) ln(1−fn)︸ ︷︷ ︸
heat bath −TS

− µ
∑
n

fn︸ ︷︷ ︸
particle reservoir

(2.109)

We can consider quasi-particle occupations f QPn = |σn − fn|. The sign of σn − fn determines if this
is an electron or a hole excitation.

aNote on a side: (Based on the creation and annihilation operators introduced only later.) The interacting Hamil-
tonian can be written in the form

Ĥ = EHF 1̂ +
∑
σ⃗

|σ⃗⟩(Eσ⃗ − EHF )⟨σ⃗|+
∑
σ⃗ ̸=σ⃗′

|σ⃗⟩⟨σ⃗|Ĥ|σ⃗′⟩⟨σ⃗′| where

∑
σ⃗

|σ⃗⟩Eσ⃗⟨σ⃗| = EHF 1̂ +
∑
n

ϵn

(
â†n ân − ⟨â†n ân⟩

)
+
1

2

∑
m,n

(
Wm,n,m,n −Wm,n,n,m

)(
â†m âm − ⟨â†m âm⟩

)(
â†n ân − ⟨â†n ân⟩

)
with fn = ⟨â†m âm⟩ = ⟨ΦHF |â†m âm|ΦHF ⟩, Wm,n,p,q = ⟨ϕmϕn|Ŵ |ϕpϕq⟩, and |σ⃗⟩ =

∏∞
n=1

(
â
†
n

)σn |O⟩. The Hartree-Fock
ground-state energy is

EHF =
∑
n

ϵn⟨â†n ân⟩+
1

2

∑
m,n

(
Wm,n,m,n −Wm,n,n,m

)
⟨â†m âm⟩⟨â†n ân⟩
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««««««««««««««««««««««««««««««««««««««
Let me now consider the energy difference between two Slater determinants

Eσ⃗ − Eσ⃗′ =
∑
n

(σn − σ′n)ϵn +
1

2

∑
m,n

[(
σn − fn

)(
σm − fm)−

(
σ′n − fn

)(
σ′m − fm)

]
×
(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
=
∑
n

(σn − σ′n)ϵn +
∑
,n

(σn − σ′n
)[∑

m

(
σ′m − fm)

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)]
+
1

2

∑
m,n

(
σn − σ′n

)(
σm − σ′m)

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
(2.110)

»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»>

2.5.3 Photoemission

Let me consider the photoemission process, in which an electron is ejected by a photon from an
occupied state. The energy loss, the photon energy minus the energy of the emitted electron can be
calculated as energy difference of the initial and final Slater determinants.

Initially, there is a N-particle system at rest. Because we refer here to the Hartree-Fock approx-
imation, we use the eigenstates of the Fock-operator as one-particle basisset. The corresponding
many-particle states are Slater determinants |σ⃗⟩ in this basisset, which I represent in the occupation-
number representation. In this representation, the energy expectation value of a Slater determinant
has the simple form

Eσ⃗
Eq. 2.35
=

∞∑
n=1

σn⟨ϕn|ĥ|ϕn⟩+
1

2

∞∑
m,n=1

σmσn

(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
(2.111)

In the initial state, the first N one-electron states are occupied, while the others are empty. This
state is also called the Fermi sea. It is denoted by |σ⃗0⟩ and has occupations σj = 1 for j ≤ N and
σj = 0 otherwise.

In the photoemission process, an electron is ejected from an occupied state |ϕn⟩ with n ≤ N
and lifted into the vacuum. The energy of the emitted electron is the sum of vacuum level ϵvac and
the kinetic energy Ekin of the emitted electron. The vacuum level ϵvac is the potential energy of an
electron far above the surface of the material.

NOTATION

Let me denote the state of the system, after removing the electron from the orbital |ϕn⟩ in σ⃗0,
by |σ⃗−n⟩, namelya “the Slater determinant obtained from |σ⃗0⟩ after removing an electron from the
one-particle orbital n”. The energy of |σ⃗−n⟩ is E(σ⃗−n).
Similarly, I will denote the Slater determinant obtained after adding an electron to the empty orbital
|ϕm⟩ of σ⃗0| by |σ⃗+m⟩.
A state obtained by removing an electron from the occupied orbital |ϕm⟩ in σ⃗0 and by placing it into
the empty orbital |ϕn⟩, is denoted by |σ⃗−m/+n⟩.

aThe notation requires special attention: The state |σ⃗−n⟩ has the occupation number σj − δj,n for the j-th one-
particle orbital, where σj is the occupation number of the j-th orbital of state |σ⃗0⟩.

The energy balance between the initial state, consisting of the incident photon with energy ℏω
and the ground state |σ⃗0⟩ of the target, and the final state, consisting of the target after removal of
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one electron from the n-th orbital and the emitted electron in the vacuum, is

ℏω + E(σ⃗0)︸ ︷︷ ︸
initial state

= E(σ⃗−n) + ϵvac + Ekin︸ ︷︷ ︸
final state

(2.112)

The energy loss ∆Eloss, that is the energy absorbed by the material, is the energy cost for
annihilating an electron in the material

∆Eloss = ℏω −
(
ϵvac + Ekin

)
Eq. 2.112
= E(σ⃗−n)− E(σ⃗0)

Eq. 2.111
= −⟨ϕn|ĥ|ϕn⟩ −

1

2

(
⟨ϕnϕn|Ŵ |ϕnϕn⟩ − ⟨ϕnϕn|Ŵ |ϕnϕn⟩

)
︸ ︷︷ ︸

= 0 (A)

−
N∑
m=1

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
︸ ︷︷ ︸

⟨ϕn |V̂H + V̂X |ϕn⟩ (B)

Eqs. 2.38,2.41
= −⟨ϕn|ĥ + V̂H + V̂X |ϕn⟩

Eq. F.4
= −⟨ϕn|F̂ |ϕn⟩︸ ︷︷ ︸

ϵn

=: −ϵn (2.113)

The letters in parenthesis, (A) and (B), refer to figure 2.6.
Thus, the energy loss is–up to the sign–equal to an eigenvalue of the Fock operator. Therefore,

we identify the eigenvalues of the Fock operator with the energy levels ϵn of the system. The Fock-
operator is obtained from the ground-state Slater determinant rather than the one for the excited
state. Thus, there is a single operator, the Fock operator of the ground state, which determines the
spectrum of all one-particle addition and removal energies.

The picture, which emerges, is very similar to that of non-interacting particles. The main dif-
ference is that the energy levels are given by the Fock operator F̂ and not the non-interacting
Hamiltonian ĥ. The interaction shifts the energy levels relative to the non-interacting case. In con-
trast to the non-interacting electron gas, however, the total energy is not given by the expectation
values of this operator.

2.5.4 Inverse photoemission

Let me now consider the inverse photoemission process, in which an electron is absorbed by the
material and a photon is emitted, while the electron settles into a previously unoccupied orbital.

Let me denote the Slater determinant of the final state |σ⃗+n⟩. Compared to the initial state |σ⃗0⟩,
it has an additional electron in state |ϕn⟩ with n > N.

The energy conservation requires that the initial and finals energies are the same

E(σ⃗0) + Evac + Ekin︸ ︷︷ ︸
initial state

= E(σ⃗+n) + ℏω︸ ︷︷ ︸
final state

(2.114)

The energy loss ∆Eloss, the energy ϵvac+Ekin of the injected electron minus the energy ℏω of the
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emitted photon, can be calculated as energy difference of the initial and final Slater determinants.

∆Eloss = ϵvac + Ekin − ℏω
Eq. 2.114
= E(σ⃗+n)− E(σ⃗0)

Eq. 2.111
= ⟨ϕn|ĥ|ϕn⟩+

1

2

(
⟨ϕnϕn|Ŵ |ϕnϕn⟩ − ⟨ϕnϕn|Ŵ |ϕnϕn⟩

)
︸ ︷︷ ︸

= 0 (C)

+

N∑
m=1

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩ − ⟨ϕnϕm|Ŵ |ϕmϕn⟩

)
︸ ︷︷ ︸

⟨ϕn |V̂H + V̂X |ϕn⟩ (D)

Eqs. 2.38,2.41
= ⟨ϕn|ĥ + V̂H + V̂X |ϕn⟩

Eq. F.4
= ⟨ϕn|F̂ |ϕn⟩ =: ϵn (2.115)

The letters in parenthesis, (C) and (D), refer to figure 2.6.
The electron-addition energies are the eigenvalues of the Fock operator.

D

AA
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C C

E

E

D

Fig. 2.6: Schematic representation of the matrix of interactions Wm,n =
1
2

(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ −

⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩
)

between one-particle orbitals of a Slater determinant. The graphs show the

terms for electron removal in photo-emission (left), electron addition in inverse photoemission (mid-
dle) and the formation of an electron-hole pair (right). The yellow region denotes the occupied
orbitals. The interaction matrix elements involving two identical orbitals vanish, which is indicated by
the white, respectively black squares on the diagonal. The red bands (B) represents the interaction
terms that are removed upon electron removal. The turquoise bands (D) represent the additional
interactions upon electron addition. The graph on the right shows the interactions involved in the for-
mation of an electron-hole pair. The interactions identified by the green squares need to be removed.
This removal of the electron interaction describes the exciton binding energy.

Similarly, we can show that the occupied part of the spectrum of the Fock operator can be
described as electron removal energies. Thus, the Fock operator provides us with the one-particle
spectrum within the Hartree-Fock approximation.

2.5.5 Optical spectroscopy:

Let us now consider the energy required to lift an electron from an occupied state |ϕm⟩ with m ≤ N
into an empty orbital |ϕn⟩ with n > N. Let me denote the state with the electron-hole pair as
|σ⃗−m/+n⟩.

The energy loss in this case is simply the energy of the absorbed photon. The energy balance is

ℏω + E(σ⃗0)︸ ︷︷ ︸
initial state

= E(σ⃗−m/+n)︸ ︷︷ ︸
final state

(2.116)



2 WEAKLY INTERACTING ELECTRONS 85

Thus, the energy loss upon removal of an electron in orbital |ϕm⟩ and addition of one in orbital
|ϕn⟩ is

∆Eloss = E(σ⃗−m/+n)− E(σ⃗0)

Eq. 2.111
= ⟨ϕn|ĥ|ϕn⟩+

1

2

(
⟨ϕnϕn|Ŵ |ϕnϕn⟩ − ⟨ϕnϕn|Ŵ |ϕnϕn⟩

)
︸ ︷︷ ︸

= 0 (C)

+

N∑
j=1

(
⟨ϕnϕj |Ŵ |ϕnϕj⟩ − ⟨ϕnϕj |Ŵ |ϕjϕn⟩

)
︸ ︷︷ ︸

⟨ϕn |V̂H + V̂X |ϕn⟩ (D)

− ⟨ϕm|ĥ|ϕm⟩ −
1

2

(
⟨ϕmϕm|Ŵ |ϕmϕm⟩ − ⟨ϕmϕm|Ŵ |ϕmϕm⟩

)
︸ ︷︷ ︸

= 0 (A)

−
N∑
j=1

(
⟨ϕmϕj |Ŵ |ϕmϕj⟩ − ⟨ϕmϕj |Ŵ |ϕjϕm⟩

)
︸ ︷︷ ︸

⟨ϕm |V̂H + V̂X |ϕm⟩ (B)

−
(
⟨ϕmϕn|Ŵ |ϕmϕn⟩ − ⟨ϕmϕn|Ŵ |ϕnϕm⟩

)
= ϵn − ϵm −

(
⟨ϕmϕn|Ŵ |ϕmϕn⟩ − ⟨ϕmϕn|Ŵ |ϕnϕm⟩

)
︸ ︷︷ ︸

exciton binding energy (E)

(2.117)

The letters in parenthesis, (A)-(E), refer to figure 2.6. The one-particle energies ϵn and ϵm are the
eigenvalues of the Fock-operator, i.e.

ϵn = ⟨ϕn|ĥ + V̂H + V̂X |ϕn⟩ (2.118)

The first two terms Eq. 2.117 are simply the electron-addition and removal energies, which are
given by the one-particle spectrum. The last term is the electrostatic attraction of electron and
hole. This is the so-called exciton binding energy. The second interaction term, the exchange
term, counteracts the first, but it is only present when both orbitals have the same spin direction.
Therefore, the Coulomb interaction between wave functions with opposite spin are much stronger
than those with equal spin.

Nevertheless, the two-particle spectra B(ℏω) are often closely related to a convolution of one-
particle spectra as for non-interacting particles.

B(ℏω) =
∫
dϵ

∫
dϵ A(ϵ)A(ϵ′)δ(ℏω − ϵ− ϵ′) =

∫
dϵ;A(

1

2
ℏω + ϵ)A(

1

2
ℏω − ϵ) (2.119)

If the kinetic energy of interacting quasi-particles is sufficiently large that no bound pairs can form, in-
teraction effects become secondary and the two-particle spectrum will be similar to the non-interacting
case.

2.5.6 Spectral function

For non-interacting electrons, the band structure ϵn(k⃗) and the density of states are key quantities
to understand both, the energy and the excitations of a system. As soon as an interaction is present,
the situation becomes more complex.

The photo-emission and inverse photo-emission experiments probe one-particle excitations, that
is electron addition and removal. These experiments extract the so-called spectral function, often
written as total spectral function A(ϵ) or as one-particle operator Â(ϵ). For non-interacting systems,
the spectral function is simply the density of states and it is obtained from the eigenvalues of the
one-particle Hamilton operator as39

D̂(ϵ) =
∑
n

|ϕn⟩δ(ϵ− ϵn)⟨ϕn| (2.120)

39I consider the density of states as a one-particle operator, so that we can also determine projections onto certain
orbitals and so-called Crystal Orbital Hamilton Populations (COHP)[42]. The latter provide insight into chemical
binding.
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For weak interactions, the one-particle excitations such as electron addition or removal can be
described well by a spectral function, which is obtained analogously to Eq. 2.120, but with energies
ϵn and one-particle wave functions |ϕn⟩ obtained from the Fock operator rather than from the non-
interacting Hamiltonian. [

ĥ + V̂H + V̂X

]
︸ ︷︷ ︸

F̂

|ϕn⟩ = |ϕn⟩ϵn (2.121)

This equation is closely related to the equation of motion Eq. 8.16 for the Green’s function[
ϵ− ĥ − Σ̂(ϵ)

]
Ĝ(ϵ) = 1̂ (2.122)

with the self-energy from Eq. 8.15. The equation of motion is general and not limited to weak
interactions. We will come to Green’s functions of many-particle systems later. At this point it is
sufficient to remember that Hartree and exchange potential act as self energy in the Hartree-Fock
description.

ELECTRON REMOVAL AND ADDITION ENERGIES

The one-particle spectrum probes the electron removal energies and electron addition energies. For
weakly interacting systems they are determined by the eigenvalues of the Fock operator of the ground
state. The resulting spectral function is

Â(ϵ) =
∑
n

|ϕn⟩δ(ϵ− ϵn)⟨ϕn| (2.123)

with one-particle energies ϵn and one-particle orbitals |ϕn⟩ from the Fock-operator of the electronic
ground state. [

ĥ + V̂H + V̂X

]
︸ ︷︷ ︸

F̂

|ϕn⟩ = |ϕn⟩ϵn (2.124)

Unlike non-interacting electrons, two-particle excitations of interacting particles can no more be
obtained by from the one-particle spectral function alone. For excitations which create two or more
particles, e.g. holes and electrons, the interaction between the excited quasi particles, i.e. electrons
and holes, must be taken into account. For two-particle excitations, such as optical excitations, a
different spectral function is required, which is specifically devised for, say, electron-hole excitations.

General interacting systems always have a well-defined one-particle spectral function Â(ϵ), which
generalizes the density of states of non-interacting electrons. The spectral function of interacting
systems (beyond the Hartree-Fock method) is described later, in section 9.3 on p. 271.

2.5.7 Electron affinity and ionization potential

The spectral properties are connected to the electron addition and electron removal energies, respec-
tively the formation energies of electron-hole pairs. The ionization energy I is the energy required
to remove an electron from the system, i.e. to lift it up into the vacuum level Evac . The work
function40 is the generalization of the ionization potential to solids. The electron affinity A is the
energy gained by adding an electron to the system, while taking it from the vacuum level.

I
def
= (EN−1 + Evac)− EN (2.125)

A
def
= (EN + Evac)− EN+1 (2.126)

40German: Austrittsarbeit



2 WEAKLY INTERACTING ELECTRONS 87

The difference between ionization potential and electron affinity is the band gap of a material.

ϵg
def
= I − A = EN+1 − 2EN + EN−1 (2.127)

Similarly, the valence-band top ϵv and the bottom of the conduction-band ϵc are defined as

ϵv
def
= EN − EN−1

ϵc
def
= EN+1 − EN (2.128)

These definitions are obvious in the context of non-interacting electrons. However, they are defini-
tions, which also apply to many-particle systems in general, interacting or not.

A

ec

ev

Evac

eg

I

Fig. 2.7: Scheme to illustrate electron affinity A and ionization potential I in the context of a
one-particle picture and non-interacting electrons. Evac is the vacuum level, ϵc is the conduction
band-minimum, ϵv is the valence-band maximum and ϵv is the band gap separating empty from filled
one-particle states. The ground-state energy of a N + 1 particle system is EN+1 = EN + ϵc , while
that of an N − 1 particle system is EN−1 = EN − ϵv . The energy of an N-particle system with one
electron (hole) in the vacuum level is EN + Evac (EN − Evac).

2.5.8 Spectral properties of the free-electron gas

Let me describe here the qualitative changes undergone by the band structure of the electron gas due
to the interaction between electrons. I will summarize the main effects also beyond the Hartree-Fock
limit. It shall provide an guiding overview of correlation effects related to a particularly simple system,
the free electron gas.

Within the Hartree-Fock method, the free-electron gas can be treated analytically. This is shown
in appendix E.3 on p. 449. The findings are not only relevant for the Hartree-Fock method but also
beyond. Here, I will only discuss the main findings.

Editor: Include here a sequence pictures of band structures, i.e. k-resolved spectral
functions, for the free-electron gas with different phenomena. 1. non-interacting
free-electron gas. parabola 2) Hartree-Fock approximation: self-energy shift (large
for filled states, small for empty states), zero density of states at the Fermi level.
3) screened Hartree Fock: smaller band width of the filled states, again finite density
of states at the Fermi level. 4) RPA: Lifetime broadening of the spectral function,
but infinite lifetime at the Fermi level. 5) Satellites, quasi-Particle weight. 6)
Ferromagnetic phase transition. 7) Mott insulator?

1. Non-interacting electrons: the dispersion relation ϵ(k⃗) of the non-interacting, free-electron
gas is a simple parabola.

ϵ(k⃗) =
ℏ2k⃗2

2me
(2.129)
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Fig. 2.8: Left: dispersion relation ϵ(k) of the free-electron gas as calculated without interactions
(blue), with Hartree-Fock (black) and with screened Hartree-Fock (red). The Fermi momentum
has been chosen as kF = 1/a0 and the screening length for the screened Hartree-Fock calculation
has been 6 a0, where a0 is the Bohr radius. The red, dashed line is the quasi-particle shift due to
screening. Only the bands of unscreened Hartree-Fock exhibit an infinite slope at the Fermi level.
The Fermi level is at ϵ(kF ). Right: density of states of the free-electron gas without interactions
(blue) and in the Hartree-Fock approximation. The straight line of the non-interacting electron gas
is indicated by the straight line. The electron density increases from top to bottom. The density of
states for the Hartree-Fock calculation drops to zero at the Fermi level. The energy of the bottom of
the band is independent of the electron density and depends only on the strength of the interaction.

In a crystal lattice with primitive lattice vectors T⃗1, T⃗2, T⃗2, a parabola is centered at each general
reciprocal lattice vector G⃗n, i.e.

ϵn(k⃗) =
ℏ2

2me

(
k⃗ − G⃗n

)2
(2.130)

The resulting dispersion relation has several bands and the band structure is periodic in the
periodic lattice. The band structure of the free-electron gas in the reduced zone scheme is
shown in figure 1.10 on p. 43.

2. Hartree-Fock: The exchange energy shifts the band structure down in energy. This is the so-
called quasi-particle shift. The quasi-particle shift is large for the filled states, and vanishes for
high kinetic energy ϵ(k⃗). This can be attributed to the fact that the exchange term stabilizes
states that are similar to filled states (Section 2.2.2). The empty states far above the Fermi
level are little affected by the exchange hole. Loosely speaking, this is because the electrons
are so fast that the exchange hole cannot properly form, respectively that the electron escapes
the exchange hole.

The Fermi-momentum ℏkF is unchanged by a weak interaction. The Hartree-Fock approxi-
mation produces an artifact at the Fermi surface: as shown in figure 2.8, the slope of the
dispersion relation becomes infinite and the spectral function drops to zero.

3. Screened Hartree Fock: The artifact at the Fermi surface (infinite slope and vanishing density
of states) is due to long-ranged nature of the Coulomb interaction. In the presence of a Fermi-
gas, the Coulomb interaction is screened: The electric field polarizes the electron density.
This can be described by the formation of electron-hole pairs, forming electric dipoles, that
oppose the electric field. This effect is described by a momentum- and frequency-dependent
dielectric constant. The resulting screened Coulomb interaction is replaced by an approximate
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Yukawa potential41 with finite range. The picture just described is the essence of the so-called
random-wave approximation (RPA) [43, 44, 45]. Screening removes the infinite slope of the
energy bands at the Fermi level, which was an artifact of the Hartree-Fock approximation.

Furthermore, screening generally decreases the net quasiparticle shift compared to the Hartree-
Fock description. Thus it affects the band width of metals, the energy distance from the
bottom of the valence band to the Fermi level. For potassium, the band width of the free-
electron gas is 2 eV, somewhat larger than the experimental result of 1.5-1.6 eV. The Hartree-
Fock approximation yields a far too large value of 5.3 eV. (See lecture notes by Wolf-Dieter
Schöne. 2001)

4. Lifetime broadening: An interacting electron travelling through an electron gas may collide
with other electrons and thus transfer energy and momentum to electron-hole excitations in
the surrounding electron gas. This energy dissipation acts like an effective friction which is
responsible for the finite conductivity.

The same effect results in a life-time broadening of the delta peaks δ(ϵ−ϵ(k)) of the k-resolved
spectral function. The electron level hybridizes with electron-hole excitations and mixes the
electron-hole excitations into the electron spectral function.

When one adds or removes an electron, one can also simultaneously create an electron-hole
pair, which changes the addition- or removal energy. Thus, instead of a single energy level,
there are many possible energy levels, which describe the addition or removal of an electron
in combination with a formation or recombination of an electron-hole pair. In the spectral
function one observes a broadening of the original delta-peak at ϵ(k⃗).

The total weight of the peak is conserved because of the charge sum rule42

5. Satellites and plasmons: Satellites are spectral features, which are separated from the main
electron addition and removal energies as sketched in figure 2.9. They are due to the mixing of
one-particle excitations with other particle-number conserving excitations. In the free-electron
gas, an example for such a particle-number conserving excitation is a plasmon, a kind of
collective charge fluctuation. If the electron removal leaves another excitation behind, the
energy of the latter adds to the excitation energy. Therefore, additional spectral features are
observed for the composite excitations at energies corresponding to the sum of the energies of
its contributions.

Due to the charge sum rule, the total weight of the spectrum of an orbital must sum up to
one. The weight lost to the satellite is lost from the main peak. This leads to the so-called
quasi-particle weight Z, which is less than one.

A minimal model for a satellite is the topic of the exercise 9.6.1 on p. 279.

A spectral function of the free-electron gas with the satellite due to plasmons is shown in Caruso
et al.[46]. (https://doi.org/10.48550/arXiv.1606.08573.pdf) The satellite structure of
silicon has been investigated, both experimentally and theoretically, by Lischner et al. [47].

Editor: see Figs/Fortran/Lundquist/src/code.f90

6. Phase transitions: (Ferromagnet, Mott insulator?)

41A Yukawa potential has the form

v(r⃗) =
C

|r⃗ |
e−λ|r⃗ | (2.131)

where C is some prefactor and 1/lambda is the range of the interaction.
42As the weight of the original orbital is decreased by admixing the excitation, the electron-hole pair will also obtain

a contribution from the electron removal or electron addition. The net weight of the electron removal or addition is
conserved.

https://doi.org/10.48550/arXiv.1606.08573.pdf
Figs/Fortran/Lundquist/src/code.f90
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Fig. 2.9: Spectral function A(ϵ, k) of the free-electron gas with a single particle-conserving excitation
with energy ∆ and zero momentum producing satellite bands. The green shaded region denotes the
occupied part of the spectral function, while the yellow shaded region denotes the unoccupied part.
(This figure is repeated as figure 9.3.

2.5.9 Summary on spectral properties on the HF level

The following picture emerges:

• The electronic ground state forms the Fermi sea of electrons. The Fermi sea is treated like
a vacuum state to which so-called quasi particles43 can be added. We can not only add
electrons, but also holes. Holes are electrons which are removed from the Fermi sea. The
“real particles” , the electrons present in the ground state, are no more considered as individual
particles but only as part of the Fermi sea.

• The quasi-particle energies, the energies ϵn of the quasi-particles, namely electrons and holes,
are the eigenvalues of the Fock operator of the Slater determinant without excitations. The
eigenvalues of the Fock operator define the spectral functionA(ϵ) in the Hartree-Fock method.
The spectral function is the generalization of the density of states to interacting systems.
The energy levels include a contribution from the electron interaction, the quasi-particle shift
⟨ϕn|V̂H + V̂X |ϕn⟩.
Note, however, that the total energy is not the expectation value of the Fock operator, i.e.
Etot ̸= ⟨Φ|F̂ |Φ⟩!

• The quasi-particles, electrons and holes, have their own charges and they interact with each
other. In the case of electron-hole pairs, the Coulomb attraction can lead to the formation of
bound states, which are called excitons.
Excitons are often considered like quasi hydrogen atoms, where the proton is replaced by a
hole. In a semi-conductor, one can estimate the exciton binding energy from this model using
the effective masses of electrons and holes, as derived from the band structure, and the relative
dielectric constant of the host material.

• Due to the interaction, the one-particle spectral function A(ϵ) alone is not sufficient to describe
two-particle excitations such as an electron-hole pair. This is a fundamental difference between
interacting and non-interacting systems.

• Electrons and holes in a Fermi sea are analogous to electrons and its anti particles, the positrons,
in a vacuum. The band gap of the vacuum is twice the rest energy E0 = m0c2, where m0 is the
rest mass. Just like electrons and holes can recombine by emitting light, the electron-positron
pair can annihilate by emitting two photons, each having the energy44 ℏω = m0c2.

43The meaning of term quasi-particle depends on the context.
44The wave length of these photons, which an energy equal to the rest mass of a particle, is the Compton wavelength

ℓ = 2π/k
ω/k=c
= 2πc/ω = 2πℏc/(ℏω) = 2πℏc/(m0c2)
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2.5.10 Outlook: Electron correlation

The picture of excitation, which emerges from the Hartree-Fock description is that of addition and
removal of electrons where the excitation energies are determined by the Fock operator of the ground
state. Added electrons and holes experience each other via the Coulomb repulsion, but the Fermi
gas is not affected at all by these excitations.

There is one effect missing in this picture: As an electron is added, it creates electric fields,
which polarize the material. This polarization of the charge distribution can itself be described by
the creation of electron-hole pairs. An excited electron is thus surrounded by a cloud of electron-
hole pairs. This cloud is due to the correlated motion of many electrons. One speaks of electron
correlation. This cloud reduces the electrostatic potential of the electron. On says that the induced
electron-hole pairs screen the electric field produced by the excitation. The screening is governed by
the dielectric constant ϵr (q⃗, ω) of the material.

The material polarizes, because it can lower its energy in the presence of an additional particle
by rearranging its charge density. This indicates that the excitation energy is usually smaller than
what the Fock operator predicts. This is what simulations show: the band gap obtained in the
Hartree-Fock approximation is larger than what is measured.

The dielectric constant contains a frequency argument, which describes that it takes a certain
time, until the polarization cloud is formed.

This modified picture sketched here motivated the random-phase approximation (RPA) [43,
44, 48]. In the random-phase approximation, the Fermi-sea is not considered as a rigid medium,
but it can be polarized by the electric fields of the electrons and holes. The polarization of the
Fermi sea can be described by a dielectric constant ϵr (q, ω). The inclusion of the dielectric constant
modifies the bare Coulomb interaction to a screened Coulomb interaction, which is short ranged
and retarded.

This renormalization explains the success of the independent particle picture despite the strong
Coulomb interaction.

2.6 Summary

• The eigenstates of non-interacting Hamiltonians ĥ are Slater determinants

ĥ|ϕn⟩ = |ϕn⟩ϵn
ĥ|σ⃗⟩ = |σ⃗⟩

∑
n

σnϵn︸ ︷︷ ︸
Eσ⃗

(2.132)

• Expectation values of one-particle at a time operators are obtained as sum over occupied one-
particle orbitals.

⟨A⟩ = ⟨σ⃗|Â|σ⃗⟩ =
∑
n

σn⟨ϕn|Â|ϕn⟩ = Tr[ρ̂(1)Â] (2.133)

• one-particle-reduced density matrix ρ̂(1), occupations and natural orbitals.

• The expectation value of the interacting Hamiltonian with a Slater determinant. Hartree- and
Exchange energy. Hartree and exchange potentials.

• Exchange-hole

• Hartree-Fock equations and Fock operator. Correlated occupation-number fluctuations.

• Spectroscopy: Photoemission, inverse photoemission, optical absorption
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• One-particle excitations: Electron addition and removal. Two-particle excitations: e.g. forma-
tion of an electron-hole pair.

• One-particle spectral function: equivalent to density-of-states for non-interacting particles.
Given by the eigenvalues of the Fock operator.

• Two-particle excitations have, in addition, a correction from the interaction of the two particles,
such as the Coulomb attraction of electrons and holes.

In this section, we investigated the role of interaction for weakly interacting systems. The ex-
pansion in the interaction strength lead from the non-interacting electrons as zeroth-order term to
the Hartree-Fock approximation, which includes the interaction to first order in the interaction
strength. Higher-order terms in the interaction are counted to the so-called correlation energy.

In the Hartree-Fock approximation, the energy can be calculated for a wave function of a non-
interacting electron gas, which is a Slater determinant. For Slater determinants the total energy can
readily be expressed by sums or double sums over the one-particle orbitals in the Slater determinant.
The interaction energy in Hartree-Fock can be divided into the Hartree energy and the exchange
energy.

Besides the definition of the Hartree-Fock approximation as the first term in an expansion in
the interaction strength, it can also be represented as the minimum of the total energy that can be
obtained by Slater determinants.

In contrast to non-interacting electrons, total energy and excitations are no more described by a
single Hamiltonian. The Fock operator describes the one-electron excitations of the system in the
Hartree-Fock description. One-electron excitations are electrons and holes. The density-of-states
of one-particle excitations is the spectral function. If two one-electron excitations are created
simultaneously, they experience their Coulomb interaction. This can lead to the formation of bound
states of electrons and holes, so-called excitons.

The Fock operator depends on the ground state wave function. It makes a difference between
filled and empty states. Filled states are shifted downward relative to empty states. This leads to a
splitting of the multiplet of partially occupied wave functions. Imagine a transition-metal oxide with
a partially filled d-shell. The interaction has a large effect on opening a band gap. An example of
this effect is the Mott-insulator, which is insulating only because of interaction effects.

To understand the interaction energy, the concept of the exchange hole is very useful. It allows
to understand Hund’s rule and magnetic transitions as described by Stoner’s theory.

The Hartree-Fock approximation already describes a few correlation effects.

1. Hund’s rule

2. Magnetism

3. Interaction-mediated splitting of empty and filled states. This is the first step to the so-called
Mott-Hubbard physics.

4. others, like the left-right correlation in chemical bonds will be discussed later.

2.7 Further reading

Let me refer to the appendix F on p. 473, where I collected some material that I found interesting in
this context.
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2.8 Home study and Practice

2.8.1 Boltzmann entropy and Fermi distribution

Introduction

This exercise serves to strengthen the understanding of the origin of the Fermi distribution function
and irs connection to the Boltzmann entropy. The second part shall refresh how to deal with functions
of operators.

Problem

Derive the Fermi-distribution function as thermal occupation of non-interacting Fermions. The Hamil-
tonian of a non-interacting sustem can be represented in terms of its eigenstates and eigenvalues as
ĥ =

∑
n |ϕm⟩ϵ̄n⟨ϕn|.

1 Minimize the grand canonical potential of a non-interacting system with the Boltzmann entropy

SB[{fn}] = −kB
∑
n

[
fn ln(fn) + (1− fn) ln(1− fn)

]
(2.134)

and show that the resulting thermal occupations are identical to the Fermi distribution.

2 Show, how the Boltzmann entropy expressed in terms of occupations is obtained from the more
general expression using the one-particle reduced density matrix

SB[ρ̂(1)] = −kBTr
[
ρ̂(1) ln(ρ̂(1)) + (1̂− ρ̂(1)) ln(1̂− ρ̂(1))

]
(2.135)

Solution

1 Minimize the grand canonical potential of a non-interacting system with the Boltzmann entropy

SB[{fn}] = −kB
[
fn ln(fn) + (1− fn) ln(1− fn)

]
(2.136)

and show that the resulting thermal occupations are identical to the Fermi distribution.

ΩT,µ = min
{fn}

∑
n

fn ϵ̄n − TSB[{fn}]− µN[{fn}]

= min
{fn}

∑
n

fn ϵ̄n + kBT
∑
n

[
fn ln(fn) + (1− fn) ln(1− fn)

]
− µ

∑
n

fn

δΩT,µ =
∑
n

δfn

{
ϵ̄n + kBT

[
ln(fn) + fn

1

fn
− ln(1− fn)− (1− fn)

1

1− fn

]
− µ

}
!
= 0

0 = ϵ̄n + kBT ln

[
fn
1− fn

]
− µ

ln
[ fn
1− fn

]
= −

1

kBT
(ϵ̄n − µ)

fn = e
− 1
kBT
(ϵ̄n−µ)

(
1− fn

)
fn =

e
− 1
kBT
(ϵ̄n−µ)

1 + e
− 1
kBT
(ϵ̄n−µ)

=
1

1 + e
+ 1
kBT
(ϵn−µ)

= fT,µ(ϵ̄) (2.137)
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This is the Fermi distribution function.

2 Show, how the Boltzmann entropy expressed in terms of occupations is obtained from the more
general expression using the one-particle reduced density matrix

SB[ρ̂(1)] = −kB
∑
n

[
ρ̂(1) ln(ρ̂(1)) + (1̂− ρ̂(1)) ln(1̂− ρ̂(1))

]
(2.138)

I represent the one-particle reduced density matrix in term of occupations and natural orbitals

ρ̂(1) =
∑
n

|ϕn⟩fn⟨ϕn| (2.139)

SB[ρ̂(1)] = −kB Tr
[
ρ̂(1) ln(ρ̂(1)) + (1̂− ρ̂(1)) ln(1̂− ρ̂(1))

]
= −kBTr

[(∑
n

|ϕn⟩fn⟨ϕn|
)
ln
(∑

n

|ϕn⟩fn⟨ϕn|
)

+
(∑

n

|ϕn⟩(1− fn)⟨ϕn|
)
ln
(∑

n

|ϕn⟩(1− fn)⟨ϕn|
)]

(2.140)

Now I exploit that a function g(x) of an operator x̂ =
∑

n |ϕn⟩xn⟨ϕn| in its diagonal form has
the same eigenstates and its eigenvalues are the functions of the eigenvalues of the operator in the
argument.

g
(∑

n

|ϕn⟩xn⟨ϕn|
)
=
∑
n

|ϕn⟩g(xn)⟨ϕn| (2.141)

This statement follows from the similar relation for power-series expansions

g(x) =
∑
j

ajx
j (2.142)

which can be proven recursively. The step from a power series expansion to general functions is done
by using (local) Taylor expansions of the function g.

SB[ρ̂(1)] = −kBTr
[(∑

n

|ϕn⟩fn⟨ϕn|
)(∑

n′

|ϕn′⟩ ln(fn′)⟨ϕn′ |
)

+
(∑

n

|ϕn⟩(1− fn)⟨ϕn|
)(∑

n′

|ϕn′⟩ ln(1− fn′)⟨ϕn′ |
)]

= −kBTr
[∑
n,n′

(
|ϕn⟩fn ⟨ϕn|ϕn′⟩︸ ︷︷ ︸

δn,n′

ln(fn′)⟨ϕn′ |
)
+ |ϕn⟩(1− fn) ⟨ϕn|ϕn′⟩︸ ︷︷ ︸

δn,n′

ln(1− fn′)⟨ϕn′ |
))]
(2.143)

Finally, I exploit the orthonormality of the natural orbitals and resolve the trace.

SB[ρ̂(1)] = −kBTr
[∑
n

|ϕn⟩
(
fn ln(fn) + (1− fn) ln(1− fn)

)]
⟨ϕn|

)
= −kB

∑
n

(
fn ln(fn) + (1− fn) ln(1− fn)

)
(2.144)
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2.8.2 The hydrogen atom in the Hartree-Fock approximation

Introduction

This is a little but extremely useful exercise, which clarifies some notions regarding many-particle
physics and the Hartree-Fock approximation. It may be surprising that we study the hydrogen atom
in a course on solid-state theory. However, many concepts from solid state theory are already there in
the hydrogen atom and the hydrogen atom is the minimal problem for quite a few solid state effects.

Problem

Appendix hydrogen atom: section D.4
We will use here hydrogen 1s orbitals as one-particle basisset.

χσ(r⃗ , σ
′)

Eq. D.60
=

1

πa30
e−|r⃗ |/a0δσ,σ′ (2.145)

The two states are eigenstates of the non-interacting part ĥ of the Hamiltonian

ĥ|χα⟩ = |χα⟩ϵ̄ with ϵ̄ = −
1

2
H (2.146)

The Bohr radius a0 = 4πϵ0ℏ2
e2me

and the Hartree H = mee4

(4πϵ0)2ℏ2 are the units for length and energy in
the Hartree atomic unit system. The Hartree atomic units are defined by ℏ = e = me = 4πϵ0 = 1.

The value ϵ̄ has been set equal to the ϵ1s level of the hydrogen atom (See table D.8 on p. 434).
The interaction matrix element is defined as

Wα,β,γ,δ
Eq. 2.34
=

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χγ(x⃗)χδ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
with U def

= W↑,↑,↑,↑ =
5

8
H

(2.147)

1 Determine all 24 interaction matrix elements:

2 Specify the Hartree and exchange energy for the two-particle state.

3 Determine the total energy of the zero-particle state |0⟩, the one-particle states | ↑⟩ and | ↓⟩,
and two-particle state | ↑↓⟩ of the hydrogen atom using the one-particle Hilbert space described
above.

4 Write down the Fock operator for the four many-particle eigenstates of the hydrogen atom.

5 Plot the density of states projected onto one of the one-particle orbitals for a one-particle
system at low temperature.

6 Compare the density of states of an ensemble of eigenstates of the hydrogen atom with the
mean-field Fock operator.

Discussion

1 Determine all 24 matrix interaction matrix elements:

Wα,β,γ,δ =

{
U for σγ = σα and σδ = σβ
0 else

= Uδα,γδβ,δ (2.148)
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The U-parameter is one of the Kanamori parameters.[16] (See appendix F.2.3 on p. 480)
Kanamori defined a set of parameters with which the interaction-tensor matrix elements of, for exam-
ple, d-orbitals of a transition metal ion can be expressed. The interaction of the d-shell (ℓ = 2) has
104 = 10000 matrix elements. However, they can all be expressed by Editor: four? (check!)
independent Kanamori parameters.

2 Specify the Hartree and exchange energy for the two-particle state.

The two orbitals of the hydrogen atom are characterized by their spin quantum number, i.e.
α ∈ {↑, ↓}. In the two-particle state, both orbitals are occupied so that f↑ = f↓ = 1.

n(r⃗) =
∑

σ∈{↑,↓}

∑
α∈{↑,↓}

fα|χα(r⃗ , σ)|2

EH
Eq. 2.37
=

1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
=
1

2

∑
α,β∈{↑,↓}

fαfβ

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χα(x⃗)χβ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

=
1

2

∑
α,β∈{↑,↓}

Wα,β,α,β︸ ︷︷ ︸ Eq. 2.148
= 2U

ρ(1)(x⃗ , x⃗ ′) =
∑

α∈{↑,↓}

fαχα(x⃗)χ
∗
α(x⃗

′)

EX
Eq. 2.40
= −

1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|

= −
1

2

∑
α,β∈{↑,↓}

fαfβ

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χβ(x⃗)χα(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

= −
1

2

∑
α,β∈{↑,↓}

Wα,β,β,α︸ ︷︷ ︸
Uδα,β

Eq. 2.148
= −U (2.149)

3 Determine the total energy of the zero-particle state |0⟩, the one-particle states | ↑⟩ and | ↓⟩,
and two-particle state | ↑↓⟩ of the hydrogen atom using the one-particle Hilbert space described
above.

The total energy can be evaluated using Eq. 2.44.

E|0⟩ = ⟨0|Ĥ|0⟩ = 0

E|↑⟩ = ⟨↑ |Ĥ| ↑⟩ = ϵ̄ = −
1

2
H

E|↓⟩ = ⟨↓ |Ĥ| ↓⟩ = ϵ̄ = −
1

2
H

E|↑↓⟩ = ⟨↑↓ |Ĥ| ↑↓⟩ = 2ϵ̄+ U = −
3

8
H (2.150)

4 Write down the Fock operator for the four many-particle eigenstates of the hydrogen atom.

The density and one-particle-reduced density matrix is

n(r⃗) =
∑

σ∈{↑,↓}

∑
α

fαχ
∗
α(r⃗ , σ)χα(r⃗ , σ)

ρ(1)(x⃗ , x⃗ ′) =
∑
α

fαχα(x⃗)χ
∗
α(x⃗

′) (2.151)
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V̂H
Eq. 2.38
=

∫
d4x |x⃗⟩

(∫
d3r ′

e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

)
⟨x⃗ |

=
∑
β

|πβ⟩⟨χβ |︸ ︷︷ ︸
1̂

∫
d4x |x⃗⟩

∫
d4x ′

e2
∑

α fαχ
∗
α(x⃗

′)χα(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
⟨x⃗ |
∑
γ

|χγ⟩⟨πγ |︸ ︷︷ ︸
1̂

=
∑
β,γ

|πβ⟩
∑
α

fα

∫
d4x

∫
d4x ′

e2χ∗β(x⃗)χ
∗
α(x⃗

′)χγ(x⃗)χα(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
⟨πγ |

=
∑
α,β,γ

|πβ⟩fαWβ,α,γ,α︸ ︷︷ ︸
Uδβ,γδα,α

⟨πγ |

=
∑
β

|πβ⟩U
∑
α

fα⟨πβ | (2.152)

V̂X
Eq. 2.41
= −

∫
d4x

∫
d4x ′ |x⃗⟩

e2ρ(1)(x⃗ , x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
⟨x⃗ ′|

= −
∑
β

|πβ⟩⟨χβ |︸ ︷︷ ︸
1̂

∫
d4x |x⃗⟩

∫
d4x ′

e2
∑

α χα(x⃗)fαχ
∗
α(x⃗

′)

4πϵ0|r⃗ − r⃗ ′|
⟨x⃗ ′|

∑
γ

|χγ⟩⟨πγ |︸ ︷︷ ︸
1̂

= −
∑
β,γ

|πβ⟩
∑
α

fα

∫
d4x

∫
d4x ′

e2χ∗β(x⃗)χ
∗
α(x⃗

′)χα(x⃗)χγ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
⟨πγ |

= −
∑
α,β,γ

|πβ⟩fαWβ,α,α,γ︸ ︷︷ ︸
Uδβ,αδα,γ

⟨πγ |

= −
∑
α

|πα⟩fαU⟨πα| (2.153)

The Fock operator F̂ has the form

F̂ = ĥ + V̂H + V̂X =
∑

α∈{↑,↓}

|πα⟩
(
ϵ̄+ U

( ∑
γ∈{↑,↓}

fγ

)
− Ufα

)
⟨πα| (2.154)

For the individual states, the Fock operator is

• |0⟩ f↑ = f↓ = 0

F̂ = |π↑⟩ϵ̄⟨π↑|+ |π↓⟩ϵ̄⟨π↓| (2.155)

• | ↑⟩ f↑ = 1, f↓ = 0

F̂ = |π↑⟩ϵ̄⟨π↑|+ |π↓⟩
(
ϵ̄+ U

)
⟨π↓| (2.156)

• | ↓⟩ f↑ = 0, f↓ = 1

F̂ = |π↑⟩
(
ϵ̄+ U

)
⟨π↑|+ |π↓⟩ϵ̄⟨π↓| (2.157)

• | ↑↓⟩ f↑ = f↓ = 1

F̂ = |π↑⟩
(
ϵ̄+ U

)
⟨π↑|+ |π↓⟩

(
ϵ̄+ U

)
⟨π↓| (2.158)
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We recognize, that the one-particle systems have two different energy levels, which are separated
by the Coulomb repulsion U. The lower level is the energy gained by removing an electron, while the
upper level is the energy required to add an electron. When an electron is added, also the Coulomb
repulsion with the electron, which already resides on the atom, has to be overcome. The electron
addition energy is electron affinity and the electron removal energy is the ionization potential. The
spectral function for general interacting electrons is discussed later in section 9.3.

5 Plot the density of states projected onto one of the one-particle orbitals for a one-particle
system at low temperature.

The density-of-states of non-interacting electrons has been used previously in section 1.5.5. See ΦSX:
Introduction to Solid State Theory for more information.[1].

The density-of-states for an ensemble of many-particle states is obtained as the ensemble average
over the density-of-states functions calculated for the eigenstates of the many-particle Hamiltonian.

D(ϵ) =
∑
q

PqD
(q)(ϵ) (2.159)

where D(q) is the density of states obtained for the particular many-particle wave function |Ψq⟩.
For a non-interacting electron gas, the spectrum is the same for all many-particle states.
Therefore, the density of states is simply a sum of δ-functions on the eigenstates of the one-

particle Hamiltonian. In the Hartree-Fock approximation, the density-of-states is given by the eigen-
values of the Fock operator. Because the Fock operator depends on the particular Slater-determinant
chosen, the ensemble average needs to be performed.

The probability for the system to be in one of the many-particle states is

P|Φ⟩ =
1

Z
e−β(E|Φ⟩−µN|Φ⟩)

=
1

Z
×


1 for |Φ⟩ = |0⟩
e−β(ϵ̄−µ) for |Φ⟩ = | ↑⟩ or |Φ⟩ = | ↓⟩
e−β(2ϵ̄+U−2µ) for |Φ⟩ = | ↑↓⟩

Z =
∑

Φ∈{|0⟩,|↑⟩,|↓⟩,|↑,↓⟩}

e−β(E|Φ⟩−µN|Φ⟩)

= e−β(0−µ0) + e−β(ϵ̄−µ) + e−β(ϵ̄−µ) + e−β(2ϵ̄+U−2µ)

=
(
1 + e−β(ϵ̄−µ)

)2
+ e−β(2ϵ̄+U−2µ) − e−β(2ϵ̄−2µ)

=
(
1 + e−β(ϵ̄−µ)

)2
+ e−β(2ϵ̄−2µ)

(
e−βU − 1

)
(2.160)

The density of states is the weighted sum of the density of states obtained from the many-particle
states in the ensemble.

D↑(ϵ) = P|0⟩δ(ϵ− ϵ̄) + P|↑⟩δ(ϵ− ϵ̄) + P|↓⟩δ(ϵ− ϵ̄− U) + P|↑↓⟩δ(ϵ− ϵ̄− U)

=
(
P|0⟩ + P|↑⟩

)
δ(ϵ− ϵ̄) +

(
P|↓⟩ + P|↑↓⟩

)
δ(ϵ− ϵ̄− U)

D↓(ϵ) =
(
P|0⟩ + P|↓⟩

)
δ(ϵ− ϵ̄) +

(
P|↑⟩ + P|↑↓⟩

)
δ(ϵ− ϵ̄− U) (2.161)

See section ?? and in particular figure ?? on p. ??.

6 Compare the density of states of an ensemble of eigenstates of the hydrogen atom with the
mean-field Fock operator.

For an ensemble of eigenstates we superimpose the density of states of the individual many-particle
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states weighted with their probabilities. The density of states consists of peaks at ϵ̄ and at ϵ̄ + U.
While the energy-level positions are unchanged, the weights of the peaks in the density of states
depend on the specific ensemble.

For each orbital, there are contributions from both energies. These two energies can be interpreted
as upper and lower Hubbard band. This is the underlying mechanism for the physics of Mott
insulators.

In the mean-field solution, the position of the energy levels change with the ensemble

F̂mf
Eq. 2.154
=

∑
α∈{↑,↓}

|πα⟩
(
ϵ̄+ U

∑
γ

fγ − Ufα
)
⟨πα| (2.162)

Thus, the density of states has peaks at ϵ̄+UNe−Ufα, where Ne is the total number of electrons.
If the occupations are equal, the two orbitals are degenerate. If the occupations are different the two
energy levels are separated by U|f↑ − f↓|. The mean value of the two energy levels shift upward with
the particle number as UNe . The weights of the peaks are always equal to one. I.e. there is one
spin-up level and one spin-down level.

ε

A

N

N=0

N=2

N=1

N=0

N=2

N=1

+U ε +U

ε

εε

ε

Fig. 2.10: Schematic figure of the spectral function Atot(ϵ) = A↑(ϵ) + A↓(ϵ) of the Hubbard atom
for several values of the particle number N. The occupied states are shown in green, while the
unoccupied states are shown in yellow. On the left hand side, the spectral function from the mean-
field Hartree-Fock approximation is shown. On the right-hand side the correct spectral function is
shown. In the mean-field approximation the peaks have the same height, but their position adapts
to the number of electrons. In the correct spectrum, the position of the peaks is independent of the
number of electrons, but their weight adjusts.
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2.8.3 Two one-dimensional particles in a box

Introduction

One example, which allows one to demonstrate many-particle effects in a most simple way, are two
one-dimensional particles in a box. This system is mathematically identical to one two-dimensional
particle in a box. This problem allows one to work out and visualize many-particle effects in a
well known territory. The antisymmetry of the fermionic wave function is easily enforced and the
interaction between two one-dimensional particles is analogous to an external one-particle potential
for the two-dimensional particle. Then main interest is to work out the exchange hole, which will be
central to the description of the interaction energy.

Problem

Let me introduce the notation I will use to describe spin- 12 particles in one dimension. The position
along the box will be denoted by the scalar r . The box ranges from r = 0 to r = L. The combined
real-space-and-spin coordinate is x⃗ = (r, σ).

1. Calculate the electron density n(r) of the two electrons as function of the position in the box
of side length L. The exchange hole h(r, σ, r ′, σ′) is the difference between electron density
of the other electron(s), given that one electron is at position r and has the spin σ ∈ {↑, ↓}
and the total electron density. Consider first two electrons with the same spin. Then consider
electrons with opposite spin and discuss changes.

Plot the exchange hole,

• for an electron close to the boundary of the box and in the center of the box

• for two different sizes L of the box. (i.e. for different electron densities.

• Consider the case of two electrons with opposite spin. What are the differences?

Remark: I found it useful to work out the expressions for two abstract orbitals ϕa(x⃗) and ϕb(x⃗).
Then, I calculated the one-particle orbitals in order to insert them into the expressions obtained
previously. Finally, I used a plotting program.

2. Construct the two-particle wave function with lowest kinetic energy of two electrons with equal
spin in a box of side-length L.

3. Construct the two-particle density for the wave function with lowest kinetic energy of two
electrons with equal spin in a box of side-length L. Calculate the one-particle density. For
example, from the two-particle density.

4. Construct the exchange hole for the wave function with lowest kinetic energy of two electrons
with equal spin in a box of side-length L.

5. Calculate the density for the state with lowest energy for two electrons with opposite spin

6. Calculate the two-particle density for the state with lowest energy for two electrons with op-
posite spin

7. Calculate the exchange hole for the state with lowest energy for two electrons with opposite
spin
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x1

x2

Fig. 2.11: Scheme to represent the many-particle wave function of two spin-less one-dimensional
fermions in a box. Left: Many-particle wave function (Slater determinant) Φ(x1, x2). Right: wave
function Φ(x1, x2) for a three different fixed position x2 of the second particle (dashed). The filled
function is density of the first particle, while the second particle is at a fixed position x2. Notice,
the exchange hole. Editor: include also the total density so that the exchange hole
becomes evident.

Discussion

1. Calculate the electron density n(r) of the two electrons as function of the position in the box
of side length L. The exchange hole h(r, σ, r ′, σ′) is the difference between electron density
of the other electron(s), given that one electron is at position r and has the spin σ ∈ {↑, ↓}
and the total electron density. Consider first two electrons with the same spin. Then consider
electrons with opposite spin and discuss changes.

Plot the exchange hole,

• for an electron close to the boundary of the box and in the center of the box

• for two different sizes L of the box. (i.e. for different electron densities.

• Consider the case of two electrons with opposite spin. What are the differences?

Remark: I found it useful to work out the expressions for two abstract orbitals ϕa(x⃗) and ϕb(x⃗).
Then, I calculated the one-particle orbitals in order to insert them into the expressions obtained
previously. Finally, I used a plotting program.

2. Construct the two-particle wave function with lowest kinetic energy of two electrons with equal
spin in a box of side-length L.

Let me first construct the one-particle orbitals relevant for this case. We use the two one-particle
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orbitals with lowest kinetic energy, namely

ϕa(r, σ) =

√
2

L
sin(πr/L)δσ,↑

ϕb(r, σ) =

√
2

L
sin(2πr/L)δσ,↑ (2.163)

Notice that the spatial part of the two orbitals differs ϕa is node-less, while ϕb has one node in the
spatial wave function.

The Slater determinant formed by these orbitals is

Ψ(x⃗1, x⃗2) =
1√
2

(
ϕa(x⃗1)ϕb(x⃗2)− ϕb(x⃗1)ϕa(x⃗2)

)
=
1√
2

(√
2

L
sin(πr1/L)δσ1,↑

√
2

L
sin(2πr2/L)δσ2,↑ −

√
2

L
sin(2πr1/L)δσ1,↑

√
2

L
sin(πr2/L)δσ2,↑

)
(2.164)

Side remark: Chemists like to take the spatial and spin parts apart. With the one-particle orbitals

ϕa(r⃗ , σ) = f (r⃗)δσ↑

ϕb(r⃗ , σ) = g(r⃗)δσ,↑ (2.165)

one constructs a two-particle Slater determinant

Ψ(x⃗1, x⃗2) =
1√
2

(
φa(x⃗1)φb(x⃗2)− φb(x⃗1)φ1(x⃗2)

))
=
1√
2

(
f (r⃗1)g(r⃗2)δσ1,↑δσ2,↑ − g(r⃗1)f (r⃗2)δσ1,↑δσ2,↑

)
=
1√
2

(
f (r⃗1)g(r⃗2)− g(r⃗1)f (r⃗2)

)
︸ ︷︷ ︸

spatial part

(
δσ1,↑δσ2,↑

)
︸ ︷︷ ︸

spin part

(2.166)

One notices that the spin part by itself is symmetric under particle exchange and that the spatial part
by itself is antisymmetric under particle exchange. For particle with opposite spin, the spatial part is
symmetric and the spin-part is antisymmetric.

3. Construct the two-particle density for the wave function with lowest kinetic energy of two
electrons with equal spin in a box of side-length L. Calculate the one-particle density. For
example, from the two-particle density.

The two-particle density is obtained as the square of the wave function

n(2)(r⃗ , r⃗ ′)
Eq. 2.46
= 2︸︷︷︸

N(N−1)

⟨Ψ|
(∫

d4x1

∫
d4x2

∣∣x⃗1, x⃗2〉δ(r⃗ − r⃗1)δ(r⃗ ′ − r⃗2)〈x⃗1, x⃗2∣∣)|Ψ⟩
= 2

∫
d4x1

∫
d4x2 δ(r⃗ − r⃗1)δ(r⃗ ′ − r⃗2)

〈
Ψ
∣∣x⃗1, x⃗2〉〈x⃗1, x⃗2∣∣Ψ〉

= 2
∑
σ1,σ2

∣∣∣〈r⃗ , σ1, r⃗ ′, σ2∣∣Ψ〉∣∣∣2 (2.167)

This expression is valid for three dimensional position space. To go to the one-dimensional case, I
use the scalar quantity r as the one-dimensional position and the two-dimensional x⃗ = (r, σ) as the
composite real-space-and-spin coordinate.
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n(2)(r, r ′)
Eq. 2.167
= 2︸︷︷︸

N(N−1)

∑
σ1,σ2

[
1√
2

(
2

L
sin(πr/L) sin(2πr ′/L)−

2

L
sin(2πr/L) sin(πr ′/L)

)
δσ1,↑δσ2,↑

]2

= 2︸︷︷︸
N(N−1)

[
1√
2

(
2

L
sin(πr/L) sin(2πr ′/L)−

2

L
sin(2πr/L) sin(πr ′/L)

)]2∑
σ1,σ2

δσ1,↑δσ2,↑︸ ︷︷ ︸
=1

=
4

L2
(sin(πr/L) sin(2πr ′/L)− sin(2πr/L) sin(πr ′/L))2 (2.168)

The density is obtained by integrating over all positions of the second particle.

n(r⃗) =

∫
d3r ′ n(2)(r⃗ , r⃗ ′) =

2

L
sin2(πr/L) +

2

L
sin2(2πr/L) (2.169)

I exploited the orthogonality of the spatial parts of the one-particle orbitals. The orthonormality can
be seen from the symmetry properties. One orbital is symmetric under reflection at the box-center,
while the other is antisymmetric.

4. Construct the exchange hole for the wave function with lowest kinetic energy of two electrons
with equal spin in a box of side-length L.

h(r⃗ , r⃗ ′) =
1

n(1)(r⃗)

(
n(2)(r⃗ , r⃗ ′)− n(1)(r⃗)n(1)(r⃗ ′)

)
(2.170)

n(2):Eq. 2.168

h(r, r ′) =
1

2
L sin

2(πr/L) + 2
L sin

2(2πr/L)︸ ︷︷ ︸
1/n(r)

×
(
4

L2

[
sin(πr/L) sin(2πr ′/L)− sin(2πr/L) sin(πr ′/L)

]2
︸ ︷︷ ︸

n(2)(r,r ′)

−
[
2

L
sin2(πr/L) +

2

L
sin2(2πr/L)

]
︸ ︷︷ ︸

n(r)

[
2

L
sin2(πr ′/L) +

2

L
sin2(2πr ′/L)

]
︸ ︷︷ ︸

n(r ′)

)

=
1

2
L sin

2(πr/L) + 2
L sin

2(2πr/L)︸ ︷︷ ︸
1/n(r)

×
(
4

L2

[
sin(πr/L) sin(2πr ′/L)− sin(2πr/L) sin(πr ′/L)

]2
︸ ︷︷ ︸

n(2)(r,r ′)

−
[
2

L
sin2(πr/L) +

2

L
sin2(2πr/L)

]
︸ ︷︷ ︸

n(r)

[
2

L
sin2(πr ′/L) +

2

L
sin2(2πr ′/L)

]
︸ ︷︷ ︸

n(r ′)

)
(2.171)

The hole for different positions of the reference electron is shown in figure 2.12.

5. Calculate the density for the state with lowest energy for two electrons with opposite spin



104 2 WEAKLY INTERACTING ELECTRONS

For two electrons with opposite spin the two-particle wave function is

Ψ(x1, σ1, x2, σ2) =
1√
2

[√
2

L
sin(πx1/L)δσ1,↑︸ ︷︷ ︸
ϕa(x1,σ1)

√
2

L
sin(πx2/L)δσ2,↓︸ ︷︷ ︸
ϕb(x2,σ2)

−
√
2

L
sin(πx1/L)δσ1,↓︸ ︷︷ ︸
ϕb(x1,σ1)

√
2

L
sin(πx2/L)δσ2,↑︸ ︷︷ ︸
ϕa(x2,σ2)

]

=
2

L
sin(πx1/L) sin(πx2/L)

1√
2

(
δσ1,↑δσ2,↓ − δσ1,↓δσ2,↑

)
(2.172)

The density can directly be evaluated using Eq. 2.15 by summing over the densities of the one-
particle orbitals, because the precondition that the two one-particle orbitals are orthonormal is satis-
fied. The orthogonality is shown as follows:

⟨ϕa|ϕb⟩ =
∑
σ

∫
d3r

(√
2

L
sin(πx/L)δσ,↑

)(√
2

L
sin(πx/L)δσ,↓

)
= 0 (2.173)

because δσ,↑δσ,↓ = 0 for all σ.
I now insert the orbitals into Eq. 2.15

n(r⃗) =
∑

α∈{a,b}

∑
σ∈{↑,↓}

|ϕα(r⃗ , σ)|2 (2.174)

6. Calculate the two-particle density for the state with lowest energy for two electrons with op-
posite spin

The two-particle density is obtained as the square of the wave function

n(2)(r⃗ , r⃗ ′)
Eq. 2.46
= 2︸︷︷︸

N(N−1)

⟨Ψ|
(∫

d4x1

∫
d4x2

∣∣x⃗1, x⃗2〉δ(r⃗ − r⃗1)δ(r⃗ ′ − r⃗2)〈x⃗1, x⃗2∣∣)|Ψ⟩
= 2

∫
d4x1

∫
d4x2 δ(r⃗ − r⃗1)δ(r⃗ ′ − r⃗2)

〈
Ψ
∣∣x⃗1, x⃗2〉〈x⃗1, x⃗2∣∣Ψ〉

= 2
∑
σ1,σ2

∣∣∣〈r⃗ , σ1, r⃗ ′, σ2∣∣Ψ〉∣∣∣2 (2.175)

This expression is valid for three dimensional position space. To go to the one-dimensional case, I
use the scalar quantity r as the one-dimensional position and the two-dimensional x⃗ = (r, σ) as the
composite real-space-and-spin coordinate.

n(2)(r, r ′)
Eq. 2.46
= 2︸︷︷︸

N(N−1)

∑
σ1,σ2

(
2

L
sin(πr1/L) sin(πr2/L)

1√
2

(
δσ1,↑δσ2,↓ − δσ1,↓δσ2,↑

))2
= 2

4

L2
sin2(πr1/L) sin

2(πr2/L)
∑
σ1,σ2

1

2

(
δσ1,↑δσ2,↓ − δσ1,↓δσ2,↑

)2
︸ ︷︷ ︸

=1

= 2
2

L
sin2(πr/L)︸ ︷︷ ︸
n1(r)

2

L
sin2(πr2/L)︸ ︷︷ ︸

n2(r)

(2.176)

The density is obtained by integrating over all positions of the second particle.

n(r⃗) =

∫
d3r ′ n(2)(r⃗ , r⃗ ′) = 2 ·

2

L
sin2(πr/L) (2.177)
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7. Calculate the exchange hole for the state with lowest energy for two electrons with opposite
spin

The exchange-correlation hole is the difference of the total density n(r⃗ ′) and the density, in this
case n(2)(r⃗ , r⃗ ′) of the remaining particles, given that the first is at a specific position r⃗

hxc(r⃗ , r⃗ ′)
Eq. 2.49
=

1

n(r⃗)

(
n(2)(r⃗ , r⃗ ′)− n(r⃗)n(r⃗ ′)

)
(2.178)

h(r, r ′)
Eq. 2.176
=

2

L
sin2(πr ′/L)− 2 ·

2

L
sin2(πr/L)︸ ︷︷ ︸
n(r ′)

= −
2

L
sin2(πr ′/L) = −

1

2
n(r ′) (2.179)

Observations:

• Noticeable is the behavior of the hole for the opposite-spin wave function as the reference
electron approaches one of the boundaries. The hole is not centered on the reference electron
but displaced inside the box. This is because the density of the other electron must not be
negative and thus the hole cannot exceed the density in absolute value. The hole must be,
where the electrons are. The shape of the hole is governed by the electron density and thus
remains unchanged until the reference electron moves sufficiently far into the box.

• The spin part of the wave function of the wave function for opposite spin electrons is that of
a singlet term. One easily makes the mistake assuming that one has a singlet, whenever an
↑ orbital is combined with a ↓ orbital. This, however, only says that Sz = 0. It can still be a
triplet 1√

2
(δσ1,↑δσ2,↓ + δσ1,↓δσ2,↑) with S2 = ℏ2S(S + 1) = 2ℏ2 and the spin perpendicular to

the z axis. A simple product δσ1,↑δσ2,↓ is not a spin eigenstate, i.e. an eigenstate of Ŝ2, but a
superposition of a singlet and a triplet state.

• The spatial wave function is symmetric under exchange of the two positions. If one forms a
Slater determinant of two opposite-spin orbitals with different spatial parts, the result is not a
spin eigenstate, but a superposition of a singlet and a triplet state. This is shown as follows.

ψ(x1, σ1, x2, σ2) =
1√
2

(
f (x1)δσ1,↑g(x2)δσ2,↓ − g(x1)δσ1,↓f (x2)δσ2,↑

)
=
1

2

{(
f (x1)g(x2) + g(x1)f (x2)

) 1√
2

(
δσ1,↑δσ2,↓ − δσ1,↓δσ2,↑

)
+
(
f (x1)g(x2)− g(x1)f (x2)

) 1√
2

(
δσ1,↑δσ2,↓ + δσ1,↓δσ2,↑

)}
(2.180)

A spatial part of a singlet wave function is always symmetric under particle exchange, while
that of a triplet wave function is antisymmetric under particle exchange.

• Unlike two electrons with equal spin, electrons with opposite spin do not go out of each other’s
way. The exchange hole is equal in absolute value to the density of the corresponding one-
particle orbital.
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2.8.4 Two fermions in a 1d-box

Introduction and background

The goal of this exercise is to provide an understanding of many-particle wave functions and of
identical particles. This exercise will also show the underlying reasons why non-interacting electrons
are often a good model to describe interacting electrons despite their strong interaction and the
breakdown of a perturbation theory.

Consider two non-interacting spin-less particles in a 1-dimensional box with side-length L. This
problem is analogous to a single particle in a two-dimensional box, which can be solved analytically.
The symmetry under permutation of particles, which defines fermions and bosons, is translated into
a simple geometrical mirror symmetry.

To investigate the role of interactions, I introduce a hard-core repulsion of extent s

W (x, x ′) =

{
W0 for |x − x ′| < s

0 for |x − x ′| ≥ s
(2.181)

in the limit W0 →∞.
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Tasks

1 Determine the wave functions and energy eigenvalues for a particle with mass m in a N-
dimensional square box with side-length L.

2 Use the result from the previous question to determine the wave functions and the spectrum
for N distinguishable particles in a one-dimensional box. Notice that the wave functions are
single product wave functions formed from one-particle wave functions.

3 Discuss under the guidance of the tutor the following puzzles: (1) What is the wave function
of a zero particle state? (2) What is the scalar product of two states with different particle
numbers.

4 The real-space basis functions for two particles is {|x1, x2⟩}, where x1, x2 denote the two coor-
dinates of the particles.

⟨x1, x2|x ′1, x ′2⟩ = δ(x1 − x ′1)δ(x2 − x ′2)

1̂ =

∫
dx1

∫
dx2 |x1, x2⟩⟨x1, x2| (2.182)

The particle-permutation operator for two one-dimensional particles is

P̂1,2 =

∫
dx1

∫
dx2 |x2, x1⟩⟨x1, x2| (2.183)

Show that the particle-permutation operator is unitary. Determine the eigenvalues and eigen-
states of the particle-permutation operator.

5 Determine the wave functions and spectra for two fermions in a 1-d box and for two bosons.
Show that bosonic and fermionic wave functions span the complete Hilbert space. (There
are no other types of identical particles.) From the multiplicity of the states, respectively
the spectra argue, why two identical fermions cannot be in one orbital (Pauli principle) and
why bosons are preferably in the same orbital. That is, show that the probability to find two
particles in the same orbital is higher for bosons than for distinguishable particles. (Bunching
and anti-bunching.)

6 The wave functions for two particles with a hard-core interaction can be expressed in terms of
the wave function of two non-interacting fermionic wave functions with side-length L−s, where
s is the range of the interaction. In the case of an interaction the wave functions are zero in a
strip of width s along the main diagonal x1 = x2. Such wave functions can be constructed by
dividing the non-interacting wave function at the node-line, and by separating the two pieces
out of the interaction region.

• Sketch the interaction in the two-dimensional box

• Use this principle to construct the exact fermionic and bosonic wave functions for the
hard-core interaction.

• Determine the eigenvalue spectrum for fermions and for bosons.

• Estimate the eigenvalue spectrum using first-order perturbation theory in the interaction.
(Use approximations)
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Solution

1 Determine the wave functions and energy eigenvalues for a particle with mass m in a N-
dimensional square box with side-length L.

1. Particle in a one-dimensional box

ϕ(1)n (x) =

√
2

L
sin
(nπ
L
x
)

The energy of this state is

ϵn =
ℏ2π2

2meL2
n2

2E

1E

3E

k

E

zero−point energy
trivial solution ϕ=0

2. Particle in a two-dimensional box The two-dimensional box with side-length L covers the
area [0, L]× [0, L].

The wave functions for a particle in a 2-dimensional box are of the form

ϕn,m(x, y) = ϕn(x)ϕm(y) =
2

L
sin
(nπ
L
x
)
sin
(mπ
L
y
)

(2.184)

The energy of such a state is due to the kinetic energy. It is

En,m = ϵn + ϵm =
ℏ2π2

2meL2
(n2 +m2) (2.185)

3. Particle in a N-dimensional box

ϕn1,n2,...,nN (x1, x2, . . . , xN) =

N∏
j=1

ϕnj (xj) =

(
2

L

) N
2
N∏
j=1

sin
(njπ
L
xj

)

En1,n2,...,nN =

N∑
j=1

ϵj =
ℏ2π2

2meL2

N∑
j=1

n2j
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2 Use the result from the previous question to determine the wave functions and the spectrum
for N distinguishable particles in a one-dimensional box. Notice that the wave functions are
single product wave functions formed from one-particle wave functions.

The Schrödinger equation for a one-dimensional particle in a N-dimensional box is identical to that
for N particles in a one-dimensional box. Thus, the wave functions and energy levels are equivalent.

ϕn1,n2,...,nN (x1, x2, . . . , xN)
Eq. 2.186
=

N∏
j=1

ϕnj (xj) =

(
2

L

) N
2
N∏
j=1

sin
(njπ
L
xj

)
(2.186)

En1,n2,...,nN =

N∑
j=1

ϵj
Eq. 2.186
=

ℏ2π2

2meL2

N∑
j=1

n2j (2.187)

3 Discuss under the guidance of the tutor the following puzzles: (1) What is the wave function
of a zero particle state? (2) What is the scalar product of two states with different particle
numbers.

There is no zero-particle wave function, because it would not have any arguments. The zero-particle
state, however, has a phase. Therefore, the zero particle state is a complex number.

A common mistake is to describe the zero particle state as a function of some particle coordinates,
albeit with constant value. This mistake happens usually when trying to add a zero particle state and
a one-particle state. The result cannot be simplified to a single function.

The scalar product of two states with different particle numbers can not be formed in real space,
because the two functions have different numbers of arguments.

One can form the integral of two functions with different number of arguments such as f (x⃗) =∫
d4x ′ φ(x⃗ ′)ψ(x⃗ , x⃗ ′, which is a function of the additional argument. Such a construction will occur

later in the context of quasi-particle wave functions. This is, however, not the scalar product. The
scalar product ⟨φ|ψ⟩ = 0 of this example would be zero.

The scalar product can be given in the Fock space, because then the particle number is not a
parameter but an observable represented by a hermitian operator. Since eigenstates of a hermitian
operator to different eigenvalues are orthogonal, the scalar product of states with different particle
numbers is zero.

4 The real-space basis functions for two particles is {|x1, x2⟩}, where x1, x2 denote the two coor-
dinates of the particles.

⟨x1, x2|x ′1, x ′2⟩ = δ(x1 − x ′1)δ(x2 − x ′2)

1̂ =

∫
dx1

∫
dx2 |x1, x2⟩⟨x1, x2| (2.188)

The particle-permutation operator for two one-dimensional particles is

P̂1,2 =

∫
dx1

∫
dx2 |x2, x1⟩⟨x1, x2| (2.189)

Show that the particle-permutation operator is unitary. Determine the eigenvalues and eigen-
states of the particle-permutation operator.

1. Show that the particle permutation operator is unitary: The permutation operator is

P̂12 =

∫
dx1

∫
dx2 |x2, x1⟩⟨x1, x2| (2.190)
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This implies for wave functions

|Ψ′⟩ def
= P̂12|Ψ⟩

Ψ′(x1, x2) = ⟨x1, x2|P̂12|Ψ⟩ = ⟨x2, x1|Ψ⟩ = Ψ(x2, x1) (2.191)

An operator is unitary, if its adjoint is its inverse. That is, it is unitary if P̂ P̂ † = 1̂.

The adjoint can be obtained by exchanging bra’s and kets.

P̂ †12 =

∫
dx1

∫
dx2 |x1, x2⟩⟨x2, x1| (2.192)

The equation above also shows that the permutation operator is furthermore hermitian, i.e.

P̂ †12 = P̂12 (2.193)

Now we can show that particle permutation operator is unitary

P̂12P̂
†
12

?
= 1

P̂12P̂
†
12 =

∫
dx1

∫
dx2 |x2, x1⟩⟨x1, x2|︸ ︷︷ ︸

P̂12

∫
dx ′1

∫
dx ′2 |x ′1, x ′2⟩⟨x ′2, x ′1|︸ ︷︷ ︸

P̂ †12

=

∫
dx1

∫
dx2

∫
dx ′1

∫
dx ′2 |x2, x1⟩ ⟨x1, x2|x ′1, x ′2⟩︸ ︷︷ ︸

δ(x1−x ′1)δ(x2−x ′2)

⟨x ′2, x ′1|

=

∫
dx1

∫
dx2 |x2, x1⟩⟨x2, x1| = 1̂ q.e.d (2.194)

Thus, the permutation operator is unitary.

2. Eigenvalues of the permutation operator: As shown above, the permutation operator is unitary
and hermitian. Hence, the permutation operator is cyclic P̂ 212 = P̂12P̂

†
12 = 1̂.

Because P̂ 212 = 1, the eigenvalues of P̂12 are +1 and −1.

3. Eigenstates of the permutation operator:

• The eigenstates |ΨB⟩ for eigenvalue +1 are bosonic states

|ΨB⟩ Eq. 1.89
= |ΨD⟩+ P̂12|ΨD⟩

ΨB(x1, x2) = ΨD(x1, x2) + Ψ
D(x2, x1) (2.195)

where ΨD(x1, x2) is an arbitrary wave function (for two distinguishable (D) particles). The
resulting state is not normalized. It can occur that symmetrized wave function vanishes.
(This occurs when Ψ is antisymmetric.)

• The eigenstates ΨF for eigenvalue −1 are fermionic states

|ΨF ⟩ = |ΨD⟩ − P̂12|ΨD⟩
ΨF (x1, x2) = Ψ

D(x1, x2)−ΨD(x2, x1) (2.196)

where ΨD(x1, x2) is an arbitrary wave function (for two distinguishable particles). The re-
sulting state is not normalized. It can occur that antisymmetrized wave function vanishes.
(This occurs when Ψ is symmetric.)
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5 Determine the wave functions and spectra for two fermions in a 1-d box and for two bosons.
Show that bosonic and fermionic wave functions span the complete Hilbert space. (There
are no other types of identical particles.) From the multiplicity of the states, respectively
the spectra argue, why two identical fermions cannot be in one orbital (Pauli principle) and
why bosons are preferably in the same orbital. That is, show that the probability to find two
particles in the same orbital is higher for bosons than for distinguishable particles. (Bunching
and anti-bunching.)

1. Construct the fermionic (anti symmetric) and bosonic (symmetric) eigenstates of the
Hamiltonian

Fermions:

|ΨFn,m⟩ =
1√
2

(
|ΨDn,m⟩ − P̂12|ΨDn,m⟩

)
ψFn,m(x, y) =

√
2

L

(
sin
(nπ
L
x
)
sin
(mπ
L
y
)
− sin

(mπ
L
x
)
sin
(nπ
L
y
))

for n > m

(2.197)

If a fermionic two-particle wave function |Ψnm⟩ is constructed from two one-particle states
|ϕn⟩, |Ψn,m⟩ is a Slater determinant.

ΨFn,m(x, y) =

√
2

L
det

∣∣∣∣∣ sin
(
nπ
L x
)
; sin

(
mπ
L x
)

sin
(
nπ
L y
)
; sin

(
mπ
L y
) ∣∣∣∣∣ (2.198)

We find that the wave function with two electrons in the same orbital vanishes, |ΨFn,n⟩ = |∅⟩,
which says that there is no fermionic state with two identical fermions in the same one-particle
state. This is one consequence of the Pauli principle.

We find |ΨFn,m⟩ = −|ΨFm,n⟩. Interchanging the quantum numbers of a fermionic state does not
produce a new state.

The energies are

En,m =

2∑
j=1

ϵj =
ℏ2π2

2meL2
(n2 +m2) for n > m (2.199)

Note that the states with n < m are, up to a phase factor identical to the one with exchanged
quantum numbers. States with two equal quantum numbers are zero states and therefore
excluded from the sum. This indicates that fermions try to stay away from each other (anti
bunching).

Bosons:

|ψBn,m⟩ =

{
|ψDn,n⟩ for n = m
1√
2

(
|ΨDn,m⟩+ P̂12|ΨDn,m⟩

)
for m < n

ψBn,m(x, y) =


2
L sin

(
nπ
L x
)
sin
(
nπ
L y
)

for n = m
√
2
L

(
sin
(
nπ
L x
)
sin
(
mπ
L y
)
+ sin

(
mπ
L x
)
sin
(
nπ
L y
))

for m < n

(2.200)
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x
1

x
2

Fig. 2.12: Ground state wave function of two spin-less fermions in a 1d-box. The coordinates of
the two electrons are x1 and x2. (Note, that x does not refer to the combined position-and-spin
representation.) The colors indicate the sign of the wave function. On the right, the density (filled
area) and wave function (dashed line) of the first electron is shown for specific frozen positions of
the second electron.

The energies are

En,m =

2∑
j=1

ϵj =
ℏ2π2

2meL2
(n2 +m2) for m ≤ n (2.201)

Note here, that the states with equal quantum numbers are present. Per state with unequal
quantum numbers, there are twice as many states with equal quantum numbers as in the case
of distinguishable particles. This is an indication that bosons prefer to be next to each other
(bunching).

2. Show that, for two-particle systems, bosonic and fermionic wave functions span the com-
plete Hilbert space for distinguishable particles. Observe that the bosonic and fermionic
wave basis functions taken together again span the complete two-particle Hilbert space. Com-
pare the energy spectrum and degeneracies for fermionic and bosonic wave functions separately.

|ΨDn,m⟩ =

{
1√
2

(
|ΨFn,m⟩+ |ΨBn,m⟩

)
for m ̸= n

|ΨBn,m⟩ for m = n
(2.202)

Remark: bosonic and fermionic wave functions do however not span the complete space
for distinguishable particles for three or more particles. Let me demonstrate that for three
particles. The group of permutations can be generated from two permutations P1,2 and P2,3.
The permutation P1,3 = P1,2P2,3P1,2 can be expressed in terms of the other two permutations.
Editor: This needs to be expanded?
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6 The wave functions for two particles with a hard-core interaction can be expressed in terms of
the wave function of two non-interacting fermionic wave functions with side-length L−s, where
s is the range of the interaction. In the case of an interaction the wave functions are zero in a
strip of width s along the main diagonal x1 = x2. Such wave functions can be constructed by
dividing the non-interacting wave function at the node-line, and by separating the two pieces
out of the interaction region.

• Sketch the interaction in the two-dimensional box

• Use this principle to construct the exact fermionic and bosonic wave functions for the
hard-core interaction.

• Determine the eigenvalue spectrum for fermions and for bosons.

• Estimate the eigenvalue spectrum using first-order perturbation theory in the interaction.
(Use approximations)

Firstly, we introduce a mapping which cuts space in the main diagonal and shifts the two halfs apart
by s.

Two particles at x1 and x2 interact if |x2 − x1| < s.
The wave function in the interaction region i.e. for |x2 − x1| vanishes. At the boundary of the

interaction region, the wave function vanishes just like the fermionic wave function vanishes at the
node-line x1 = x2.

2

Ls0
0

s

L

0
L−s0

L−s

L−s

x
1

x

The wave function |ΨL,W ⟩ of the interacting system in a box of length L can be obtained from
that |ΨL−s,0⟩ of the non-interacting system with a smaller box-length L− s.

ΨL,W (x1, x2) = Ψ
L−s,0(x ′1, x

′
2) (2.203)

where the mapping from (x1, x2) to (x ′1, x
′
2) is described below.

“Above” the interaction region, i.e. for x2 > x1 + s, I need to look up(
x ′1
x ′2

)
=

(
x1

x2

)
− s

(
0

1

)
(2.204)

and “below” the interaction region i.e. for x2 < x1 − s, I need to look up(
x ′1
x ′2

)
=

(
x1

x2

)
− s

(
1

0

)
(2.205)
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This maps the points at the boundaries of the interaction region onto the node plane of the non-
interacting system.

The non-interacting fermions in the box, which has been shrunk by the range of the interaction is

ΨL−s,0n,m (x1, x2) =

√
2

L− s

(
sin

(
nπ

L− s x1
)
sin

(
mπ

L− s x2
)
− sin

(
mπ

L− s x1
)
sin

(
nπ

L− s x2
))

(2.206)

where 0 < x1/2 < L− s.
The interacting fermionic wave function is

ΨW (x1, x2) =


Ψ0(x1, x2 − s) for x2 > x1 + s

0 for x1 − s < x2 < x1 + s

Ψ0(x1 − s, x2) for x2 < x1 − s
(2.207)

with m > n and the energies are

EL,Wm,n = E
L−s,0
m,n =

ℏ2π2

2me(L− s)
(n2 +m2) (2.208)

We see that the energies of the interacting system are obtained from those of the non-interacting
system by

EL,Wm,n =
L

L− s E
L,0
m,n =

1

1− s
L

EL,0m,n

⇒ EL,Wm,n − EL,0m,n ≈
s

L
EL,0m,n (2.209)

This shows that the energy increases strongly with the density of the system. A very dilute system
has a small collision probability and therefore the energy increase is negligible.

Interestingly there is a one-to-one correspondence between bosonic and fermionic eigenstates of
the system in the limit of a hard-core repulsion. The energies are identical and the wave function is
identical, except that there is no sign change under particle permutation of two bosons.

Gnuplot example

Fig. 2.12 has been drawn by graphical tool Gnuplot. Here, a small script is provided for gnuplot. Sim-
ply paste it into a file ’boxtwopartcle.gnu’ and run the command ’gnuplot boxtwopartcle.gnu’

#Set terminal postscript
#set output "boxtwoparticle.eps"
set terminal png
set output "boxtwoparticle.png"
#set terminal latex
#set terminal fig
#set output "boxtwoparticle.fig"
#set size 1.0,1.0
set size ratio 1.0
set nokey
set contour
set view 30, 20
#set view 0, 0
set contour surface
set hidden3d
set isosamples 40, 40
set ticslevel -0.5
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#unset surface
unset xtics
unset ytics
unset ztics
set cntrparam cubicspline
set cntrparam levels auto 20
splot[0:1][0:1](-sin(x*pi)*sin(2*y*pi)+sin(2*x*pi)*sin(y*pi))
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2.8.5 Toy model for the exchange-correlation hole

Introduction

In this section, I will exploit only the two, probably most important properties of the exchange-
correlation hole, to construct an extremely simple toy model for the exchange-correlation hole. De-
spite its simplicity, one can already rationalize a few physical effects. We will demonstrate, how
solid-state magnetism can be understood in these terms.

The exchange-correlation hole of this model is a homogeneously charged sphere.

hxc(r⃗ , r⃗ ′) =

on-top value︷ ︸︸ ︷
hX(r⃗ , r⃗) θ

(
R − |r⃗ ′ − r⃗ |

)
(2.210)

where θ(x) is the Heaviside function and R is the sphere radius. Consult the figure 2.13 on p. 116.

(r0)=φ−e

φ(r)−e

h(r,r0)
r0

4 0πε
e2

n(r0)2π

g (r,r0)
n(r)

r

r

r

33
34

Fig. 2.13: Sketch of the construction of a simple model-density functional.

45

The charge on the sphere is determined from the charge sum rule Eq. 2.51. The size of the
sphere is then obtained using the on-top value46 of the exchange hole of the free-electron gas.
editor: The following sentence is not clear This on-top value is obtained from the notion that
the electrons with two spin directions behave like independent particles. The extension of the on-top
value of the exchange hole to correlation can be found in the literature[31]

Working out the interaction energy then becomes a simple exercise of electrodynamics. This
approximate interaction energy can then be combined with the kinetic energy of the free-electron
gas, which we evaluated in a prior exercise, section 1.5.5 on p. 41. This will allow us to analyze, in
this approximate model, how the electron gas will turn, at low density, into a ferromagnet.

Editor: Show the comparison of the exchange-correlation energy of the toy model
with exact Hartree-Fock and quantum Monte Carlo calculations of the polarized and
non-spinpolarized electron gas.

Editor: Compare the exact exchange hole of the free-electron gas as function of
radius with the toy model. See figure E.2 on p.452.

45The first argument of hX(r⃗ , r⃗ ′) is the position of the spectator electron, which experiences the Coulomb potential
of the exchange hole. The second argument is value at which the hole-density is evaluated.

46The on-top value of the exchange hole is the value hX(r⃗ , r⃗) of the exchange hole right at the position of the
“spectator electron”.
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On-top value of the exchange hole

We will also need the on-top value hX(r⃗ , r⃗) of the exchange hole. The on-top value is the value of
the hole hx(r⃗ , r⃗) right at the position of the spectator electron, i.e. for r⃗ = r⃗ ′.

While the discussion of the exchange-correlation hole has been completely general so far, we can
calculate the on-top value only for the exchange hole. The extension to correlation can be found in
the literature[31]

The two-particle density n(2) of a Slater determinant is obtained analogously to the exchange
energy EX obtained in Eq. 2.40.

n(2)(r⃗ , r⃗ ′) = n(1)(r⃗)n(1)(r⃗ ′)−
∑
σ,σ′

ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗) (2.211)

The corresponding hole density is

hX(r⃗ , r⃗ ′) = −
1

n(1)(r⃗)

∑
σ,σ′∈{↑,↓}

ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗) (2.212)

The subscript X shall denote that this expression only considers the exchange contribution and ignores
the correlation contribution.

The on-top value of the exchange hole is the hole for r⃗ = r⃗ ′.

hX(r⃗ , r⃗) = −
1

n(1)(r⃗)

∑
σ,σ′∈{↑,↓}

ρ(1)(r⃗ , σ, r⃗ , σ′)ρ(1)(r⃗ , σ′, r⃗ , σ) (2.213)

The on-top value of the one-particle-reduced density matrix can be expressed in terms of total
density nt , i.e. n(1), and spin density n⃗S(r⃗) and the Pauli matrices in the two-dimensional spin space
as47

ρ(1)(r⃗ , σ, r⃗ , σ′) =̂
1

2

[
nt(r⃗)

(
1 0

0 1

)
︸ ︷︷ ︸
111

+nS,x(r⃗)

(
0 1

1 0

)
︸ ︷︷ ︸
σx

+nS,y (r⃗)

(
0 −i
i 0

)
︸ ︷︷ ︸

σy

+nS,z(r⃗)

(
1 0

0 −1

)
︸ ︷︷ ︸

σz

]

=
1

2

(
nt + nS,z nS,x − inS,y
nS,x + inS,y nt − nS,z

)
(2.215)

I will use the identity

A
def
= a0111 + a⃗σ⃗=̂

(
a0 + az ax − iay
ax + iay a0 − az

)
with a0 ∈ R, a⃗ ∈ R3

⇒
∑
σ,σ′

Aσ,σ′Aσ′,σ
A=A†
=

∑
σ,σ′

|Aσ,σ′ |2 = 2(a20 + a⃗ 2) (2.216)

and apply it to Eq. 2.213 with the one-particle-reduced density matrix ρ(1) from Eq. 2.215.

47In order to verify the factors, consider a spin density, which is fully polarized in z-direction. In that case nS,z =
n↑ − n↓ = nt . The corresponding density matrix evaluated with Eq. 2.215 is

ρ(1)(r⃗ , σ, r⃗ , σ′) =

(
nt(r⃗) 0

0 0

)
(2.214)

which is the anticipated result.
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ON-TOP VALUE OF THE EXCHANGE HOLE

hX(r⃗ , r⃗) = −
1

nt(r⃗)

1

2

((
nt(r⃗)

)2
+
(
n⃗s(r⃗)

)2)
= −nt(r⃗)

[
1

2
+
1

2

(
n⃗S(r⃗)

nt(r⃗)

)2]
(2.217)

The on-top value of the exchange hole varies between half the density, for a non-spin polarized system,
and once the density for a fully spin-polarized system.

The significance of this result is the dependence on the spin density. When, for a given total
density, the spin density is increased, the hole becomes more compact. Because the hole is now closer
to the reference electron, the energy is lowered. Hence, the exchange term favors spin polarization.
This is the origin of magnetism in solid materials.

Problem:

1 Determine the size of the exchange correlation hole

2 Using the on-top value Eq. 2.217 to construct the exchange correlation hole as function of the
electron density and the spin density.

3 Combine the approximate exchange energy with the kinetic energy to determine the total energy
as function of electron density and spin density. Estimate the energy difference between an
electron gas in the paramagnetic and the ferromagnetic state. Estimate the electron density
where the transition occurs. Estimate the electron density for real materials considering only
the valence electrons.

? Editor: Sketch only: Estimate the entropy of the electron gas to estimate
the Curie temperature of a free-electron gas.

Solution

1 Determine the size of the exchange correlation hole

The density value is obtained from the on-top value Eq. 2.217 for a Slater determinant and the
radius is obtained from the sum rule Eq. 2.51. This yields

on-top value Eq. 2.217︷ ︸︸ ︷
−nt(r⃗)

[
1

2
+
1

2

(
n⃗S(r⃗)

nt(r⃗)

)2]
·
4π

3
R3 = −1 ⇒ R =

3

√
3

4π

[
1

2
+
1

2

(
n⃗S(r⃗)

nt(r⃗)

)2]− 1
3

[nt(r⃗)]
− 1
3

(2.218)

2 Using the on-top value Eq. 2.217 to construct the exchange correlation hole as function of the
electron density and the spin density.

Next, we evaluate the exchange energy
The interaction of an electron with its exchange correlation hole is the electrostatic potential of the

hole multiplied with the charge of the electron.48 Integration over all electrons, yields the exchange-
48The potential acting on electrons of a homogeneously charged sphere with charge +e and radius R is

v(|r⃗ |) = −
e2

4πϵ0R

{
3
2
− 1
2

(
r
R

)2 for |r⃗ | < R(
r
R

)−1 for |r⃗ | > R
(2.219)
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correlation (here only the exchange energy) energy. In contrast to the exchange-correlation energy,
the exchange energy does not have a kinetic energy contribution, so that the exchange energy EX
has only a potential energy contribution UX .

EX
Eq. 2.50
=

∫
d3r n(1)(r⃗)

1

2

∫
d3r ′

e2hX(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

=
1

2

e2

4πϵ0

∫
d3r n(1)(r⃗)

−3
2R

Eq. 2.218
= −

1

2

e2

4πϵ0

3

2

∫
d3r n(1)(r⃗)

{
3

√
3

4π

[
1

2
+
1

2

(
n⃗S(r⃗)

nt(r⃗)

)2]− 1
3 [
n(1)(r⃗)

]− 1
3

}−1
= −

1

2

e2

4πϵ0

3

2
3

√
4π

3

∫
d3r

(
n(1)(r⃗)

) 4
3

[
1

2
+
1

2

(
n⃗S(r⃗)

nt(r⃗)

)2]+ 1
3

(2.220)

Despite its simplicity, the model captures many features of the real system. This is because it correctly
captures the charge sum rule Eq. 2.51.

Because the system is charge neutral, the Hartree energy, the electrostatic self energy of the
charge background and the interaction of electrons with the background cancel exactly. Hence only
the kinetic energy and the exchange-correlation energy need to be considered.

3 Combine the approximate exchange energy with the kinetic energy to determine the total energy
as function of electron density and spin density. Estimate the energy difference between an
electron gas in the paramagnetic and the ferromagnetic state. Estimate the electron density
where the transition occurs. Estimate the electron density for real materials considering only
the valence electrons.

The total energy of the model is

Etot(nt , n⃗S) =

∫
d3r

3

10

(
3π2

) 2
3 ℏ2

me
n
5
3
t︸ ︷︷ ︸

E(nt ,0)/L3

·
1

2

((
1 +
|n⃗S|
nt

) 5
3

+

(
1−
|n⃗S|
nt

) 5
3

)
︸ ︷︷ ︸

≈1+(2
2
3−1)

(
ns
nt

)2︸ ︷︷ ︸
Ekin Eq. 1.149

−
1

2

e2

4πϵ0

3

2
3

√
4π

3

∫
d3r (nt(r⃗))

4
3

[
1

2
+
1

2

(
n⃗S(r⃗)

nt(r⃗)

)2]+ 1
3

︸ ︷︷ ︸
Uxc Eq. 2.220

(2.221)

The resulting total energy
Editor: The model artificially stabilizes the ferromagnetic electron gas. This

is probably due to the lack of correlation, the Coulomb hole. It may also be due
to the kinetic energy. The kinetic energy correction can be estimated from excluded
volume in a hard sphere model. The ferromagnetic electron gas becomes favorable only
at very low densities with rs >> look up thesis of Graham George Spink 2017 in the
group of Richard Needs. spink17_thesis.pdf

In the following, we will resort to the exchange-correlation hole to rationalize the findings related
to the electron-electron interaction in real materials.

Hund’s rule and Stoner parameter

The model provides the underlying reason for Hund’s rule, which says that electrons will align their
spin, unless the kinetic-energy cost is too large.

spink17_thesis.pdf
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Fig. 2.14: Total energy per electron (Ekin + Uxc)/N of the paramagnetic free-electron gas (black)
and of the ferromagnetic free-electron gas (red). The lines are obtained from Eq. 2.221. Circles and
diamonds are from accurate quantum-Monte-Carlo calculations by Ceperley and Alder[49]. Compare
also to [“Energy, Specific Heat, and Magnetic Properties of the Low-Density Electron Gas”, W. J.
Carr, Jr., Phys. Rev. 122, 1437 (1961), https://doi.org/10.1103/PhysRev.122.1437].

HUND’S RULE AND FERROMAGNETISM

Exchange acts only between electrons pairs with the same spin. Because exchange counteracts the
Coulomb repulsion, it favors electrons with the same spin.

A result is Hund’s 1st rule: “For a given electron configuration, the term with maximum multiplicity
has the lowest energy. The multiplicity is equal to 2S+1, where S is the total spin angular momentum
for all electrons. The term with lowest energy is also the term with maximum S.” a To be precise,
the spin angular momentum is ℏS.
Consider a set of degenerate one-particle states. Hund’s rule says that the electrons will occupy this
set so that the total spin is maximized. (The state with maximum spin has the largest multiplicity,
namely 2S + 1.) If many electrons have the same spin, the energy gain from the exchange term is
large.

The same effect is responsible for the tendency of some solids to become ferromagnetic. Due to
the finite band width of metals, spin-alignment leads to some loss of kinetic energy. The balance of
kinetic energy and exchange determines whether ferromagnetism wins.

aSource https://en.wikipedia.org/wiki/Hund%27s_rules, retrieved Mar. 24, 2017.

Closely related to Hund’s rule, which is useful for atoms, is Stoner’s criterion for Ferromagnetism.

STONER CRITERION

If the density of states at the Fermi level of a non-magnetic metal obeys

D(ϵF )IStoner > 1 (2.222)

it exhibits an instability towards a ferromagnetism. IStoner is Stoner’s exchange parameter.

While the concept underlying the tendency of electrons to arrange ferromagnetically is more
general, studying this effect for our model as a specific example shall make the explanation more
transparent. For this purpose, we can combine the exchange energy of the model-hole function
Eq. 2.220 with the kinetic energy from Eq. 1.149 on p. 45.49 This is a reasonably good model for

49The Hartree contribution of the electron interaction, the energy of the external potential (from the positive charge

https://en.wikipedia.org/wiki/Hund%27s_rules
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a free-electron gas with interaction. It is able to describe, at least qualitatively, the transition to a
ferromagnet with increasing interaction.

In the model, one can evaluate the energy as function of spin polarization x = |n⃗s |/nt relative to
the non-magnetic case. For the sake of simplicity, kinetic and exchange energies are scaled so that
the kinetic energy is constant and the exchange energy can be scaled by the parameter a.

y(x) =
1

2

[
(1 + x)

5
3 + (1− x)

5
3

]
︸ ︷︷ ︸
∼ kinetic energy Eq. 1.149

−a(1 + x2)
1
3︸ ︷︷ ︸

∼exchange Eq. 2.220

+a − 1 (2.223)

The parameter a is a dimension-less ratio of the constants for the kinetic energy and exchange energy,
which we will not work out in detail. The result Eq. 2.223 is shown figure 2.15. The model predicts
a transition to a ferromagnet for a = 5/3.

εF

EEE

µ

-1 -0,5 0 0,5 1

0,5

Fig. 2.15: Left, top: Scheme to explain the increasing kinetic energy with spin-polarization: density
of states of a free-electron gas for spin-up and spin-down electrons. A magnetic moment can be
induced, for example, by applying an external magnetic field, which makes the electrons of one spin
direction more favorable than those with opposite spin. The kinetic energy increase is seen by re-
moving the external field but maintaining the occupations of the spin-polarized system. Left,bottom:
Scheme to explain the gain of interaction energy through spin polarization. The exchange hole of
a ferromagnet has a higher density, namely −nt rather than −nt/2. Considering the sum rule, the
radius of the exchange hole is thus smaller. Thus, the interaction of electrons with the exchange
hole is larger. Right: total energy Eq. 2.223 of the jellium model as function of the spin polarization
|n⃗s |/nt for different values of the interaction strength. The exchange energy is obtained with the
model hole function of Eq. 2.220. The results are shown for a = 0, 1, 2, 3 from top to bottom.
Without interaction, the Fermi gas is non-magnetic. For a > 5/3, however, the system becomes
ferromagnetic.

The tendency towards ferromagnetism is a general feature of electrons, which is captured by the
Stoner criterion for ferromagnetism:

When the kinetic energy dominates, the system strongly resists a spin polarization. We can say
that the spin polarization requires electron-hole pairs, with the electron in the majority-spin channel
and the hole in the minority-spin channel. When the density of states is small, as in a system in a
large kinetic energy, a specific spin polarization requires electron-hole pairs with large energy. This
energy cost must be overcome by the energy gain from the exchange energy. When the bands narrow,
i.e. fairly flat, the density of states is high, and one can create many electron-hole pairs with small
energy. In that case, ferromagnetism is favorable.

background) and the electrostatic self energy of the positive charge background cancel each other exactly and are
therefore not accounted for. They cancel each other because they sum up to the total density of electrons and charge
background. This total density vanishes per construction.
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This is one explanation, why just the elemental 3-d transition-metals Fe, Co, Ni exhibit magnetism.
Despite their energy position in the valence-band region, 3d-states have a radial extent similar to the
3s- and 3p-core states. Thus, they have a small hopping parameters and form fairly narrow bands
with large density of states. For the heavier transition metals, of row 5 and 6 in the periodic table,
the valence d-bands are wider. The larger radial extent of the 5d and 6d-states is due to the Pauli
repulsion50 with the lower 3d-states, which pushes the 4d and 5d states outward from the nucleus.
The larger overlap with the neighboring atoms, which causes larger hopping parameters, and thus
increases the band width.

50The Pauli repulsion describes an upward shift due to the orthogonality requirement with lower lying states.



Chapter 3

Second quantization

In this chapter, I will introduce the notion of creation and annihilation operators. This will lead to an
elegant formulation of quantum mechanics in the Fock space.

I will place some emphasis on the definitions and the relations between different notations. The
connection is easily lost. In particular, I consider the connection to wave functions (in real space)
important for two reasons: Firstly, it connects to our knowledge base of one-particle quantum me-
chanics. Secondly, it allows one to connect to first-principles calculations with explicit wave functions.

3.1 Fock space

There are several ways towards second quantization. The most simple one is to define the Fock
space. The Fock space is the combination of the Hilbert spaces for 0-particle states, 1-particle
states, 2-particle states, etc. Let HN be the Hilbert space of all N-particle states. The Fock space
is the union1 of all N-particle Hilbert spaces HN , that is

F def
=

∞⋃
N=0

HN (3.1)

The definition of the scalar product is that of the Hilbert spaces. What is missing is a definition
of the scalar product between states with different particle numbers. We postulate that the scalar
product of states with different particle numbers vanishes.2

As a curiosity, we introduced here also the 0-particle state, called vacuum state, that is not
represented by a wave function at all.

Another way to define the Fock space3 is the following.

1. Starting from a one-particle Hilbert space H one constructs the Hilbert space H⊗N of general
N-particle states as tensor product of N one-particle states.

2. For identical particles these states are antisymmetrized (for fermions) or symmetrized (for
bosons). The resulting space of fermionic N-particle wave functions is denoted by H−,⊗N
–denoted above as HN – and the one for bosonic N-particle wave functions is denoted by
H+,⊗N

3. The direct sum of all fermionic N-particle Hilbert spaces is the Fock space

F (−) =
∞⊕
N=0

H−,⊗N , (3.2)

1germ.:union=Vereinigung
2This postulate is non-trivial and can be derived more naturally from the second quantization via introducing wave

functions in the space of the fields describing the wave functions.
3Taken from https://en.wikipedia.org/wiki/Fock_space.
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denoted above simply as F . The definition for the bosonic Fock space is analogous.

F (+) =
∞⊕
N=0

H+,⊗N (3.3)

3.2 Occupation-number representation

We are entering a new level of abstraction and it turned out to be useful to introduce a special notation
for it. This will lead us to the occupation-number representation and to creation and annihilation
operators.

In order to work within the Fock space, we need to select a suitable basis set. We have already
learned that Slater determinants, which are constructed from a complete orthonormal one-particle
basis, form a complete set of many-particle wave functions.

Each Slater determinant is uniquely defined, up to a sign, by the one-particle states used in its
construction. Therefore, the Slater determinants can be written economically in the occupation-
number representation. For a given, ordered, one-particle basisset, we form a vector, where each
position corresponds to a particular one-particle orbital. Each entry can be zero or one, and describes
if that particular orbital is present in the Slater determinant or not. If the occupation number is one,
we say that the orbital is occupied, and if the occupation-number is zero, we say that it is unoccupied
or empty. Thus, a Slater determinant can be expressed in a form like

|0, 0, 0, 1︸︷︷︸
i1

, 0, 1︸︷︷︸
i2

, 0, . . .⟩ = |Si1,i2,...⟩ with i1 < i2 < . . . (3.4)

where Si1,i2,... is a Slater determinant made of the one-particle orbitals |ϕi1⟩, |ϕi2⟩, . . ..
Because the Slater determinant changes its sign under permutation of two one-particle wave

functions, we need to define the sign convention. The sign is fixed such that the one-particle orbitals
must occur in the corresponding Slater determinant in the order of increasing index, that is i1 < i2, . . ..
Thus,

|1, 1, 0, 0, . . .⟩ = |S1,2⟩ = −|S2,1⟩ (3.5)

⟨r⃗ , r⃗ ′|1, 1, 0, 0, . . .⟩ =
1√
2!

[
ϕ1(r⃗)ϕ2(r⃗ ′)− ϕ2(r⃗)ϕ1(r⃗ ′)

]
(3.6)

Note also, that there is an explicit vacuum state

|O⟩ def
= |0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .⟩ (3.7)

The vacuum state describes a system without particles. Note that the vacuum state, which we
denote by a calligraphic “O”, |O⟩, is different from the zero state |∅⟩. The latter is obtained by
multiplying an arbitrary state with zero.

The most general antisymmetric wave function has the form

|Φ⟩ =
∑
σ⃗

|σ⃗⟩cσ⃗ =
1∑

σ1,σ2,...=0

|σ1, σ2, . . .⟩cσ1,σ2,... (3.8)

Example: hydrogen molecule

Let us consider a hydrogen molecule with only one s-orbital per site. The s-orbitals shall be combined
into bonding and an antibonding orbitals. The ordered one-particle basis is |b, ↑⟩, |b, ↓⟩, |a, ↑⟩, |a, ↓⟩,
where |b, σ⟩ describes the bonding and |a, σ⟩ describes the antibonding orbital.

Now, we can form the limited Fock space for this model. There are 24 = 16 Slater determinants
as shown in Fig. 3.1.
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0,0,0,0

1,0,0,0

0,1,0,0

0,0,1,0

0,0,0,1

1,1,0,0
1,1,1,0

1,1,0,1

1,0,1,1

0,1,1,1

1,1,1,1

0,0,1,1

1,0,1,0 1,0,0,1 0,1,1,0 0,1,0,1

Fig. 3.1: Schematic representation of the Fock space build from the bonding and antibonding states
of the hydrogen molecule. The middle diagram represents the many-particle energy levels assuming
non-interacting electrons and with ϵa = −ϵb, where ϵa is the one-particle energy of the antibonding
level and ϵb is the energy level of the bonding orbital. The insets correspond to the occupation-number
representation and the corresponding one-electron energy level diagram. On the left it contains a
schematic drawing of the one-particle wave functions.

• |0000⟩ is the zero-particle state. It describes just the two protons without electrons.

• |1000⟩, |0100⟩, |0010⟩ and |0001⟩ are the one-particle states. Thus, they describe the H+2 ion.
The states |1000⟩ and |0100⟩ correspond to the bound H+2 ion, while the remaining two states
correspond to the electron in the antibonding state. The molecule in the latter configuration
would be unstable.

• |1100⟩ corresponds to the ground state of the H2 molecule with two paired electrons in the
bonding orbital. There are in total 6 two-electron Slater determinants of which 5 are excited
states.
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• There are four three-electron states, namely |1110⟩ |1101⟩, |1011⟩,|01111⟩. The three particle
states describe the negative H−2 ion.

• finally there is one four-electron state, |1111⟩ which describes the H2−2 ion.

Excursion: Integer representation representation of Slater determinants

Note that the sequence can be considered as a binary number with the digits. This allows one to
identify each Slater determinant uniquely with one integer number.

The conversion of an integer into the number representation is to

0→ |0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .⟩
1→ |1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .⟩
2→ |0, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . .⟩
3→ |1, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . .⟩
4→ |0, 0, 1, 0, 0, 0, 0, 0, 0, 0, . . .⟩

I(σ⃗) def
=
∑
j

σj2
j−1 → |σ1, σ2, . . .⟩ (3.9)

In FORTRAN, bits can be handled in a simple manner. If I is the integer representation of a
Slater determinant and i is the position of a particular one-particle orbital, we obtain its occupation
number by

σi = BTEST(I − 1, i − 1) (3.10)

The bits can be manipulated using the FORTRAN functions

I ′ = IBCLR(I − 1, i − 1)
I ′′ = IBSET(I − 1, i − 1) (3.11)

where I ′ is obtained from I(σ⃗) by setting the occupation σi to zero, and I ′′ is obtained by setting
it to one.

In order to see the difficulty of many-particle physics let us count the number of states. If truncate
the one-particle basisset to M orbitals, there are 2M many-particle basisfunctions, because any one-
particle state can be occupied or unoccupied. For M = 10 there are already 210 = 1024 states, which
requires a kilobyte of memory to hold the coefficients. For M = 20 we already require a Megabyte
and for 30 orbitals we need a Gigabyte.

3.3 Creation and annihilation operators

We define creation operators â†i that increase the particle number in a given one-particle state.
Using creation operators, we can create all many-particle states from the vacuum state.

From Slater determinants

DEFINITION OF A CREATION OPERATOR IN TERMS OF SLATER DETERMINANTS

We define the creation operator for a particular orbital as follows: When we apply a creation operator
to a Slater determinant, it adds a row with the new orbital at the top of the corresponding matrix,
and introduces a column with a new coordinate to the right.
This definition is the link between wave functions and the operator algebra used in the following.
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It is important to watch the sign of the state. Let us consider an example where a third particle
in state |ϕ2⟩ is created in a state that contains two particles, one in |ϕ1⟩ and one in |ϕ3⟩.

â†2

|1,0,1,0,...⟩︷ ︸︸ ︷
1√
2!
det

∣∣∣∣∣ϕ1(x⃗1) ϕ1(x⃗2)ϕ3(x⃗1) ϕ3(x⃗2)

∣∣∣∣∣ =
â†2|1,0,1,0,...⟩︷ ︸︸ ︷

1√
3!
det

∣∣∣∣∣∣∣
ϕ2(x⃗1) ϕ2(x⃗2) ϕ2(x⃗3)

ϕ1(x⃗1) ϕ1(x⃗2) ϕ1(x⃗3)

ϕ3(x⃗1) ϕ3(x⃗2) ϕ3(x⃗3)

∣∣∣∣∣∣∣
= (−1) ·

1√
3!
det

∣∣∣∣∣∣∣
ϕ1(x⃗1) ϕ1(x⃗2) ϕ1(x⃗3)

ϕ2(x⃗1) ϕ2(x⃗2) ϕ2(x⃗3)

ϕ3(x⃗1) ϕ3(x⃗2) ϕ3(x⃗3)

∣∣∣∣∣∣∣︸ ︷︷ ︸
|1,1,1,0,...⟩

(3.12)

From the occupation-number representation

Each state |σ⃗⟩ of the occupation-number representation can be translated uniquely into a Slater
determinant. This translation rule requires the choice of an ordered, complete orthonormal set of
one-particle wave functions |ϕj⟩. Once we have this translation, we can translate the definition of
creation operators into the occupation-number representation.

For the example Eq. 3.12 above, we obtain

â†2|1, 0, 1, 0, 0, . . .⟩ = −|1, 1, 1, 0, 0, . . .⟩ (3.13)

The added one-particle state needs to be moved to the correct position in the Slater determinant.
Each occupied orbital, one passes during that process, contributes a sign change. Thus, we need to
count the number of occupied orbitals left of the final position. The net number of sign changes for
adding an electron in orbital |ϕi ⟩ is thus

∑
j<i σj .

Generalizing this principle leads to

â†i |σ1, σ2, . . . , 0︸︷︷︸
pos i

, . . .⟩ = |σ1, σ2, . . . , 1︸︷︷︸
pos i

, . . .⟩
[
(−1)

∑
j<i σj

]
â†i |σ1, σ2, . . . , 1︸︷︷︸

pos i

, . . .⟩ = |∅⟩ (3.14)

In short, we may write

â†i =
∑
σ⃗

∣∣∣σ1, σ2, . . . , σi + 1, . . .〉 ([(−1)∑j<i σj
]√
1− σi

)〈
σ1, σ2, . . . , σi , . . .

∣∣∣ (3.15)

The factor
√
1− σi ensures that Eq. 3.15 does not produce states with occupations σi ≥ 2. The

square root has been chosen to be consistent with the case of bosons, discussed later: The factor
for bosons is

√
1 + σ. For fermions σj can only have values zero and one, for which δσ,1 = σ =

√
σ,

so that the result is unchanged from 1− σ to
√
1− σ.

The hermitian conjugate of the creation operator is calculated from Eq. 3.15 using the general
operator identity

Â =
∑
m,n

|m⟩Am,n⟨n| ⇔ Â† =
∑
m,n

|n⟩A∗m,n⟨m| =
∑
m,n

|m⟩A∗n,m⟨n| (3.16)

which yields for âi = (â
†
i )
†

âi =
∑
σ⃗

∣∣∣σ1, σ2, . . . , σi , . . .〉 ([(−1)∑j<i σj
]√
1− σi

)∗〈
σ1, σ2, . . . , σi + 1, . . .

∣∣∣
=
∑
σ⃗

∣∣∣σ1, σ2, . . . , σi − 1, . . .〉 ([(−1)∑j<i σj
]√

σi

)〈
σ1, σ2, . . . , σi , . . .

∣∣∣ (3.17)
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We see that âi annihilates electrons and is thus named annihilator.
The last step in Eq. 3.17 is a little tricky. In first line of Eq. 3.17, the factor

√
1− σ excludes

the terms with σi = 1. In the second line, the factor
√
σ excludes terms with σi = 0.

CREATION AND ANNIHILATION OPERATORS FOR FERMIONS

The definition of creation operators â†i and annihilation operators âi for fermions is

â†i
Eq. 3.15
=

∑
σ⃗

∣∣∣σ1, σ2, . . . , σi + 1, . . .〉 ([(−1)∑j<i σj
]√
1− σi

)〈
σ1, σ2, . . . , σi , . . .

∣∣∣
âi

Eq. 3.17
=

∑
σ⃗

∣∣∣σ1, σ2, . . . , σi − 1 . . .〉 ([(−1)∑j<i σj
]√

σi

)〈
σ1, σ2, . . . , σi , . . .

∣∣∣ (3.18)

The sum is performed over all vectors |σ⃗⟩ with σi ∈ {0, 1}, where the indices j refer to a ordered,
complete and orthonormal one-particle basisset.

It may disturb that states with forbidden occupations σi turn up with σi < 0 or σi > 1. This
formal difficulty can be healed by simply defining those states as being the zero state |∅⟩. Thus,

|σ1, σ2, . . .⟩
def
= |∅⟩ if there is an σi /∈ {0, 1} (3.19)

Note, that the zero state |∅⟩ is different from the vacuum state |O⟩. The vacuum state describes
a physical situation, namely one without particles. The zero state does not describe any physical
situation. In a superposition of states, it can simply be left out.

Building up the Fock space from the vacuum state

The creation and annihilation operators lead us to one other representation of the basis states, which
is distinct from the occupation-number representation and the Slater determinants. Each state can
be identified with a product of creation operators.

We start out from the vacuum state defined in Eq. 3.7

|O⟩ def
= |0, 0, 0, . . .⟩ (3.20)

The vacuum state is a zero-particle state. It represents the vacuum, which is a system without
particles.4

Then, we fill electrons into the vacuum using the creation operators:

4Note, that the vacuum state differs from a zero state.
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OCCUPATION-NUMBER REPRESENTATION AND CREATION OPERATORS

A state characterized in the occupation-number representation by a string σ⃗ of occupation numbers,
i.e. a Slater determinant, can be constructed by successively applying creation operators to the
vacuum state |O⟩ in the form

|σ⃗⟩ =
∞∏
j=1

(
â†j

)σj
|O⟩

⟨σ⃗| = ⟨O|
j=1∏
∞︸︷︷︸

Caution!

(âj)
σj (3.21)

For the ket, the indices in the product increase from the left to the right. This avoids sign changes
as particles are created. A different order may induce sign changes. For the bra the order of the
operator is opposite, i.e. from right to left. The reversed order of the product is indicated with an
uncommon notation, namely by interchanging the lower and upper bound of the index in the product.
As a special case, we obtain a representation of one-particle orbitals in terms of the vacuum state
and the corresponding creation operator.

|ϕj⟩ = â†j |O⟩ (3.22)

A general quantum state |Ψ⟩ is a superposition of Slater determinants |σ⃗⟩. Also such a state can be
built up from the vacuum state with the help of creation operators.

|Ψ⟩ =
∑
σ⃗

|σ⃗⟩cσ⃗ =
(∑

σ⃗

cσ⃗

∞∏
j=1

(
â†j

)σj)
|O⟩ (3.23)

This is an important step: From this point on, not only the operators, but even the states,
are represented by operators. Because there is only one vacuum state, the sequence of creation
operators is sufficient to uniquely define a state. All expectation values are finally ones calculated
with the vacuum state.

3.4 Anticommutator relations

Commutator relations play an important role in quantum mechanics. In the case of quantum field
theory of fermions, it is the anticommutator relations between fermionic creation and annihilation
operators.

We determine the anticommutator relation5 between creation and annihilation operators in the
following.

The origin of the anticommutator rules is Pauli’s principle, i.e. the antisymmetry of the fermionic
wave function.

• From the definition of the creation operators in terms of Slater determinants, i.e. Eq. 3.12, we
know that an interchange of two particles changes the sign of the wave function, i.e.

â†i â
†
j |Φ⟩ = −â

†
j â
†
i |Φ⟩ ⇒ [â†i , â

†
j ]+|Φ⟩ = |∅⟩ (3.24)

|∅⟩ is the null state. Because, the equation holds for any fermionic wave function |Φ⟩, it can

5The anticommutator of two operators Â and B̂ is denoted as [Â, B̂]+
def
= ÂB̂ + B̂Â.
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simply be written as operator relation [
â†i , â

†
j

]
+
= 0 (3.25)

• The anticommutator for two annihilation operators is obtained as hermitian conjugate6 of
Eq. 3.25. [

âi , âj

]
+
= 0 (3.26)

• What happens if we interchange a creation and an annihilation operator?

Let me start writing out the products using the definition Eq. 3.18. Below, we exploit that the
first product gives the zero state, unless σ′n = 0, and the second for σn = 1. Once σn is known,
the values of other quantities can already be assigned. I indicate them with “⇝”.

â†nân
Eq. 3.18
=

∑
σ⃗′

∣∣∣σ′1, σ′2, . . . , σ′n + 1︸ ︷︷ ︸
⇝1

, . . .
〉 ([

(−1)
∑
k<n σ

′
k

]√
1− σ′n︸ ︷︷ ︸
δσ′n,0

)〈
σ′1, σ

′
2, . . . , σ

′
n︸︷︷︸
⇝0

, . . .
∣∣∣

×
∑
σ⃗

∣∣∣σ1, σ2, . . . , σn − 1︸ ︷︷ ︸
⇝0

. . .
〉 ([

(−1)
∑
k<n σk

]√
σn︸︷︷︸

δσn,1

)〈
σ1, σ2, . . . , σn︸︷︷︸

⇝1

, . . .
∣∣∣

=
∑
σ⃗

∣∣∣σ⃗〉 [(−1)∑k<n σk
]2
δσn,1

〈
σ⃗
∣∣∣

=
∑
σ⃗

∣∣∣σ⃗〉δσn,1〈σ⃗∣∣∣
=

∑
σ⃗

∣∣∣σ⃗〉σn 〈σ⃗∣∣∣ (3.27)

We proceed analogously with the product in reverse order. Then, a non-zero result requires
σn = 0 and σ′n = 1.

ânâ
†
n

Eq. 3.18
=

∑
σ⃗′

∣∣∣σ′1, σ′2, . . . , σ′n − 1︸ ︷︷ ︸
⇝0

, . . .
〉 ([

(−1)
∑
k<n σ

′
k

]√
σ′n︸︷︷︸

δσ′n,1

)〈
σ′1, σ

′
2, . . . , σ

′
n︸︷︷︸
⇝1

, . . .
∣∣∣

×
∑
σ⃗

∣∣∣σ1, σ2, . . . , σn + 1︸ ︷︷ ︸
⇝1

. . .
〉 ([

(−1)
∑
k<n σk

]√
1− σn︸ ︷︷ ︸
δσn,0

)〈
σ1, σ2, . . . , σn︸︷︷︸

⇝0

, . . .
∣∣∣

=
∑
σ⃗

∣∣∣σ⃗〉 [(−1)∑k<n σk
]2
δσn,0

〈
σ⃗
∣∣∣

=
∑
σ⃗

∣∣∣σ⃗〉δσn,0〈σ⃗∣∣∣
=

∑
σ⃗

∣∣∣σ⃗〉 (1− σn)〈σ⃗∣∣∣ (3.28)

Thus, we obtain the anticommutator relation by adding Eqs. 3.27 and 3.28.[
â†n, ân

]
+

Eqs. 3.27,3.28
= 1 (3.29)

On the way, we also obtained another useful operator, namely the one that provides the occu-
pation of a specific orbital.

6Use (ÂB̂)† = B̂†Â†
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OCCUPATION-NUMBER OPERATOR

.

n̂j
def
= â†j âj

Eq. 3.27
=

∑
σ⃗

|σ⃗⟩σj⟨σ⃗| (3.30)

The expectation value of the occupation-number operator n̂j is the mean number of particles
in the j-th orbital.

Let me now turn to the products â†mân and ânâ
†
m with m ̸= n. I use Eq. 3.18 to express the

operators in the occupation-number representation.

In each of the two products below, only few terms are non-zero because of the factors
√
1− σ′m

and
√
σn. I use the short-hand notation7, that

∑
m≤k<n stands for

∑
min(m,n)≤k<max(m,n).

â†mân
Eq. 3.18
=

∑
σ⃗′

∣∣∣ . . . , σ′m + 1︸ ︷︷ ︸
⇝σm+1

, . . . , σ′n︸︷︷︸
⇝σn−1

, . . .
〉 ([

(−1)
∑
k<m σ

′
k

]
︸ ︷︷ ︸

⇝sgn(n−m)(−1)
∑
k<m σk

√
1− σ′m︸ ︷︷ ︸

=δσ′m,0
⇝δσm,0

)〈
. . . , σ′m︸︷︷︸

⇝σm

, . . . , σ′n︸︷︷︸
⇝σn−1

, . . .
∣∣∣

×
∑
σ⃗

∣∣∣ . . . , σm, . . . , σn − 1, . . .〉 ([(−1)∑k<n σk
]√

σn︸︷︷︸
δσn,1

)〈
. . . , σm, . . . , σn, . . .

∣∣∣
Eq. 3.32
=

∑
σ⃗

∣∣∣ . . . , σm + 1, . . . , σn − 1, . . .〉 [δσm,0δσn,1sgn(n −m)(−1)∑m≤k<n σk
] 〈
σ⃗
∣∣∣ (3.33)

Now, I rewrite the product in reverse order analogously:

ânâ
†
m

Eq. 3.18
=

∑
σ⃗′

∣∣∣ . . . , σ′m︸︷︷︸
⇝σm+1

, . . . , σ′n − 1︸ ︷︷ ︸
⇝σn−1

, . . .
〉 ([

(−1)
∑
k<n σ

′
k

]
︸ ︷︷ ︸

⇝sgn(m−n)(−1)
∑
k<n σk

√
σ′n︸︷︷︸

=δσ′n,1
⇝δσn,1

)〈
. . . , σ′m︸︷︷︸
⇝σm+1

, . . . , σ′n︸︷︷︸
⇝σn

, . . .
∣∣∣

×
∑
σ⃗

∣∣∣ . . . , σm + 1, . . . , σn, . . .〉 ([(−1)∑k<m σk
]√
1− σm︸ ︷︷ ︸
δσm,0

)〈
. . . , σm, . . . , σn, . . .

∣∣∣
=

∑
σ⃗

∣∣∣ . . . , σm + 1, . . . , σn − 1, . . .〉 [δσm,0δσn,1 sgn(m − n)︸ ︷︷ ︸
−sgn(n−m)

(−1)
∑
m≤k<n σk

]〈
σ⃗
∣∣∣ (3.34)

Thus, the two operator products Eq. 3.33 and Eq. 3.34 are identical except for a sign change
resulting from the different arguments of the sign function, so that[

â†m, ân
]
+
= 0 (3.35)

Eqs. 3.29 and 3.35 can be combined to[
â†m, ân

]
+
= δm,n (3.36)

7Below, I exploit the orthonormality of the Slater determinants in the occupation-number representation, so that

⟨. . . , σ′m, . . . σ′n, . . . | . . . , σm, . . . , σn − 1, . . .⟩ = δσ′m ,σmδσ′n ,1−σn
∏

k /∈{m,n}
δσ′k ,σk

= δσ′n ,1−σn

∏
k /∈{n}

δσ′k ,σk
(3.31)

Thus, in the double sum over σ⃗, σ⃗′, all σ′k can be replaced by σk , except for k = n.[
(−1)

∑
k<m σ

′
k

] 〈
. . . , σ′m, . . . σ

′
n, . . .

∣∣∣ . . . , σm, . . . , σn − 1, . . .〉 = sgn(n −m) [(−1)∑k<m σk
]
δσ′n ,1−σn

∏
k /∈{n}

δσ′k ,σk

(3.32)

The exchange of the primed σ′n by the un-primed σn introduces a sign change, if n < m. The sign change is absent for
n > m because then it is not considered in the sign factor (−1)

∑
k<m σ

′
k . Thus, we can account the sign change when

going from primed to un-primed numbers by an additional factor sgn(n −m).



132 3 SECOND QUANTIZATION

The rules, we arrive at, are

ANTICOMMUTATION RULES FOR FERMIONIC CREATION AND ANNIHILATION
OPERATORS

[â†i , â
†
j ]+

Eq. 3.25
= 0 and [âi , âj ]+

Eq. 3.26
= 0 and [â†i , âj ]+

Eq. 3.36
= δi ,j (3.37)

The anticommutators Eq. 3.37 between creation and annihilation operators are numbers.8 No such
rule exists for the commutators of fermionic creation and annihilation operators: the commutators
of fermion operators are still operators.

For bosons, similar relations exist, but for commutators, rather than for anticommutators.

Commutator relations in first quantization: The reader will remember that the commutator
relations

[x̂i , x̂j ]− = 0

[p̂i , p̂j ]− = 0

[p̂i , x̂j ]− =
ℏ
i
δi ,j , (3.38)

between positions and momenta have been central to formulation of quantum mechanics. In the
second quantization of fermions, the anticommutator relations above play a similarly important role.

Commutator relations for the quantized harmonic oscillator: If we consider the harmonic oscil-
lator, we found the commutator relations

[b̂†i , b̂
†
j ]− = 0

[b̂i , b̂j ]− = 0

[b̂i , b̂
†
j ]− = δi ,j (3.39)

where the index refers to certain vibrational mode of a multidimensional harmonic oscillator. The
resulting energy spectrum was equidistant and only bounded from below. In the second quantization
of bosons, we say that the creation operator b†i creates a particle in a certain vibrational mode.
We can construct any number of excitations, or particles, in a given vibration. The quantization of
bosons follows naturally when one applies the correspondence principle to the wave function itself.
Since the Lagrangian and the Hamiltonian of a one-particle system is quadratic in the wave function,
it is natural that the quantization of a field leads to a harmonic oscillator. The difference between
fermions and bosons is that the creation and annihilation operators obey an anticommutator relation
in the fermionic case and a commutator relation in bosonic case.

3.5 Slater-Condon rules

The next step towards a description solely by creation and annihilation operators is to express one-
and two-particle operators in terms of creation and annihilation operators.

For this purpose, we need to evaluate first the matrix elements Oσ⃗,σ⃗′ of operators between Slater
determinants |σ⃗⟩.

Ô =
∑
σ⃗,σ⃗′

|σ⃗⟩Oσ⃗,σ⃗′⟨σ⃗′| (3.40)

8If an operator is an identity times a number, we call it a number.
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In a next step, the matrix elements between Slater determinants can be expressed in terms of cre-
ation and annihilation operators. When we exploit that a set of all Slater determinants, which are
formed from a complete orthonormal one-particle basisset, is a complete basis of Fock space, we can
then represent a general one-particle or two-particle operator in terms of creation and annihilation
operators.

While determining the matrix elements looks like a daunting task, it can be achieved in an elegant
way as shown by Slater and Condon, when using an orthonormal set of one-particle orbitals. The
resulting rules are the so-called Slater-Condon rules[22, 50]. A derivation of the Slater-Condon
rules is given in appendix H on p. 543. I recommend, that the reader works through the derivation
of at least one of the Slater-Condon rules.

The matrix elements can reasonably be worked out only using an orthonormal one-particle basisset.
This is probably the sole reason, one almost exclusively works with orthonormal basissets in many-
particle physics. Using orthonormal one-particle orbitals, is, however, by no means a requirement.
Once the matrix elements are obtained in one basis, the results can be transformed into any other,
even non-orthonormal basisset.

The Slater-Condon rules have been generalized to non-orthonormal basissets by Löwdin[26].
I only summarize the Slater-Condon rules here. The derivation is provided in appendix H on

p. 543.
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SLATER-CONDON RULES

The Slater-Condon rules provide the matrix elements of one-particle operators Â and two-particle
operators Ŵ , between Slater determinants |Φ⟩ and Ψ⟩. The Slater determinants must be expressed
in an orthonormal one-particle basisset {|ϕj ⟩} and they must be in maximum coincidence, which
requires that any one-particle orbitals, which are present in both Slater determinants, must be in the
same position in both Slater determinants (see also appendix H.1 on p. 543).

• Identical Slater determinants, i.e. |Ψ⟩ = |Φ⟩

⟨Ψ|Â|Φ⟩ Eq. H.5
=

N∑
n=1

⟨ϕn|Â|ϕn⟩

⟨Ψ|Ŵ |Φ⟩ Eq. H.7
=
1

2

N∑
n,m

(
⟨ϕnϕm|Ŵ |ϕnϕm⟩︸ ︷︷ ︸

⇝Hartree

−⟨ϕnϕm|Ŵ |ϕmϕn⟩︸ ︷︷ ︸
⇝exchange

)
(3.41)

Notice, that the two terms in the sum for the two-particle term cancel each other for n = m.

Eq. 3.41 are the so-called Slater rules[22]. They provide the expectation value with a Slater
determinant. A general many-particle wave function is a superposition of many Slater deter-
minants. To evaluate the expectation value with such a general, correlated, wave function
also the off-diagonal matrix elements are required, which are obtained via the Condon rules[50]
provided below.

• Slater determinants that differ by a single one-particle orbital ϕa and ϕb

⟨Ψ|Â|Φ⟩ Eq. H.15
= ⟨ϕa|Â|ϕb⟩ (3.42)

⟨Ψ|Ŵ |Φ⟩ Eq. H.22
=

N−1∑
n=1;n ̸=a,b

(
⟨ϕaϕn|Ŵ |ϕbϕn⟩ − ⟨ϕaϕn|Ŵ |ϕnϕb⟩

)
(3.43)

• Slater determinants that differ by two one-particle orbitals ϕa, ϕb and ϕc , ϕd

⟨Ψ|Â|Φ⟩ Eq. H.23
= 0 (3.44)

⟨Ψ|Ŵ |Φ⟩ Eq. H.25
= ⟨ϕaϕb|Ŵ |ϕcϕd⟩ − ⟨ϕaϕb|Ŵ |ϕdϕc⟩ (3.45)

• Slater determinants that differ by more than two one-particle orbitals

⟨Ψ|Â|Φ⟩ = 0 (3.46)

⟨Ψ|Ŵ |Φ⟩ = 0 (3.47)

The matrix elements of two-particle operators, such as an interaction Ŵ (x⃗ , x⃗ ′), are defined as

⟨ϕaϕb|Ŵ |ϕcϕd⟩
def
=

∫
d4x

∫
d4x ′ ϕ∗a(x⃗)ϕ

∗
b(x⃗

′)W (x⃗ , x⃗ ′)ϕc(x⃗)ϕd(x⃗ ′) (3.48)

3.6 Operators expressed by creation and annihilation operators

We have seen that all states of the Fock space can be expressed by creation operators and the
vacuum state. Hence, the creation and annihilation operators also provide a means to transform the
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states of the Fock space into each other, which is what a general operator does. This shows that
each operator acting on the Fock space can be expressed by creation and annihilation operators.

In the previous section, we derived the Slater-Condon rules, which provide the matrix elements
of one- and two-particle operators in terms of the Slater determinants that form the many-particle
basisset. In appendix I on p. 551, we use the Slater-Condon rules to derive the explicit expressions
for the one- and two-particle operators in this representation. Here, we just provide the results:

OPERATORS IN SECOND QUANTIZATION

A one-particle operator Â has the form

Â =
∑
i ,j

Ai ,j â
†
i âj (3.49)

and a two-particle operator Ŵ has the form

Ŵ =
1

2

∑
i ,j,k,l

Wi ,j,k,l â
†
i â
†
j âl âk (3.50)

Note the reversed order of the annihilators relative to the indices.
The matrix elements are

Aa,b
def
=⟨ϕa|Â|ϕb⟩

def
=

∫
d4x ϕ∗a(x⃗)Âϕb(x⃗)

Wa,b,c,d
def
=⟨ϕaϕb|Ŵ |ϕcϕd⟩

Eq. 3.48
=

∫
d4x

∫
d4x ′ ϕ∗a(x⃗)ϕ

∗
b(x⃗

′)W (x⃗ , x⃗ ′)ϕc(x⃗)ϕd(x⃗ ′) (3.51)

Conventions: Often, the interaction matrix elements are defined differently from Eq. 3.51.They
differ in the order of the indices in the tensor W . Our choice is consistent with the “physicist
notation” < ab|cd >= Wa,b,c,d as used in the book of Szabo and Ostlund [51] (See their section
2.3.2 “Notations for One- and Two-Electron Integrals”). It is also consistent with the notation used
in the lecture notes Theoretische Festkörperphysik (p.63, Eq. 15.47) by Franz Wegener. Szabo and
Ostlund also refer to the “chemist notation” [i j |kl ] defined as < ik |j l >= [i j |kl ], which lists first
both x coordinates and then both x ′ coordinates. This chemists notation is also used by Mahan’s
Book[52] (see Eq. 1.157).

Physicist notation < ab|cd > def
= Wa,b,c,d (3.52)

Chemist notation [ac |bd ] def
= Wa,b,c,d (3.53)

3.6.1 One-particle-reduced density matrix in second quantization

The one-particle-reduced density matrix follows from Eq. 3.49. It has been defined so that a the
expectation value of a general, one-particle operator Â is obtained as

A = Tr[ρ̂(1)Â] =
∑
i ,j

ρ
(1)
i ,j Aj,i (3.54)

From Eq. 3.49 the expectation value of a one-particle operator with general ensemble of many-
particle states |Φq⟩ in Fock space and their probabilities Pq is〈

A
〉
=
∑
q

Pq⟨Φq |
∑
i ,j

Ai ,j â
†
i âj |Φq⟩ =

∑
i ,j

Ai ,j
∑
q

Pq⟨Φq |â†i âj |Φq⟩︸ ︷︷ ︸
ρ
(1)
j,i

(3.55)
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This provides us with the one-particle-reduced density matrix as

ONE-PARTICLE-REDUCED DENSITY MATRIX IN SECOND QUANTIZATION

ρ(1)m,n =
∑
q

Pq⟨Φq |â†nâm|Φq⟩ (3.56)

ρ̂(1) =
∑
m,n

|ϕm⟩
∑
q

Pq⟨Φq |â†nâm|Φq⟩⟨ϕn| (3.57)

Note, that the indices m, n on the right side of the equation are in the opposite order than on the
left side.

3.7 Real-space-and-spin representation of field operators

We obtained the basic elements of the theory, namely states, Eq. 3.21, and operators, Eq. 3.49
and Eq. 3.50. The formulation rests on the choice of a particular set of one-particle orbitals |ϕi ⟩.
Here, we change the representation from this set of one-particle orbitals to the real-space-and-spin
representation. The real-space-and-spin representation is then the reference, from which formulation
can be transformed into any other basisset of one-particle orbitals.

Let me start with the representation of the orthonormal one-particle basis functions |ϕj ⟩ in terms
of vacuum state and creation operator

â†j |O⟩
Eq. 3.22
= |ϕj ⟩ (3.58)

Any one-particle state |f ⟩ can be expanded into the chosen one-particle basis |ϕj⟩.

|f ⟩ =
∑
j

|ϕj⟩⟨ϕj |f ⟩
Eq. 3.58
=

∑
j

â†j |O⟩︸ ︷︷ ︸
|ϕj ⟩

⟨ϕj |f ⟩ =
(∑

j

â†j ⟨ϕj |f ⟩
)
|O⟩ (3.59)

Because the state |f ⟩ is arbitrary, we can insert a basisstate of the real-space-and-spin represen-
tation |x⃗⟩, which yields

|x⃗⟩ =
(∑

j

â†j ⟨ϕj |x⃗⟩
)

︸ ︷︷ ︸
=:ψ̂†(x⃗)

|O⟩ (3.60)

This defines the field operators

FIELD OPERATORS

ψ̂†(x⃗)
def
=
∑
j

â†j ⟨ϕj |x⃗⟩ =
∑
j

ϕ∗j (x⃗)â
†
j

ψ̂(x⃗) =
∑
j

⟨x⃗ |ϕj⟩âj =
∑
i

ϕj(x⃗)âj (3.61)
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An arbitrary one-particle state can then be written in the form

|f ⟩ Eq. 3.59
=

(∑
j

â†j ⟨ϕj |f ⟩
)
|O⟩ =

(∫
d4x

∑
j

â†j ⟨ϕj |x⃗⟩︸ ︷︷ ︸
ψ̂†(x⃗)

⟨x⃗ |f ⟩︸ ︷︷ ︸
f (x⃗)

)
|O⟩

Eq. 3.61
=

(∫
d4x ψ̂†(x⃗)f (x⃗)

)
|O⟩ (3.62)

Insertion of the basis function |ϕj ⟩ in place of the general state |f ⟩ yields the back transform.

â†j |O⟩
Eq. 3.58
= |ϕj⟩

Eq. 3.62
=

(∫
d4x ψ̂†(x⃗)ϕj(x⃗)

)
|O⟩ (3.63)

ORBITAL CREATION AND ANNIHILATION OPERATORS FROM FIELD OPERATORS

â†i =

∫
d4x ψ̂†(x⃗) ⟨x⃗ |ϕi ⟩ =

∫
d4x ψ̂†(x⃗)ϕi(x⃗)

âi =

∫
d4x ⟨ϕi |x⃗⟩ ψ̂(x⃗) =

∫
d4x ϕ∗i (x⃗)ψ̂(x⃗) (3.64)

The symbol “psi” for the field operator ψ̂†(x⃗) is not a space holder for a specific field. We would
not write something like ϕ†(x⃗). This is different from the notation â†i or ĉ†j , for which the letters may
indicate the choice of one or another basisset. For the field operators the basisset is already chosen:
It is {|x⃗⟩}.

3.7.1 Anticommutator relations in real space

The anti-commutator relations of the field operators in real space are obtained by insertion.

[
ψ̂†(x⃗), ψ̂(x⃗ ′)

]
+

Eq. 3.61
=

(∑
j

â†j ⟨ϕj |x⃗⟩
)(∑

k

⟨x⃗ ′|ϕk⟩âk
)
+
(∑
k

⟨x⃗ ′|ϕk⟩âk
)(∑

j

â†j ⟨ϕj |x⃗⟩
)

=
∑
j,k

⟨x⃗ ′|ϕk⟩
(
â†j âk + âk â

†
j

)︸ ︷︷ ︸
=[â†j ,âk ]+=δj,k

⟨ϕj |x⃗⟩
)

= ⟨x⃗ ′|
(∑

j

ϕj⟩⟨ϕj |
)

︸ ︷︷ ︸
=1̂

|x⃗⟩

= δ(x⃗ − x⃗ ′)︸ ︷︷ ︸
δ(r⃗−r⃗ ′)δσ,′σ′

(3.65)

For a continuous variable such as the position we need to remember that we have to use the delta-
function instead of the Kronecker delta.
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3.7.2 One-particle operators in real space

Let us now transform a general one-particle operator Â into the real-space representation

Â
Eq. 3.49
=

∑
i ,j

⟨ϕi |Â|ϕj⟩â†i âj

=
∑
i ,j

⟨ϕi |
∫
d4x |x⃗⟩⟨x⃗ |︸ ︷︷ ︸
=1

Â

∫
d4x ′ |x⃗ ′⟩⟨x⃗ ′|︸ ︷︷ ︸

=1

|ϕj⟩â†i âj

=

∫
d4x

∫
d4x ′

∑
i ,j

⟨ϕi |x⃗⟩︸ ︷︷ ︸
ϕ∗i (x⃗)

⟨x⃗ |Â|x⃗ ′⟩︸ ︷︷ ︸
A(x⃗ ,x⃗ ′)

⟨x⃗ ′|ϕj⟩︸ ︷︷ ︸
ϕj (x⃗ ′)

â†i âj

=

∫
d4x

∫
d4x ′ A(x⃗ , x⃗ ′)

∑
i

ϕ∗i (x⃗)â
†
i︸ ︷︷ ︸

ψ̂†(x⃗)

∑
j

ϕj(x⃗ ′)âj︸ ︷︷ ︸
ψ̂(x⃗ ′)

Eq. 3.61
=

∫
d4x

∫
d4x ′ A(x⃗ , x⃗ ′)ψ̂†(x⃗)ψ̂(x⃗ ′) (3.66)

Note that we deal here with two different types of operators: The creators and annihilators act on the
Fock space. The operator Â acts on a one-particle state if it is bracketed between two one-particle
states.

Example: one-particle Hamiltonian

The one-particle part of the Hamiltonian has the form

ĥ =

∫
d4x

∫
d4x ′ |x⃗⟩ δ(x⃗ − x⃗ ′)

(
−ℏ2

2me
∇⃗′2 + vext(x⃗ ′)

)
︸ ︷︷ ︸

h(x⃗ ,x⃗ ′)=⟨x⃗ |ĥ|x⃗ ′⟩

⟨x⃗ ′| (3.67)

with

h(x⃗ , x⃗ ′) = δ(x⃗ − x⃗ ′)
(
−ℏ2

2me
∇⃗′2 + vext(x⃗ ′)

)
. (3.68)

The corresponding one-particle-at-a-time Hamiltonian has the form9

ĥ
Eq. 3.66
=

∫
d4x

∫
d4x ′ δ(x⃗ − x⃗ ′)

(
−ℏ2

2me
∇⃗′2 + vext(x⃗ ′)

)
ψ̂†(x⃗)ψ̂(x⃗ ′)

=

∫
d4x ψ̂†(x⃗)

(
−ℏ2

2me
∇⃗2 + vext(x⃗)

)
ψ̂(x⃗) (3.69)

The expression just looks like a normal expectation value of the one-particle Hamiltonian. How-
ever, since the wave functions are replaced by the creation and annihilation operators, the expression
is an operator in Fock space.

9It may be puzzling to have a differential operator, the Laplacian, act on an operator. This object is to be interpreted
as for normal functions as the differential quotient of the operator in the limit of small displacements.
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3.7.3 Interaction operator in real space

Analogously, we can determine the interaction operator in real space as

Ŵ
Eq. 3.50
=

1

2

∑
i ,j,k,l

Wi ,j,k,l â
†
i â
†
j âl âk

Eq. 3.64
=

1

2

∑
i ,j,k,l

Wi ,j,k,l

∫
d4x1 ϕi(x⃗1)ψ̂

†(x⃗1)︸ ︷︷ ︸
â†i

∫
d4x2 ϕj(x⃗2)ψ̂

†(x⃗2)︸ ︷︷ ︸
â†j∫

d4x4 ϕ
∗
l (x⃗4)ψ̂(x⃗4)︸ ︷︷ ︸
âl

∫
d4x3 ϕ

∗
k(x⃗3)ψ̂(x⃗3)︸ ︷︷ ︸
âk

=
1

2

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x4

∑
i ,j,k,l

Wi ,j,k,lϕi(x⃗1)ϕj(x⃗2)ϕ
∗
k(x⃗3)ϕ

∗
l (x⃗4)︸ ︷︷ ︸

W (x⃗1,x⃗2,x⃗3,x⃗4)

·ψ̂†(x⃗1)ψ̂†(x⃗2)ψ̂(x⃗4)ψ̂(x⃗3) (3.70)

We use the expression for the matrix elements in the orbital basis

Wi ,j,k,l
Eq. 3.51
=

∫
d4x

∫
d4x ′ ϕ∗i (x⃗)ϕ

∗
j (x⃗
′)vint(x⃗ , x⃗ ′)ϕk(x⃗)ϕl(x⃗ ′) (3.71)

to work out the real-space matrix elements of the interaction in Eq. 3.70. For our purposes the
interaction potential is the Coulomb potential

vint(x⃗ , x⃗ ′) = vint(r⃗ , σ, r⃗ ′, σ
′) =

e2

4πϵ0|r⃗ − r⃗ ′|
(3.72)

W (x⃗1, x⃗2, x⃗3, x⃗4)
def
=

∑
i ,j,k,l

Wi ,j,k,lϕi(x⃗1)ϕj(x⃗2)ϕ
∗
k(x⃗3)ϕ

∗
l (x⃗4)

Eq. 3.71
=

∑
i ,j,k,l

∫
d4x

∫
d4x ′

[
ϕ∗i (x⃗)ϕ

∗
j (x⃗
′)vint(x⃗ , x⃗ ′)ϕk(x⃗)ϕl(x⃗ ′)

]
︸ ︷︷ ︸

Wi ,j,k,l

[
ϕi(x⃗1)ϕj(x⃗2)ϕ

∗
k(x⃗3)ϕ

∗
l (x⃗4)

]

=

∫
d4x

∫
d4x ′

∑
i

ϕ∗i (x⃗)ϕi(x⃗1)︸ ︷︷ ︸
δ(x⃗−x⃗1)

∑
j

ϕ∗j (x⃗
′)ϕj(x⃗2)︸ ︷︷ ︸

δ(x⃗ ′−x⃗2)

×vint(x⃗ , x⃗ ′)
∑
k

ϕk(x⃗)ϕ
∗
k(x⃗3)︸ ︷︷ ︸

δ(x⃗−x⃗3)

∑
l

ϕl(x⃗ ′)ϕ
∗
l (x⃗4)︸ ︷︷ ︸

δ(x⃗ ′−x⃗4)

= vint(x⃗1, x⃗2)δ(x⃗1 − x⃗3)δ(x⃗2 − x⃗4) (3.73)

We insert this result into the above expression Eq. 3.70

Ŵ
Eqs. 3.70,3.73

=
1

2

∫
d4x1

∫
d4x2

∫
d4x3

∫
d4x4 vint(x⃗1, x⃗2)δ(x⃗1 − x⃗3)δ(x⃗2 − x⃗4)

·ψ̂†(x⃗1)ψ̂†(x⃗2)ψ̂(x⃗4)ψ̂(x⃗3)

=
1

2

∫
d4x1

∫
d4x2 vint(x⃗1, x⃗2)ψ̂

†(x⃗1)ψ̂
†(x⃗2)ψ̂(x⃗2)ψ̂(x⃗1)

=
1

2

∫
d4x

∫
d4x ′ ψ̂†(x⃗)ψ̂†(x⃗ ′)vint(x⃗ , x⃗ ′)ψ̂(x⃗ ′)ψ̂(x⃗) (3.74)
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3.7.4 Many-electron Hamiltonian in real space

The Hamiltonian has the form

MANY-PARTICLE HAMILTONIAN

Ĥ =

∫
d4x ψ̂†(x⃗)

(
−ℏ2

2me
∇⃗2 + vext(x⃗)

)
ψ̂(x⃗)

+
1

2

∫
d4x

∫
d4x ′ ψ̂†(x⃗)ψ̂†(x⃗ ′)

e2

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
vint(x⃗ ,x⃗ ′)

ψ̂(x⃗ ′)ψ̂(x⃗) (3.75)

Notice the order of the annihilation operators on the right-hand side of the interaction term!

3.8 Creation and annihilation operators in a non-orthonormal
representation

The extension of creation and annihilation operators to non-orthonormal orbitals is possible. It is
discussed in appendix B on p. 401.

3.9 From Hilbert space to Fock space and back

Often we encounter a problem expressed in one-particle wave functions and we want to express it in
second quantization or vice versa. In this section, I am collecting examples and advice on how this
can be done.

3.9.1 From Hilbert space to Fock space and back

I find it very useful to start with the representation of a one-particle state in the language of second
quantization. I provide equations for orthonormal orbitals |ϕn⟩, non-orthonormal states |χα⟩ and the
real-space-and-spin representation.

In a orthonormal basisset, each orbital |χα⟩ is accompanied by a projector function ⟨πα|. Pro-
jector functions and orbitals satisfy a bi-orthogonality condition ⟨πα|χβ⟩ = δα,β so that |ψ⟩ =∑

α |χα⟩πα|ψ⟩ if |ψ⟩ lies in the Hilbert space spanned by the orbitals.
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ONE-PARTICLE ORBITALS IN SECOND QUANTIZATION

|ϕn⟩ = â†n|O⟩ (3.76)

|πα⟩
Eq. B.5
= ĉ†α|O⟩ (3.77)

|χα⟩ =
∑
β

ĉ†β |O⟩⟨χβ |χα⟩ (3.78)

|x⃗⟩ = ψ̂†(x⃗)|O⟩ (3.79)

Similarly, two-particle Slater determinants can be written in the form

|ϕαϕβ⟩ = â†αâ
†
β |O⟩ (3.80)

respectively

|x⃗ , x⃗ ′⟩ = ψ̂†(x⃗)ψ̂†(x⃗ ′)|O⟩ (3.81)

A one-particle operator acting on the one-particle Hilbert space can be rewritten as follows:

Â =
∑
α,β

|πα⟩ ⟨χα|Â|χβ⟩︸ ︷︷ ︸
Aα,β

⟨πβ | =
∑
α,β

|πα⟩Aα,β⟨πβ | =
∑
α,β

ĉ†α|O⟩Aα,β⟨O|ĉβ

=
∑
α,β

Aα,β ĉ
†
α |O⟩⟨O|︸ ︷︷ ︸

P̂|O⟩

ĉβ (3.82)

In the middle we have the projection operator P̂|O⟩ onto the zero-particle state, which limits the
action of the operator to the one-particle channel. In order to generalize this result to the Fock
space, we replace the projection operator by the unit operator in Fock space

Â =
∑
α,β

Aα,β ĉ
†
α

∑
σ⃗

|σ⃗⟩⟨σ⃗|︸ ︷︷ ︸
1̂

ĉβ =
∑
α,β

Aα,β ĉ
†
αĉβ (3.83)

Despite the fact that we use the same symbols, the operators Â Eq. 3.82 and Eq. 3.83 are in principle
two different operators, because they act on different spaces.

Similarly, we can go backwards from Eq. 3.83 to Eq. 3.82, as long as the operator Â is a one-
particle operator, that is, it can be built up from products â†mân.

3.10 Summary

In this chapter, we introduced creation and annihilation operators, and showed how many-particle
wave functions and operators can be expressed by them. In addition to the creation and annihilation
operators, only a single state, the vacuum state |O⟩ is required.

Field operators ψ̂†(x⃗) and ψ̂(x⃗) have been introduced by selecting the space-and-spin basiset.
In this representation the Hamilton operator looks like the energy expectation value in one-particle
quantum mechanics, with the difference that the wave function is replaced by the field operator.
Special care is required, because of the anticommutator relation of the field operators, their order is
not arbitrary.

The formulation given in this section can be extended to incomplete and non-orthonormal basis
sets. This is shown in the appendix B on p. 401.
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3.11 Home study and practice

3.11.1 Hydrogen molecule with interacting electrons

Introduction

Here we extend the earlier exercise on the hydrogen molecule in section 1.5.1 on p. 26 to interacting
electrons. This example will give us a first glance on a number of electron-correlation effects. It may
be helpful to inspect figure 3.1 on p. 125 which schematically shows the many-particle states of a
hydrogen atom with non-interacting electrons.

Problem

1 Translate the non-interacting Hamiltonian for the hydrogen molecule from section 1.5.1 on
p. 26 into second quantization using atomic hydrogen 1s orbitals.

2 Use a one-particle basisset of atomic hydrogen 1s orbitals. Ignore the non-orthonormality of the
one-particle wave functions. List the two-particle Slater determinants of the hydrogen molecule
and express them in terms of creation and annihilation operators and the vacuum state.

3 Consider the Hamiltonian

Ĥ =
∑
α,β

hα,β ĉ
†
αĉβ +

1

2

∑
α,β,γ,δ

Wα,β,γδ ĉ
†
αĉ
†
β ĉδ ĉγ (3.84)

with

hα,β = ϵ̄δα,β − tδσα,σβ
(
1− δRα,Rβ

)
(3.85)

and

Wα,β,γ,δ = δα,γδβ,δ

[
UδRα,Rβ + V (1− δRα,Rβ )

]
(3.86)

where the indices α, β, . . . are combined indices α = (R, σ) holding a site index R ∈ {1, 2} and
a spin index σ ∈ {↑, ↓}.
The on-site Coulomb parameter U describes the Coulomb repulsion of two electrons on the
same site and the parameter V describes the Coulomb repulsion of two electrons on neighboring
sites. We use the assumption U > V which will be useful to avoid considering distinct cases.

Determine the Hamiltonian for the (4 × 4) subblock of two-particle states with Sz = 0. I
recommend to first write out the Hamiltonian with the specific indices of the hydrogen molecule.
Try to combine creation and annihilation operators to occupation-number operators n̂j . Then
act with the Hamiltonian onto the four two-particle basis states and extract the matrix elements.

4 Exploit the reflection symmetry P̂ of the hydrogen molecule to block-diagonalize the Hamil-
tonian in the two-particle channel. That is, construct the eigenstates of the parity operator
under reflection symmetry of the molecule. These parity eigenstates are superpositions of the
two-particle Slater determinants |Φi ⟩ obtained previously. The Hamiltonian in terms of the
symmetrized statesa will “fall apart” into one 2× 2 matrix and 1× 1 blocks.

aWith symmetrized states, I mean eigenstates of the symmetry operator. In the case of the parity operator these
eigenstates may be symmetric or antisymmetric.
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Discussion

1 Translate the non-interacting Hamiltonian for the hydrogen molecule from section 1.5.1 on
p. 26 into second quantization using atomic hydrogen 1s orbitals.

The one-particle Hamilton operator in the one-particle Hilbert space given earlier has the form

ĥ =
∑

σ∈{↑,↓}

2∑
R=1

|πR,σ⟩ ϵ̄ ⟨πR,σ|︸ ︷︷ ︸
atomic energies

−
∑

σ∈{↑,↓}

(
|π1,σ⟩ t ⟨π2,σ|+ |π2,σ⟩ t ⟨π1,σ|

)
︸ ︷︷ ︸

hopping

(3.87)

For an operator in Fock space, the term one-particle means “one particle at a time” . The corre-
sponding one-particle operator in Fock space is

ĥ =
∑

σ∈{↑,↓}

2∑
R=1

ϵ̄ĉ†R,σ ĉR,σ︸ ︷︷ ︸
atomic energies

−
∑

σ∈{↑,↓}

t
(
ĉ†1,σ ĉ2,σ + ĉ

†
2,σ ĉ1,σ

)
︸ ︷︷ ︸

hopping

(3.88)

2 Use a one-particle basisset of atomic hydrogen 1s orbitals. Ignore the non-orthonormality of the
one-particle wave functions. List the two-particle Slater determinants of the hydrogen molecule
and express them in terms of creation and annihilation operators and the vacuum state.

Let me first set up the one-particle basisset and specify an order.

| ↑, 0⟩ = |1000⟩ = ĉ†1,↑|O⟩

| ↓, 0⟩ = |0100⟩ = ĉ†1,↓|O⟩

|0, ↑⟩ = |0010⟩ = ĉ†2,↑|O⟩

|0, ↓⟩ = |0001⟩ = ĉ†2,↓|O⟩ (3.89)

The notation for the kets on the very left of the equation above follows a convention that has not
been used or defined before. Here, the two entries refer to the two sites of the hydrogen molecule.
The arrows indicate which orbitals on that molecule are occupied, namely none for 0, only the spin-up
orbital for ↑, only the spin-down orbital for ↓, or both spin orbitals for ↑↓. The notation is very intuitive
for certain systems, but, in contrast to the occupation-number representation, it is not suitable in
general.

The two-particle states are, with Eq. 3.21,

|Φ1⟩ = | ↑↓, 0⟩ = |1100⟩ = ĉ†1,↑ĉ
†
1,↓|O⟩

|Φ2⟩ = |0, ↑↓⟩ = |0011⟩ = ĉ†2,↑ĉ
†
2,↓|O⟩

|Φ3⟩ = | ↑, ↓⟩ = |1001⟩ = ĉ†1,↑ĉ
†
2,↓|O⟩

|Φ4⟩ = | ↓, ↑⟩ = |0110⟩ = ĉ†1,↓ĉ
†
2,↑|O⟩

|Φ5⟩ = | ↑, ↑⟩ = |1010⟩ = ĉ†1,↑ĉ
†
2,↑|O⟩

|Φ6⟩ = | ↓, ↓⟩ = |0101⟩ = ĉ†1,↓ĉ
†
2,↓|O⟩ (3.90)

Please note the order of the operators, respectively the sign.
Let me check the number of two-particle states. With n = 4 one-particle orbitals, I can form

n(n − 1)/2 = 6 two-particle states.10 Thus, the number of orbitals in our basisset is correct.
10There are four possibilities to select the first orbital. Because the second orbital must be different, there are only

3 possibilities to choose the second orbital. Now, however, each pair of orbitals has been selected twice, namely once
for each order of the two orbitals. This is corrected by the division by two.
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Discussion:
The first two two-particle states, |Φ1⟩, |Φ2⟩ have a doubly occupied hydrogen atom. They describe

an ionic pair H−H+. The second pair of two-particle states |Φ3⟩, |Φ4⟩ describe antiferromagnetic
electron distributions. The last two states |Φ5⟩, |Φ6⟩ are states with parallel spins along the z-axis.

The two antiferromagnetic states |Φ3⟩, |Φ4⟩ can be superimposed to give a singlet state or a
triplet state. The singlet state has a total spin of zero, while the triplet state has a total spin S=1,
while Sz = 0ℏ. This last state is called a “triplet state” , because there are three degenerate states
with S = 1. The singlet state is called “singlet” because it has an energy different from the triplet
state and it is non-degenerate.

3 Consider the Hamiltonian

Ĥ =
∑
α,β

hα,β ĉ
†
αĉβ +

1

2

∑
α,β,γ,δ

Wα,β,γδ ĉ
†
αĉ
†
β ĉδ ĉγ (3.91)

with

hα,β = ϵ̄δα,β − tδσα,σβ
(
1− δRα,Rβ

)
(3.92)

and

Wα,β,γ,δ = δα,γδβ,δ

[
UδRα,Rβ + V (1− δRα,Rβ )

]
(3.93)

The parameter U describes the Coulomb matrix elements of two electrons on the same site
and the parameter V describes that of two electrons on different sites. We use the assumption
U > V which will be useful to avoid considering distinct cases.

Determine the Hamiltonian for the (4 × 4) subblock of two-particle states with Sz = 0. I
recommend to first write out the Hamiltonian with the specific indices of the hydrogen molecule.
Try to combine creation and annihilation operators to occupation-number operators n̂j . Then
act with the Hamiltonian onto the four two-particle basis states and extract the matrix elements.

ĥ
Eq. 3.49
=

∑
α,β

hα,β ĉ
†
αĉβ

= ϵ̄
∑

σ∈{↑,↓}

∑
R∈{1,2}

ĉ†R,σ ĉR,σ︸ ︷︷ ︸
n̂R,σ

−t
∑

σ∈{↑,↓}

(
ĉ†1,σ ĉ2,σ + ĉ

†
2,σ ĉ1,σ

)

Ŵ
Eq. 3.50
=

1

2

∑
α,β,γ,δ

Wα,β,γ,δ ĉ
†
αĉ
†
β ĉδ ĉγ

=
1

2
U
∑

R∈{1,2}

∑
σ,σ′∈{↑,↓}

ĉ†R,σ ĉ
†
R,σ′ ĉR,σ′ ĉR,σ︸ ︷︷ ︸

see point A below

+
1

2
V

∑
R ̸=R′∈{1,2}

∑
σ,σ′∈{↑,↓}

ĉ†R,σ ĉ
†
R′,σ′ ĉR′,σ′ ĉR,σ(3.94)

= U
∑

R∈{1,2}

ĉ†R,↑ĉR,↑︸ ︷︷ ︸
n̂R,↑

ĉ†R,↓ĉR,↓︸ ︷︷ ︸
n̂R,↓︸ ︷︷ ︸

double occupancy

+V
∑

σ,σ′∈{↑,↓}

ĉ†1,σ ĉ
†
2,σ′ ĉ2,σ′ ĉ1,σ︸ ︷︷ ︸
n̂1,σ n̂2,σ′

(3.95)

Thus, the Hamiltonian has the form

Ĥ
def
= ĥ + Ŵ = ϵ̄

∑
R,σ

n̂R,σ + U
∑
R

n̂R,↑n̂R,↓ + V
(∑

σ

n̂1,σ

)(∑
σ′

n̂2,σ′
)

−t
∑
σ

(
ĉ†1,σ ĉ2,σ + ĉ

†
2,σ ĉ1,σ

)
(3.96)

Remarks:
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• The occupation-number operators n̂α = ĉ
†
αĉα are convenient, because the Slater determinants

in the same basisset are eigenstates of the occupation-number operator. Furthermore, the
occupation-number operator commutates with the creation and annihilation operators in the
same basisset.

• The factor 12 in the interaction energy has been absorbed by making specific selections of spins,
respectively sites.

• Point A in Eq. 3.95:

ĉ†R,σ ĉ
†
R,σ′ ĉR,σ′ ĉR,σ︸ ︷︷ ︸

−ĉR,σ ĉR,σ′

= −ĉ†R,σ ĉ†R,σ′ ĉR,σ︸ ︷︷ ︸
δσ,σ′−ĉR,σ ĉ

†
R,σ′

ĉR,σ′ = −δσ,σ′ ĉ†R,σ ĉR,σ′︸ ︷︷ ︸
exchange

+ ĉ†R,σ ĉR,σ ĉ
†
R,σ′ ĉR,σ′︸ ︷︷ ︸

Hartree

= n̂R,σn̂R,σ′ − δσ,σ′ n̂R,σ︸︷︷︸
=n̂2R,σ

=
(
1− δσ,σ′

)
n̂R,σn̂R,σ′ (3.97)

When the Hamiltonian acts onto the states with Sz = 0, namely |Φj⟩ with j ∈ {1, . . . , 6} from
Eq. 3.90, one obtains

Ĥ ĉ†1,↑ĉ
†
1,↓|O⟩︸ ︷︷ ︸
|Φ1⟩

= ĉ†1,↑ĉ
†
1,↓|O⟩︸ ︷︷ ︸
|Φ1⟩

(
2ϵ̄+ U

)
+

−ĉ†1,↓ĉ
†
2,↑︷ ︸︸ ︷

ĉ†2,↑ĉ
†
1,↓ |O⟩︸ ︷︷ ︸
−|Φ4⟩

(
−t
)
+ ĉ†1,↑ĉ

†
2,↓|O⟩︸ ︷︷ ︸
|Φ3⟩

(
−t
)

Ĥ ĉ†2,↑ĉ
†
2,↓|O⟩︸ ︷︷ ︸
|Φ2⟩

= ĉ†2,↑ĉ
†
2,↓|O⟩︸ ︷︷ ︸
|Φ2⟩

(
2ϵ̄+ U

)
+ ĉ†1,↑ĉ

†
2,↓|O⟩︸ ︷︷ ︸
|Φ3⟩

(
−t
)
+

−ĉ†1,↓ĉ
†
2,↑︷ ︸︸ ︷

ĉ†2,↑ĉ
†
1,↓ |O⟩︸ ︷︷ ︸
−|Φ4⟩

(
−t
)

Ĥ ĉ†1,↑ĉ
†
2,↓|O⟩︸ ︷︷ ︸
|Φ3⟩

= ĉ†1,↑ĉ
†
2,↓|O⟩︸ ︷︷ ︸
|Φ3⟩

(
2ϵ̄+ V

)
+ ĉ†2,↑ĉ

†
2,↓|O⟩︸ ︷︷ ︸
|Φ2⟩

(
−t
)
+ ĉ†1,↑ĉ

†
1,↓|O⟩︸ ︷︷ ︸
|Φ1⟩

(
−t
)

Ĥ ĉ†1,↓ĉ
†
2,↑|O⟩︸ ︷︷ ︸
|Φ4⟩

= ĉ†1,↓ĉ
†
2,↑|O⟩︸ ︷︷ ︸
|Φ4⟩

(
2ϵ̄+ V

)
+

−ĉ†2,↑ĉ
†
2,↓︷ ︸︸ ︷

ĉ†2,↓ĉ
†
2,↑ |O⟩︸ ︷︷ ︸
−|Φ2⟩

(
−t
)
+

−ĉ†1,↑ĉ
†
1,↓︷ ︸︸ ︷

ĉ†1,↓ĉ
†
1,↑ |O⟩︸ ︷︷ ︸
−|Φ1⟩

(
−t
)

Ĥ ĉ†1,↑ĉ
†
2,↑|O⟩︸ ︷︷ ︸
|Φ5⟩

= ĉ†1,↑ĉ
†
2,↑|O⟩︸ ︷︷ ︸
|Φ5⟩

(
2ϵ̄+ V

)

Ĥ ĉ†1,↓ĉ
†
2,↓|O⟩︸ ︷︷ ︸
|Φ6⟩

= ĉ†1,↓ĉ
†
2,↓|O⟩︸ ︷︷ ︸
|Φ6⟩

(
2ϵ̄+ V

)
(3.98)

Let P̂2 be the projector onto the two-particle Hilbert space. The results obtained above can be
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condensed into the following equation for the Hamiltonian in the two-particle Hilbert space.

P̂2

(
ĥ + Ŵ

)
P̂2 =

6∑
i ,j=1

|Φi ⟩⟨Φi |ĥ + Ŵ |Φj⟩⟨Φj |

=


ĉ†1,↑ĉ

†
1,↓|O⟩

ĉ†2,↑ĉ
†
2,↓|O⟩

ĉ†1,↑ĉ
†
2,↓|O⟩

ĉ†1,↓ĉ
†
2,↑|O⟩



2ϵ̄+ U 0 −t +t

0 2ϵ̄+ U −t +t

−t −t 2ϵ̄+ V 0

+t +t 0 2ϵ̄+ V



⟨O|ĉ1,↓ĉ1,↑
⟨O|ĉ2,↓ĉ2,↑
⟨O|ĉ2,↓ĉ1,↑
⟨O|ĉ2,↑ĉ1,↓


+

(
ĉ†1,↑ĉ

†
2,↑|O⟩

ĉ†1,↓ĉ
†
1,↓|O⟩

)(
2ϵ̄+ V 0

0 2ϵ̄+ V

)(
⟨O|ĉ2,↑ĉ1,↑
⟨O|ĉ2,↓ĉ1,↓

)

=



|Φ1⟩
|Φ2⟩
|Φ3⟩
|Φ4⟩
|Φ5⟩
|Φ6⟩





2ϵ̄+ U 0 −t +t 0 0

0 2ϵ̄+ U −t +t 0 0

−t −t 2ϵ̄+ V 0 0 0

+t +t 0 2ϵ̄+ V 0 0

0 0 0 0 2ϵ̄+ V 0

0 0 0 0 0 2ϵ̄+ V





⟨Φ1|
⟨Φ2|
⟨Φ3|
⟨Φ4|
⟨Φ5|
⟨Φ6|


(3.99)

4 Exploit the reflection symmetry P̂ of the hydrogen molecule to block-diagonalize the Hamil-
tonian in the two-particle channel. That is, construct the eigenstates of the parity operator
under reflection symmetry of the molecule. These parity eigenstates are superpositions of the
two-particle Slater determinants |Φi ⟩ obtained previously. The Hamiltonian in terms of the
symmetrized statesa will “fall apart” into one 2× 2 matrix and 1× 1 blocks.

aWith symmetrized states, I mean eigenstates of the symmetry operator. In the case of the parity operator these
eigenstates may be symmetric or antisymmetric.

Determine parity eigenstates: Let P̂ be the parity operator under space inversion.

P̂ |Φ1⟩ = P̂ ĉ†1↑ĉ
†
1↓|O⟩ = ĉ

†
2↑ĉ
†
2↓|O⟩ = |Φ2⟩

P̂ |Φ2⟩ = P̂ ĉ†2↑ĉ
†
2↓|O⟩ = ĉ

†
1↑ĉ
†
1↓|O⟩ = |Φ1⟩

P̂ |Φ3⟩ = P̂ ĉ†1↑ĉ
†
2↓|O⟩ = ĉ

†
2↑ĉ
†
1↓|O⟩ = −ĉ

†
1↓ĉ
†
2↑|O⟩ = −|Φ4⟩

P̂ |Φ4⟩ = P̂ ĉ†1↓ĉ
†
2↑|O⟩ = ĉ

†
2↓ĉ
†
1↑|O⟩ = −ĉ

†
1↑ĉ
†
2↓|O⟩ = −|Φ3⟩

P̂ |Φ5⟩ = P̂ ĉ†1↑ĉ
†
2↑|O⟩ = ĉ

†
2↑ĉ
†
1↑|O⟩ = −ĉ

†
1↑ĉ
†
2↑|O⟩ = −|Φ5⟩

P̂ |Φ6⟩ = P̂ ĉ†1↓ĉ
†
2↓|O⟩ = ĉ

†
2↓ĉ
†
1↓|O⟩ = −ĉ

†
1↓ĉ
†
2↓|O⟩ = −|Φ6⟩ (3.100)

Just above, we worked out P̂ |Φj⟩ for j = 1, 6. Now we construct the parity eigenstates |Ψj⟩
(j ∈ {a, b, c, d, e, f }).

The eigenstates |ψj ⟩ (j ∈ {a, b}) with parity eigenvalue +1 are

|Ψa⟩
def
=
1√
2

(
ĉ†1↑ĉ

†
1↓ + ĉ

†
2↑ĉ
†
2↓

)
|O⟩ =

(
|Φ1⟩+ |Φ2⟩

) 1√
2

(3.101)

|Ψb⟩
def
=
1√
2

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑

)
|O⟩ =

(
|Φ3⟩ − |Φ4⟩

) 1√
2

(3.102)
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and the eigenstates |ψj⟩ (j ∈ {c, d, e, f }) with parity eigenvalue −1 are

|Ψc⟩
def
=
1√
2

(
ĉ†1↑ĉ

†
1↓ − ĉ

†
2↑ĉ
†
2↓

)
|O⟩ =

(
|Φ1⟩ − |Φ2⟩

) 1√
2

(3.103)

|Ψd⟩
def
=
1√
2

(
ĉ†1↑ĉ

†
2↓ + ĉ

†
1↓ĉ
†
2↑

)
|O⟩ =

(
|Φ3⟩+ |Φ4⟩

) 1√
2

(3.104)

|Ψe⟩
def
= ĉ†1↑ĉ

†
2↑|O⟩ = |Φ5⟩ (3.105)

|Ψf ⟩
def
= ĉ†1↓ĉ

†
2↓|O⟩ = |Φ6⟩ (3.106)

Determine Hamiltonian for parity eigenstates: Now, we start from the parity eigenstates and
apply the Hamiltonian to them. As expected, the result does not contain a contribution of the
opposite parity. This means that the Hamiltonian becomes block diagonal in the representation of
parity eigenstates.

I use the matrix-vector notation in the basis of the two-particle states |Φj⟩ with j ∈ {1, . . . , 4}
defined in Eq. 3.90. The first term in Eq. 3.112 describes the Hamiltonian in the desired 4-dimensional
subspace. To keep things simple, I exclude the states |Φe⟩ and |Φf ⟩, because we know already, that
they are eigenstates of the Hamiltonian.

I apply the Hamiltonian to the parity eigenstates |Ψj⟩ with j ∈ {a, b, c, d} one at a time. Choosing
symmetry eigenstates, has the advantage that the result (ĥ + Ŵ )|Φj⟩ will be limited to few terms,
namely the symmetry eigenstates with the same symmetry eigenvalues.

1. I begin with |Ψa⟩
Eq. 3.101
=

(
|Φ1⟩+ |Φ2⟩

)
/
√
2

The state |Ψa⟩ is represented in the basis |Φj⟩ with j ∈ {1, . . . , 4} by the vector c⃗a =
(1, 1, 0, 0)/

√
2, i.e.

|Ψa⟩ =
4∑
j=1

|Φj⟩cj,a (3.107)

Let H be the matrix of the Hamiltonian ĥ + Ŵ our basiset

Hc⃗a =


2ϵ̄+ U 0 −t +t

0 2ϵ̄+ U −t +t

−t −t 2ϵ̄+ V 0

+t +t 0 2ϵ̄+ V



1

1

0

0

 1√
2
=


2ϵ̄+ U

2ϵ̄+ U

−2t
+2t

 1√
2

=


1

1

0

0

 1√
2

(
2ϵ̄+ U

)
+


0

0

1

−1

 1√
2

(
−2t

)

⇒ (ĥ + Ŵ )|Ψa⟩ = |Ψa⟩
(
2ϵ̄+ U

)
+ |Ψb⟩

(
−2t

)
(3.108)

2. |Ψb⟩
Eq. 3.102
=

(
|Φ3⟩ − |Φ4⟩

)
/
√
2 with the vector representation c⃗b = (0, 0, 1,−1)/

√
2 of |Ψb⟩.

Hc⃗b =


2ϵ̄+ U 0 −t +t

0 2ϵ̄+ U −t +t

−t −t 2ϵ̄+ V 0

+t +t 0 2ϵ̄+ V



0

0

1

−1

 1√
2
=


−2t
−2t
2ϵ̄+ V

−(2ϵ̄+ V )

 1√
2

⇒ (ĥ + Ŵ )|Ψb⟩ = |Ψa⟩
(
−2t

)
+ |Ψb⟩

(
2ϵ̄+ V

)
(3.109)
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3. |Ψc⟩
Eq. 3.103
=

(
|Φ1⟩ − |Φ2⟩

)
/
√
2 with the vector representation c⃗c = (1,−1, 0, 0)/

√
2 of |Ψc⟩.

Hc⃗c =


2ϵ̄+ U 0 −t +t

0 2ϵ̄+ U −t +t

−t −t 2ϵ̄+ V 0

+t +t 0 2ϵ̄+ V



1

−1
0

0

 1√
2
=


2ϵ̄+ U

−(2ϵ̄+ U)
0

0

 1√
2

⇒ (ĥ + Ŵ )|Ψc⟩ = |Ψc⟩
(
2ϵ̄+ U

)
(3.110)

4. |Ψd⟩
Eq. ??
=

(
|Φ3⟩+ |Φ4⟩

)
/
√
2 with the vector representation c⃗d = (0, 0, 1, 1)/

√
2 of |Ψd⟩.

Hc⃗d =


2ϵ̄+ U 0 −t +t

0 2ϵ̄+ U −t +t

−t −t 2ϵ̄+ V 0

+t +t 0 2ϵ̄+ V



0

0

1

1

 1√
2
=


0

0

2ϵ̄+ V

2ϵ̄+ V

 1√
2

⇒ (ĥ + Ŵ )|Ψd⟩ = |Ψd⟩
(
2ϵ̄+ V

)
(3.111)

These expressions can be used to express the Hamiltonian Eq. 3.112 in terms of symmetry adapted
orbitals |Ψj ⟩ with j ∈ {a, b, c, d, e, f }.

P̂2(ĥ + Ŵ )P̂2 =



|Φa⟩
|Φb⟩
|Φc⟩
|Φd⟩
|Φe⟩
|Φf ⟩





2ϵ̄+ U −2t 0 0 0 0

−2t 2ϵ̄+ V 0 0 0 0

0 0 2ϵ̄+ U 0 0 0

0 0 0 2ϵ̄+ V 0 0

0 0 0 0 2ϵ̄+ V 0

0 0 0 0 0 2ϵ̄+ V





⟨Φa|
⟨Φb|
⟨Φc |
⟨Φd |
⟨Φe |
⟨Φf |


(3.112)

All this effort has been done to obtain two block-diagonalize the Hamiltonian further. We obtained
two additional eigenstates of the Hamiltonian, and one 2× 2 block.

Diagonalize Hamiltonian in the basis of parity eigenstates: In the basis of eigenstates of the
parity operator the Hamiltonian falls apart into two 1×1 blocks and one 2×2 block. The one-by-one
blocks identify |Ψc⟩ and |Ψd⟩ as eigenstates. The eigenvalues are Ec = 2ϵ̄ + U and Ed = 2ϵ̄ + V .
The 2× 2 block in the space spanned by |Ψj⟩ with j ∈ {Ψa,Ψb} has the form(

2ϵ̄+ U −2t
−2t 2ϵ̄+ V

)
(3.113)

and has eigenvalues

E± = 2ϵ̄+
U + V

2
±

√(
U − V
2

)2
+ 4t2 (3.114)

and eigenstates

|Ψ±⟩ = |Ψa⟩ cos(γ±) + |Ψb⟩ sin(γ±) (3.115)

Using cosine and sine takes care of the normalization, because cos2(x) + sin2(x) = 1.
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The angle γ± is obtained from the eigenvector equation(
2ϵ̄+ U − E± −2t
−2t 2ϵ̄+ V − E±

)(
cos(γ±)

sin(γ±)

)
= 0

tan(γ±) =
sin(γ±)

cos(γ±)
=
1

2t

(
2ϵ̄+ U − E±

)
=
1

2t

2ϵ̄+ U − 2ϵ̄− U + V
2
∓

√(
U − V
2

)2
+ 4t2


=
1

2t

U − V
2
∓

√(
U − V
2

)2
+ 4t2


=
U − V
4t

∓

√
1 +

(
U − V
4t

)2
= q ∓

√
1 + q2 with q =

U − V
4t

γ± = arctan
(
q ∓

√
1 + q2

)
with q =

U − V
4t

(3.116)

The parameter q is a measure for the importance of Coulomb interactions. For strong interaction,
that is when hopping is small compared to the Coulomb terms, q is very large. On the other hand,
the non-interacting limit is characterized by q = 0.

The energy can be expressed in terms of the parameter q.

E± = 2ϵ̄+
U + V

2
±

√(
U − V
2

)2
+ 4t2︸ ︷︷ ︸

−2t tan(γ±)+ U−V
2

= 2ϵ̄+ U − 2t
(
q ∓

√
1 + q2

)
︸ ︷︷ ︸

tan(γ±)

(3.117)

Thus, we obtained as eigenstates of the Hamiltonian in the two-particle channel

eigenstate energy parity total spin Sz

|Ψ−⟩ 2ϵ̄+ U − 2t(q +
√
1 + q2) +1 0 0ℏ antiferrom. singlet

|Ψ+⟩ 2ϵ̄+ U − 2t(q −
√
1 + q2) +1 0 0ℏ antib. singlet

|Ψc⟩ 2ϵ̄+ U -1 0 0ℏ ionized (H+H−) state
|Ψd⟩ 2ϵ̄+ V -1 1 0ℏ triplet
|Ψe⟩ 2ϵ̄+ V -1 1 1ℏ triplet
|Ψf ⟩ 2ϵ̄+ V -1 1 -1ℏ triplet

Discuss eigenstates Let me summarize the energy eigenstates and their energy levels. We make
the plausible assumption that U > V .

1. The lowest state is

|Ψ−⟩ = |Ψa⟩ cos(γ−) + |Ψb⟩ sin(γ−)

=

[
cos γ−√
2

(
ĉ†1↑ĉ

†
1↓ + ĉ

†
2↑ĉ
†
2↓

)
+
sin(γ−)√
2

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑

)]
|O⟩ (3.118)

with energy

E− = 2ϵ̄+
U + V

2
−

√(
U − V
2

)2
+ 4t2

= 2ϵ̄+ U − 2t tan(γ−) (3.119)
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This is corresponds to the bonding configuration of the hydrogen atom.

• In the non-interacting limit q = (U − V )/(4t) = 0, γ = π/4, the ground-state wave
function is a superposition of four Slater determinants, which, however, can be written as
a single Slater determinant of two bonding orbitals,.

|Ψ−(q = 0)⟩ =
1√
2

(
ĉ†1,↑ + ĉ

†
2,↑

) 1√
2

(
ĉ†1,↓ + ĉ

†
2,↓

)
|O⟩ (3.120)

• In the limit with infinite interaction q = (U−V )/(4t) =∞, γ = π/2, the contribution with
double occupancy, namely |Ψa⟩ is suppressed and the ground state is an antiferromagnetic
singlet, namely |Ψb⟩.

|Ψ−(q =∞)⟩ = |Ψb⟩ =
1√
2

(
ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ

†
2,↑

)
|O⟩ (3.121)

An antiferromagnetic singlet describes a singlet state, which has no magnetization, but
still an antiferromagnetic correlation between the spins on different sites.

• The mechanism that favors an antiferromagnetic alignment of spins over a ferromagnetic
alignment is called superexchange. The usual explanation for this effect is as follows:
When two electrons with equal spin are located on neighboring sites, the Pauli-principle
prohibits any delocalization of electrons onto the neighboring site, because no two elec-
trons with the same spin can occupy the same spatial orbital. If the electrons have opposite
spin, each electron finds a vacant orbital with the same spin on the other site. The de-
localization to the neighboring site requires to overcome the on-site Coulomb repulsion
between the electrons, but it also lowers the kinetic energy. The lowering of the kinetic
energy can be argued in terms of Heisenberg’s uncertainty principle.

• This state expresses the left-right correlation of the electrons in a bond. If the spin-up
electron is on the left side, the spin-down electron is on the right hand side and vice versa.
That is, the electrons get out of each other’s way to reduce their Coulomb repulsion. The
price to pay, is that the electrons also loose their binding energy, because the electrons
are confined to one of the two atoms. The energy in the strongly correlated limit is
E−(q =∞) = 2ϵ̄+ V .

• This left-right-correlated state is also the classical example for entanglement: The
thought experiment goes as follows: Prepare hydrogen molecule in the left-right cor-
related state and separate the two hydrogen atoms. Two observers receive one hydrogen
atom each. One observer measures the spin of his hydrogen atom. Due to the measure-
ment, the wave function collapses “instantly” into either ĉ1,↑ĉ2,↓|O⟩ or ĉ1,↓ĉ2,↑|O⟩. This
implies that by doing his measurement, he determines what the outcome of the measure-
ment of the other observer will be. This gives the impression of an information transfer,
which may even proceed faster than the speed of light, a seeming paradox.

2. The second-lowest state is

|Ψd⟩
def
=
1√
2

(
ĉ†1↑ĉ

†
2↓ + ĉ

†
1↓ĉ
†
2↑

)
|O⟩ (3.122)

with energy

Ed = 2ϵ̄+ V (3.123)

This is actually one of the three triplet states with parallel spins. |Ψd⟩ has S = 1 and Sz = 0ℏ.
The other two states of the triplet are

|ΨS=1,Sz=+ℏ⟩ = ĉ
†
1↑ĉ
†
2↑|O⟩ (3.124)

|ΨS=1,Sz=−ℏ⟩ = ĉ
†
1↓ĉ
†
2↓|O⟩ (3.125)

and have the same energy.
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• The energy between the singlet ground state and the triplet is the so-called singlet-triplet
splitting. It is the smallest excitation energy of a hydrogen molecule.

∆st = Ed − E− =

√(
U − V
2

)2
+ 4t2 −

U − V
2
≈
(2t)2

U − V (3.126)

This means that the excitation energy becomes smaller due to the Coulomb interaction.

• The singlet-triplet excitation is not a one-particle excitation and, therefore, it does not
show up in the density of states or the spectral function. Rather, it is a two-particle
excitation like an optical excitation.

• If we consider only the singlet ground state and the triplet as first excited state, we can
describe the hydrogen molecule in the strongly interacting limit by a Heisenberg model,
which is discussed in greater detail in section ?? on p. ??. The Heisenberg model has the
Hamiltonian

ĤH = −
∑

R,R′∈n.n.
JR,R′

ˆ⃗SR
ˆ⃗SR′ with

JR,R′
def
= −∆st/ℏ−2 ≈ −

(2t/ℏ)2

U − V for R,R′ next neighbors (3.127)

The indices R,R′ refer to the individual hydrogen atoms. The double sum is executed
over all nearest neighbors (n.n.). Each spin operator acts on a spin-one-half system, i.e.
the electron on a specific hydrogen atom. The coupling J between two neighboring spins
is called exchange parameter.11 Because it is negative, it favors an antiferromagnetic
coupling between the sites.
The elementary excitations of the Heisenberg model are spin-waves, so-called magnons.
A magnon is yet another elementary excitation of the solid state. Editor: I plan to
describe magnons in more detail in appendix ?? on p. ??.

• In the non-interacting case, the triplet states correspond to a state, where one electron is
lifted from the bonding state into the antibonding state. The electron in the antibonding
state prefers a parallel spin alignment because of Hund’s rule. Therefore the excitation
energy is reduced with increasing interaction and the lowest excitation goes from a singlet
to a triplet state.
Note, however, that the dominant optical excitation in the hydrogen molecule does not
lead to the triplet states, but to the “ionized (H+H−) state” |Φc⟩ discussed below in
Eq. 3.128. This is because the optic excitations, which dominate the absorption spectrum,
conserve the spin. This is because the dominant excitations are due to the electric field
and preserve the spin, while the excitations due to the magnetic field, which may induce
spin flips, are much weaker.

• Mott-Hubbard insulator. In our example on the insulating linear chain in section 1.5.4, we
learned how a band gap in a metal can be opened by breaking the translational symmetry.
This is what is called a band insulator. Interaction does not play a role in the formation
of an insulator.
One important aspect of a non-magnetic band insulator is that it requires an even number
of electrons in the unit cell. It was surprising to find that certain transition-metal oxides
turned out to be insulating despite having an odd number of electrons. An example is
the half-filled Hubbard model. A simple-minded picture is that, in a system with strong
interactions, electrons occupy each site with one electron. An excitation must lift an
electron from a singly occupied site to one that is already occupied. Therefore, the
excitation energy is finite and of order U.
Editor: This is not clear as such. Show that a band in the band structure
must be broken up to create a gap with an odd number of electrons.

11The definition of exchange parameter J is not uniform.[53]
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• The relevant Coulomb parameter for the excitation spectra is not the onsite Coulomb
repulsion U, but the difference U − V between onsite and offsite Coulomb parameters.
Thus, the effective Coulomb parameter is smaller than anticipated. In the Hubbard model,
the effect of the offsite Coulomb interaction is discarded from the beginning. In the
so-called extended Hubbard model (see e.g.[54]), the off-site Coulomb interaction is
taken into account. (In contrast to the simple Hubbard model with only onsite Coulomb
terms, the extended Hubbard model can describe Plasmons [see Tosatti and Anderson,
Japanese Journal of Applied Physics 13, 381 (1974)] and it can describe charge order-
ing.(see e.g.[55])

3. Above the triplet, we find the ionized (H+H−) state |Ψc⟩

|Ψc⟩
def
=
1√
2

(
ĉ†1↑ĉ

†
1↓ − ĉ

†
2↑ĉ
†
2↓

)
|O⟩ (3.128)

with energy

Ec = 2ϵ̄+ U (3.129)

• this is a state with double occupancy. It is a superpositions of two Slater determinants,
which describe ionic pairs, H−H+ and H+H−.

4. Finally, we find again a complicated singlet state

|Ψ+⟩ = |Ψa⟩ cos(γ+) + |Ψb⟩ sin(γ+)

=

[
cos γ+√
2

(
ĉ†1↑ĉ

†
1↓ + ĉ

†
2↑ĉ
†
2↓

)
+
sin(γ+)√
2

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑

)]
|O⟩ (3.130)

with energy

E+ = 2ϵ̄+
U + V

2
+

√(
U − V
2

)2
+ 4t2 ≈ 2ϵ̄+ U +

4t2

U − V (3.131)

• In the non-interacting system, this is a singlet state with both electrons in the antibonding
orbitals.

• In the interacting system this state accumulates the contribution with double occupancy
in order to compensate the suppression of the double occupancy in the singlet ground
state. The total contribution of a given basisstate summed over all eigenstates of the
system must be unity.

The many-particle energies are shown as function of the Coulomb interaction in figure 3.2
Let me combine the energy levels of the hydrogen molecule with interaction

E− =
(
2ϵ̄+ V

)
+ 2t

U − V
4t

−

√
1 +

(
U − V
4t

)2 antiferromagnetic singlet (3.132)

Ed =
(
2ϵ̄+ V

)
(ferromagnetic) triplet (3.133)

Ec =
(
2ϵ̄+ V

)
+ 4t

U − V
4t

ionized (H+H−) state (3.134)

E+ =
(
2ϵ̄+ V

)
+ 2t

U − V
4t

+

√
1 +

(
U − V
4t

)2 two antibonding electrons

(3.135)
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2tt0

−2t

−t

t

0

U−V

N=2

+ −

antiferromagnetic singlet

triplet

Hartree−Fock

antibonding singlet

∆st

2t

E

ionized state H H

Fig. 3.2: Energies of the hydrogen molecule with two electrons are shown as function of q =
(U − V )/(4t) in units of the hopping t. The energies are shifted by 2t − 2ϵ̄− V . The energy of the
ground state E−, the antiferromagnetic singlet is shown in blue. The energy triplet states |Ψd⟩, |Ψe⟩,
and |Ψf ⟩, (artificially displaced) are shown in red. The energy of the double-occupancy state |Ψc⟩
is shown in green and the state |Ψ+⟩ with two antibonding orbitals is shown in magenta. The black
dashed line gives the spin-restricted Hartree-Fock energy with both electrons in the bonding orbital.
Note that the Hartree-Fock ground state undergoes a transition to an antiferromagnetic broken-
symmetry state for large q. Editor: A copy of this figure is fig. ?? on p. ?? Editor:
Caution! for the figure V = 0 has been used.

3.11.2 Spin eigenstates

Purpose

The main purpose of this exercise is to practice the manipulation of creation and annihilation opera-
tors. The secondary purpose is to get used to one rather common two-particle operator, the squared
spin. The result obtained here will be required later in section ?? and in appendix D.1.1.

Introduction

Consider a system with two orbital degrees of freedom and two spin degrees of freedom. The
one-particle basis consists of four spin orbitals, namely |1, ↑⟩, |1, ↓⟩ |2, ↑⟩, |2, ↓⟩.

The orbital degrees of freedom {1, 2} are denoted by symbols f and c . The symbol f is derived
from “f-orbital” (ℓ = 2), which is a localized orbital with large Coulomb interaction, and the symbol c
is derived from a delocalized “conduction electron”. The naming of the spatial orbitals is taken from
the Kondo model, section ??.

The corresponding creation operators are denoted as ĉ†1,↑ =: f̂↑, ĉ1,↓ =: f̂↓, ĉ2,↑ =: ĉ↑, ĉ2,↓ =: ĉ↓.
That is, we use the letter to discriminate between the two sites of the dimer.12

Consider only the two-particle states spanned by the six Slater determinants given in table 3.1.
The numbering is related to the integer representation described in section 3.2. Note, that σ⃗ is the
bit representation of n − 1 rather than of the number n itself. Hence, the vacuum state has
the number n = 1.

12While this notation seems a bit clumsy, it is frequently used, which is why I want to expose the reader to it.
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Table 3.1: Two-particle states of the asymmetric dimer with spin orbitals |f , ↑⟩ and |f , ↓⟩ on the “left”
atom and |c, ↑⟩ and |c, ↓⟩ on the “right” atom.

|n⟩ with n = 1 +
∑4

j=1 σj2
j−1 |σ⃗⟩

∏4
j=1

(
ĉ†j
)σj |O⟩

|4⟩ |1100⟩ f̂ †↑ f̂
†
↓ |O⟩

|6⟩ |1010⟩ f̂ †↑ ĉ
†
↑ |O⟩

|7⟩ |0110⟩ f̂ †↓ ĉ
†
↑ |O⟩

|10⟩ |1001⟩ f̂ †↑ ĉ
†
↓ |O⟩

|11⟩ |0101⟩ f̂ †↓ ĉ
†
↓ |O⟩

13⟩ |0011⟩ ĉ†↑ ĉ
†
↓ |O⟩

The main goal of this exercise is to determine matrix elements of ˆ⃗S2 and of Ŝz and their eigen-
states. The individual questions shall give some guidance towards this goal.

Problem

1 Express Ŝx , Ŝy , and Ŝz in terms of creation operators and annihilation operators. Start from
the Pauli matrices.

2 Express ˆ⃗S2 in terms of Ŝj with j = 1, 2, 3. Then, write it in terms of Ŝ+ = Ŝx + i Ŝy , Ŝ− = Ŝ
†
+

and Sz .

3 Determine the matrix elements of Ŝ+ and Ŝz with the two-particle states listed in table 3.1 on
p.154 above.

4 Determine the matrix elements of Ŝ− from those of Ŝ+ by spin reversal.

5 In the subspace of the two-particle states, express the spin operators Ŝ+, Ŝ−, and Ŝz as sum
of dyadic products of the two-particle states given above. Use P̂2 as symbol for the projection
operator onto the two-particle Hilbert space.

6 Determine the spin eigenstates in the two-particle Hilbert space

Discussion

1 Express Ŝx , Ŝy , and Ŝz in terms of creation operators and annihilation operators. Start from
the Pauli matrices.

The spin operators are given by the Pauli matrices σx , σy and σz , defined in Eq. 1.22, as

Ŝj
Eq. 3.49
=

ℏ
2

∑
σ,σ′∈{↑,↓}

σj,σ,σ′
(
f̂ †σ f̂σ′ + ĉ

†
σ ĉσ′

)
(3.136)

The spin Sj is obtained by summing over both sites (orbitals).
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Hence, the spin operators are

Ŝz =
ℏ
2

(
f̂ †↑ f̂↑ − f̂

†
↓ f̂↓ + ĉ

†
↑ ĉ↑ − ĉ

†
↓ ĉ↓

)
Ŝx =

ℏ
2

(
f̂ †↑ f̂↓ + f̂

†
↓ f̂↑ + ĉ

†
↑ ĉ↓ + ĉ

†
↓ ĉ↑

)
Ŝy =

ℏ
2

(
−i f̂ †↑ f̂↓ + i f̂

†
↓ f̂↑ − i ĉ

†
↑ ĉ↓ + i ĉ

†
↓ ĉ↑

)
(3.137)

2 Express ˆ⃗S2 in terms of Ŝj with j = 1, 2, 3. Then, write it in terms of Ŝ+ = Ŝx + i Ŝy , Ŝ− = Ŝ
†
+

and Sz .

ˆ⃗S2 = Ŝ2x + Ŝ
2
y + Ŝ

2
z (3.138)

While Ŝx , Ŝy Ŝz are one-particle (one-particle-at-a-time) operators, ˆ⃗S2 is a two-particle operator.
It is convenient to introduce the operators

Ŝ+
def
= ˆ⃗Sx + i

ˆ⃗Sy =
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
ℏ

Ŝ−
def
= ˆ⃗Sx − i ˆ⃗Sy =

(
f̂ †↓ f̂↑ + ĉ

†
↓ ĉ↑

)
ℏ (3.139)

Ŝ+ raises Sz , while Ŝ− lowers it. Ŝ+ annihilates a spin-down electron and, if possible, creates instead
the corresponding spin-up electron.

For us, the advantage of the operators Ŝ+ and Ŝ− is that Ŝ+ and Ŝ− have less terms than Ŝx
and Ŝy , when expressed in terms of creation and annihilation operators.

In order to evaluate ˆ⃗S2, we first form the back transform from (Ŝx , Ŝy ) to (Ŝ+, Ŝ−) before we
insert it into the equation Eq. 3.138 above.

Ŝx =
1

2

(
ˆ⃗S+ +

ˆ⃗S−

)
Ŝy = −i

1

2

(
ˆ⃗S+ − ˆ⃗S−

)
(3.140)

This yields

ˆ⃗S2
Eq. 3.138
=

1

2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ Ŝ2z (3.141)

3 Determine the matrix elements of Ŝ+ and Ŝz with the two-particle states listed in table 3.1 on
p.154 above.

We apply the operators Ŝ+ to the two-particle basis states. The idea is to permutate the annihilation
operator towards the vacuum state. Each permutation produces a sign change. When the annihi-
lation operator is interchanged with its corresponding creation operator, the anticommutator leaves
a non-zero contribution. The annihilation operator acting on the vacuum state produces the zero
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state.

ˆ⃗S+|4⟩ = ℏ
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
f̂ †↑ f̂

†
↓ |O⟩ = f̂

†
↑ f̂↓ f̂

†
↑ f̂
†
↓ |O⟩ℏ = |∅⟩ (3.142)

ˆ⃗S+|6⟩ = ℏ
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
f̂ †↑ ĉ

†
↑ |O⟩ = |∅⟩ (3.143)

ˆ⃗S+|7⟩ = ℏ
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
f̂ †↓ ĉ

†
↑ |O⟩ = f̂

†
↑ f̂↓ f̂

†
↓ ĉ
†
↑ |O⟩ℏ = f̂

†
↑ ĉ
†
↑ |O⟩ℏ = |6⟩ℏ (3.144)

ˆ⃗S+|10⟩ = ℏ
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
f̂ †↑ ĉ

†
↓ |O⟩ = ĉ

†
↑ ĉ↓ f̂

†
↑ ĉ
†
↓ |O⟩ℏ = −ĉ

†
↑ f̂
†
↑ |O⟩ℏ = f̂

†
↑ ĉ
†
↑ |O⟩ℏ = |6⟩ℏ (3.145)

ˆ⃗S+|11⟩ = ℏ
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
f̂ †↓ ĉ

†
↓ |O⟩ =

(
f̂ †↑ ĉ

†
↓ − ĉ

†
↑ f̂
†
↓

)
|O⟩ℏ =

(
|10⟩+ |7⟩

)
ℏ (3.146)

ˆ⃗S+|13⟩ = ℏ
(
f̂ †↑ f̂↓ + ĉ

†
↑ ĉ↓

)
ĉ†↑ ĉ

†
↓ |O⟩ = ĉ

†
↑ ĉ↓ĉ

†
↑ ĉ
†
↓ |O⟩ℏ = −ĉ

†
↑ ĉ
†
↑ |O⟩ℏ = |∅⟩ (3.147)

Ŝz |4⟩ =
ℏ
2

(
f̂ †↑ f̂↑ − f̂

†
↓ f̂↓ + ĉ

†
↑ ĉ↑ − ĉ

†
↓ ĉ↓

)
f̂ †↑ f̂

†
↓ |O⟩ = |∅⟩

Ŝz |6⟩ = Ŝz f̂ †↑ ĉ
†
↑ |O⟩ = f̂

†
↑ ĉ
†
↑ |O⟩ℏ = |6⟩ℏ

Ŝz |7⟩ = |∅⟩
Ŝz |10⟩ = |∅⟩
Ŝz |11⟩ = |11⟩(−ℏ)
Ŝz |13⟩ = |∅⟩ (3.148)

4 Determine the matrix elements of Ŝ− from those of Ŝ+ by spin reversal.

Other matrix elements can be obtained by exchanging simultaneously

• ↑ and ↓ as well as

• Ŝ+ with Ŝ− and

• Ŝz with −Ŝz .

This yields

−Ŝ−|4⟩
Eq. 3.142
= |∅⟩

Ŝ−|11⟩
Eq. 3.143
= |∅⟩

Ŝ−|10⟩
Eq. 3.144
= |11⟩ℏ

Ŝ−|7⟩
Eq. 3.145
= |11⟩ℏ

Ŝ−|6⟩
Eq. 3.146
=

(
|7⟩+ |10⟩

)
ℏ

−Ŝ−|13⟩
Eq. 3.147
= |∅⟩

(3.149)

5 In the subspace of the two-particle states, express the spin operators Ŝ+, Ŝ−, and Ŝz as sum
of dyadic products of the two-particle states given above. Use P̂2 as symbol for the projection
operator onto the two-particle Hilbert space.
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Ŝ+P̂2 = P̂2Ŝ+ =
(
|6⟩⟨10|+ |6⟩⟨7|+ |10⟩⟨11|+ |7⟩⟨11|

)
ℏ

P̂2Ŝ− = Ŝ−P̂2 =
(
|10⟩⟨6|+ |7⟩⟨6|+ |11⟩⟨10|+ |11⟩⟨7|

)
ℏ

P̂2Ŝz = Ŝz P̂2 =
(
|6⟩⟨6| − |11⟩⟨11|

)
ℏ (3.150)

P̂2
ˆ⃗S2P̂2 =

ℏ2

2

(
|6⟩⟨10|+ |6⟩⟨7|+ |10⟩⟨11|+ |7⟩⟨11|

)(
|10⟩⟨6|+ |7⟩⟨6|+ |11⟩⟨10|+ |11⟩⟨7|

)
+
ℏ2

2

(
|10⟩⟨6|+ |7⟩⟨6|+ |11⟩⟨10|+ |11⟩⟨7|

)(
|6⟩⟨10|+ |6⟩⟨7|+ |10⟩⟨11|+ |7⟩⟨11|

)
+ ℏ2

(
|6⟩⟨6| − |11⟩⟨11|

)2
=
ℏ2

2

(
|6⟩⟨6|+ |6⟩⟨6|+ |10⟩⟨10|+ |10⟩⟨7|+ |7⟩⟨10|+ |7⟩⟨7|

)
+
ℏ2

2

(
|10⟩⟨10|+ |10⟩⟨7|+ |7⟩⟨10|+ |7⟩⟨7|+ |11⟩⟨11|+ |11⟩⟨11|

)
+ ℏ2

(
|6⟩⟨6|+ |11⟩⟨11|

)
= 2ℏ2

(
|6⟩⟨6|+ |11⟩⟨11|

)
+ ℏ2

(
|7⟩⟨7|+ |7⟩⟨10|+ |10⟩⟨7|+ |10⟩⟨10|

)
(3.151)

6 Determine the spin eigenstates in the two-particle Hilbert space

We recognize the eigenvalues having the form ℏ2S(S + 1) with the main spin angular-momentum
quantum number S.

Thus, we obtain three states with spin quantum number S = 1, namely

|6⟩ = f̂ †↑ ĉ
†
↑ |O⟩

|11⟩ = f̂ †↓ ĉ
†
↓ |O⟩

1√
2

(
|7⟩+ |10⟩

)
=
1√
2

(
f̂ †↓ ĉ

†
↑ + f̂

†
↑ ĉ
†
↓

)
|O⟩ (3.152)

and three states with S = 0, namely

|4⟩ = f̂ †↑ f̂
†
↓ |O⟩

|13⟩ = ĉ†↑ ĉ
†
↓ |O⟩

1√
2

(
|7⟩ − |10⟩

)
=
1√
2

(
f̂ †↓ ĉ

†
↑ − f̂

†
↑ ĉ
†
↓

)
|O⟩ (3.153)

The three states with S = ℏ are degenerate in a system with spin rotation symmetry. Therefore,
they are called triplet states. In contrast, the states with spin S = 0 are called singlet states.
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3.11.3 Ground state of the linear chain in second quantization

Purpose

The purpose of this exercise is to, firstly, practice the translation between expressions in bra-ket nota-
tion of one-particle quantum mechanics and the notation of second quantization using creation and
annihilation operators. Furthermore, it reminds of the transformation between one-particle basissets,
in this case, local states versus Bloch states.

Introduction

In the first chapter we analyzed in section 1.5.3 on p. 33 the linear chain of hydrogen atoms.

Problem

We found that the eigenstates of the Hamiltonian for the linear chain

ĥ
Eq. 1.113
=

∑
σ∈{↑,↓}

∞∑
j=−∞

|πj,σ⟩ϵ0⟨πj,σ|︸ ︷︷ ︸
atomic energies

−
∑
σ

∞∑
j=−∞

|πj,σ⟩t⟨πj+1,σ| − |πj,σ⟩t⟨πj−1,σ|︸ ︷︷ ︸
hopping

(3.154)

are

|ϕσ(k)⟩
Eq. 1.114
=

∑
j

|χj,σ⟩ eikalatj
1√
n︸ ︷︷ ︸

⟨πσ(k)|ϕσ(k)⟩

with km =
2π

nalat
m (3.155)

where periodic boundary conditions after n beads are assumed.
The energies are

ϵσ(km)
Eq. 1.117
= ϵ0 − 2t cos(kmalat) (3.156)

.
As in the first chapter, we assume that the basis functions are orthonormal.

1 Write the Hamiltonian in second quantization

2 Represent the ground state wave function of the half-filled linear chain in terms of creation and
annihilation operators of local orbitals.

Discussion

1 Write the Hamiltonian in second quantization

In second quantization, the Hamiltonian is

ĥ =

n∑
j=1

{ ∑
σ∈{↑,↓}

ϵ0ĉ
†
j,σ ĉj,σ − t

∑
σ∈{↑,↓}

(
ĉ†j,σ ĉj+1,σ + ĉ

†
j,σ ĉj−1,σ

)}
(3.157)

2 Represent the ground state wave function of the half-filled linear chain in terms of creation and
annihilation operators of local orbitals.
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The wave function is a Slater determinant of all occupied eigenstates of the Hamiltonian. The
creator for an eigenstate |ϕm⟩ of the Hamiltonian is the superposition of the orbital creation operators
multiplied with the coefficients of the eigenstate in the orbital representation.

|ϕσ(k⃗)⟩
Eq. 1.119
=

∑
α

∑
t⃗

|χα,t⃗⟩ei k⃗ t⃗︸ ︷︷ ︸
|χα,k⃗ ⟩

cα,n(k⃗) =
∑
j

|χσ,j⟩eikxalatj
1√
n

(3.158)

|Φ⟩ =

{ n/2∏
m=1

(
â†m,σ

)γj,σ}
|O⟩

Eq. 3.64
=

{ n/2∏
m=1

(∫
d4x ψ̂†(x⃗)⟨x⃗ |ϕm,σ⟩

)γj,σ}
|O⟩

Eq. B.17
=

{ n/2∏
m=1

(∫
d4x

∑
j,σ

ĉ†j,σ⟨χj,σ|x⃗⟩︸ ︷︷ ︸
ψ̂†(x⃗)

⟨x⃗ |ϕm,σ⟩
)γj,σ}

|O⟩

=

{ n/2∏
m=1

(∑
j,σ

ĉ†j,σ⟨χj,σ|ϕm,σ⟩
)γj,σ}

|O⟩

Eq. 3.155
=

{ n/2∏
m=1

(∑
j

ĉ†j,σ

∑
j ′

⟨χj,σ|χj ′,σ⟩︸ ︷︷ ︸
δj,j ′δσ,σ

eikalatj
′ 1√
n︸ ︷︷ ︸

⟨πj ′ ,σ |ϕm,σ⟩

)γj,σ}
|O⟩

Eq. 3.155
=

{ n/2∏
m=1

(∑
j

ĉ†j,σe
ikalatj

1√
n

)γj,σ}
|O⟩ (3.159)

γj,σ ∈ {0, 1} are the occupation numbers of the Bloch states

γσ(km) = θ(µ− ϵσ(km)) (3.160)

where µ is the chemical potential. θ(x) is the Heaviside step function. γσ(km) is unity, if the energy
of the eigenstate is below the Fermi level, and zero, if it is above. In the limit n →∞ the chemical
potential for a half filled linear chain lies at µ = ϵ0.

Remark on a side: We have made the assumption that the orbitals |χj,σ⟩ are orthonormal. Without
this assumption, the Bloch wave function would have a different form, when they are required to be
orthonormal themselves. Specifically, they would carry the inverse square root of the overlap matrix
as additional factor in Eq. 3.155. This factors would compensate the overlap matrix in the derivation
above.
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Chapter 4

Green’s functions in one-particle
quantum mechanics

Green’s functions are a powerful tool of many-particle physics. However, they also play an important
role in one-particle quantum mechanics. Even more, we use Green’s functions in many contexts,
often without realizing that we deal with them.

Because explaining Green’s functions in the context of many-particle physics is a double difficulty,
let us first become familiar with Green’s function in the context of one-particle quantum mechanics.

4.1 Green’s function as inverse of a differential operator

Let me first lay out the general concept of Green’s functions:
In short, Green’s functions are useful

• to solve inhomogeneous differential equations,

• to propagate solutions of in first-order differential equations in time,

• to map the effective influence of one subsystem onto another.

4.1.1 Definition

Consider a differential operator D(x⃗ , ∇⃗). The vector x⃗ shall be an n-dimensional vector, where n
may also be one. The vector x⃗ may contain time coordinates, spatial coordinates, both, or any other
set of variables.

GREEN’S FUNCTION AS INVERSE OF A DIFFERENTIAL OPERATOR

The Green’s function G(x⃗ , x⃗ ′) is defined as the inverse of the differential operator D(x⃗∇⃗)

D(x⃗ , ∇⃗)G(x⃗ , x⃗0) = δ(x⃗ − x⃗0) (4.1)

and a suitable set of boundary conditions.(see section 4.1.3 below!)

161
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GREEN’S FUNCTION AND INHOMOGENEOUS DIFFERENTIAL EQUATIONS

An inhomogeneous differential equation can be solved with the help of the Green’s function by

D(x⃗ , ∇⃗)f (x⃗) = I(x⃗) ⇔ f (x⃗) =

∫
dnx ′ G(x⃗ , x⃗ ′)I(x⃗ ′) (4.2)

Hereby, I(x⃗) is the inhomogeneity.

The Green’s function can be considered as an inverse of the differential operator. It behaves like
that of an inverse matrix while solving a linear system of equations. Consider the solution of such
a linear system of equations, expressed in terms of a matrix A, an unknown vector y⃗ and a known
vector b⃗.

With AA−1 = 111 one obtains

Ay⃗ = b⃗ ⇒ y⃗ = A−1b⃗ (4.3)

On a more abstract level, the system of equations is identical to the differential equation Eq. 4.2:
The matrix A replaces the differential operator D(x⃗ , ∇⃗), the vector y⃗ replaces the function f (x⃗),
the vector b⃗ the inhomogeneity I(x⃗) and the inverse A−1 replaces the Green’s function G(x⃗ , x⃗ ′).
The indices of matrix A and the vectors y⃗ and b⃗ in the system of equations replaces the continuous
variable x⃗ in the differential equation.

4.1.2 Two simple examples:

Let me demonstrate the principle of the Green’s function for a few well-known examples, the driven
harmonic oscillator and the Poisson equation.

Driven harmonic oscillator

The Green’s function can be used to solve the driven harmonic oscillator with damping

m
..
x = −cx − α.

x + f (t) (4.4)

Here, x(t) is the particle position, m is the mass of the particle, c the force constant, α the friction
coefficient and f (t) is the driving force.

The differential operator of this problem is

D(t, ∂t) = m∂
2
t + α∂t + c (4.5)

and the force f (t) is the inhomogeneity.
According to the definition Eq. 4.1, the Green’s function fulfills(

m∂2t + c + α∂t
)︸ ︷︷ ︸

D(t,∂t)

G(t, t0) = δ(t − t0) (4.6)

The boundary conditions are chosen so that value and derivative of the Green’s function vanish at
t = −∞.

The Green’s function is (see e.g. ΦSX: Klassische Mechanik[13])

G(t, t ′) =
−i

m(ω1 − ω2)

(
eiω1(t−t

′) − eiω2(t−t ′)
)
θ(t − t ′)

=
1

m

√
c
m −

(
α
2m

)2 sin
(√

c

m
−
( α
2m

)2
(t − t ′)

)
e−

α
2m
(t−t ′)θ(t − t ′) (4.7)
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where ω1 and ω2 are the complex eigenfrequencies of the damped harmonic oscillator.1 The Green’s
function is shown in figure 4.1.

g(t,t0)

t−t0

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20

Fig. 4.1: Green’s function for the driven harmonic oscillator with damping. Editor: Replace the
symbol g by uppercase G.

Once the Green’s function is known, we can immediately write down the solution for the driven
harmonic oscillator, which fulfills the corresponding inhomogeneous equations of motion. The solution
is

x(t) =

∫
dt ′ G(t, t ′)f (t ′)

Eq. 4.7
=

∫ t

−∞
dt ′
sin
(
ω(t − t ′)

)
e−

α
2m
(t−t ′)

mω
f (t ′) with ω =

√
c

m
−
( α
2m

)2
(4.8)

In this case, the Green’s function is the response to a Kraftstoß2 The integral for the position in the
presence of a driving force may still be difficult to evaluate, but an integration is usually much simpler
than solving a differential equation.

Poisson equation

The Green’s function has been used to solve the Poisson equation for the electrostatic potential Φ(r⃗)
in the presence of a charge density ρ(r⃗)

∇2Φ(r⃗) = −
1

ϵ0
ρ(r⃗) (4.9)

The Green’s function for this problem obeys

∇2G(r⃗ , r⃗ ′) = δ(r⃗ − r⃗ ′) (4.10)

which yields the Green’s function

G(r⃗ , r⃗ ′) =
−1

4π|r⃗ − r⃗ ′|
(4.11)

Natural boundary conditions have been used.
The solution of Poisson’s equation is thus

Φ(r⃗) =

∫
d3r ′ G(r⃗ , r⃗ ′)

(
−ρ(r⃗ ′)
ϵ0

)
=

∫
d3r ′

ρ(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(4.12)

1For the undamped harmonic oscillator the frequencies are ω1 =
√

c
m

and ω2 = −
√

c
m

2There does not seem to exist an English word for the German word “Kraftstoß”. It describes a force peak in the
form of a δ function, which transfers a finite momentum in an infinitesimal time interval.
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4.1.3 Boundary conditions

An aspect which is often overlooked is that the definition of the Green’s function is only complete
when, besides the differential equation, also the boundary conditions are defined.

Let me go back to a differential equation. In order to determine a solution of a linear differential
equation unambiguously, we need to define the boundary conditions. Given that one solution of the
inhomogeneous differential equation has been found, one can immediately construct another one by
adding an arbitrary solution of the homogeneous differential equation. A set of boundary conditions
needs to be defined such that any such addition of a homogeneous differential equation would violate
the boundary conditions. Only then the solution found is unique.

The same set of boundary conditions must be imposed on the Green’s function in the defining
equation Eq. 4.1 to make the Green’s function unique and appropriate to the problem at hand.

4.2 Green’s function of a time-independent Hamiltonian

4.2.1 In the time representation

Consider a time-independent Hamiltonian ĥ, which has eigenstates |ϕn⟩ with eigenvalues ϵn. The
differential operator3 describing the Schrödinger equation has the form

D̂ =
[
iℏ∂t − ĥ

]
= iℏ∂t −

∑
n

|ϕn⟩ϵn⟨ϕn|︸ ︷︷ ︸
ĥ

=
∑
n

|ϕn⟩ (iℏ∂t − ϵn) ⟨ϕn| (4.13)

The Green’s function is obtained from Eq. 4.1, which we adapt to the problem at hand.

EQUATION OF MOTION FOR THE GREEN’S FUNCTION OF A SINGLE PARTICLE

[
1̂iℏ∂t − ĥ

]
Ĝ(t, t ′) = 1̂δ(t − t ′) (4.14)

The boundary condition is Ĝ(−∞, t ′) = 0, which implies Ĝ(t, t ′) = 0 for t < t ′. This requirement is
attributed to causality.

Let me work out the Green’s function from Eq. 4.14 by introducing eigenstates of the Hamiltonian.

=D̂ (See Eq. 4.13)︷ ︸︸ ︷∑
j

|ϕj⟩ (iℏ∂t − ϵj) ⟨ϕj |

Ĝ︷ ︸︸ ︷∑
n,m

|ϕn⟩Gn,m(t, t ′)⟨ϕm| =

1̂︷ ︸︸ ︷∑
n,m

|ϕn⟩δn,m⟨ϕm| δ(t − t ′)∑
j,n,m

|ϕj⟩ (iℏ∂t − ϵj) ⟨ϕj |ϕn⟩︸ ︷︷ ︸
δj,n

Gn,m(t, t
′)⟨ϕm| =

∑
n,m

|ϕn⟩δn,mδ(t − t ′)⟨ϕm|

⇒ (iℏ∂t − ϵn)Gn,m(t, t ′) = δn,mδ(t − t ′) (4.15)

In the last step, I exploited that the eigenstates are linear independent, which implies that each
operator cannot be represented by two different sets of matrix elements.

Thus, we arrived at an ordinary differential equation for the matrix elements, namely Eq. 4.15,

3Here, we use the bra-ket notation rather than the differential operator.
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which has the solution4

Gn,m(t, t
′) =

1

iℏ
e−

i
ℏ ϵn(t−t

′)θ(t − t ′)δn,m . (4.16)

With the matrix elements we can also express the Green’s function in operator form

GREEN’S FUNCTION OF A SINGLE PARTICLE

Ĝ(t, t ′) =
1

iℏ
θ(t − t ′)

∑
n

|ϕn⟩e−
i
ℏ ϵn(t−t

′)⟨ϕn| =
1

iℏ
θ(t − t ′)e−

i
ℏ ĥ(t−t

′) (4.17)

The wave functions |ϕn⟩ are eigenstates of the Hamiltonian ĥ with eigenvalues ϵn, i.e. ĥ|ϕn⟩ = |ϕn⟩ϵn.
The states are chosen to be orthonormal,i.e. ⟨ϕm|ϕn⟩ = δm,n

The Green’s function in real-space-and-spin representation is

G(x⃗ , t, x⃗ ′, t ′)
def
= ⟨x⃗ |Ĝ(t, t ′)|x⃗ ′⟩ =

∑
n

⟨x⃗ |ϕn⟩
1

iℏ
θ(t − t0)e−

i
ℏ ϵn(t−t

′)⟨ϕn|x⃗ ′⟩

=
1

iℏ
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)θ(t − t0)e−
i
ℏ ϵn(t−t

′) (4.18)

4.2.2 In the energy representation

Because the Hamiltonian is time independent, the problem is time-translationally invariant and the
Green’s function depends only on the difference of its time arguments, i.e.

G(x⃗ , t, x⃗ ′, t0) = G(x⃗ , t − t0, x⃗ ′, 0) (4.19)

This allows one to Fourier transform the Green’s function in the time-difference argument.

G(x⃗ , x⃗ ′, ϵ)
def
=

∫ ∞
−∞

dt G(x⃗ , t, x⃗ ′, 0) e
i
ℏ ϵt

Eq. 4.17
=

1

iℏ
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)

∫ ∞
−∞

dt θ(t)e−
i
ℏ (ϵn−ϵ)t

=
1

iℏ
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)

∫ ∞
0

dt e−
i
ℏ (ϵn−ϵ)t (4.20)

The integral does not converge if we let the upper limit of the integral go to infinity, while ϵ is real.
If we consider the energy argument of the Green’s function to be a complex number, we see that
the integral converges only, if the imaginary part of ϵ is positive. If it is real or if it has a negative

4Let us make the test (proof may continue on the next page):

[iℏ∂t − ϵn]
1

iℏ
e−

i
ℏ ϵn(t−t

′)θ(t − t ′)δn,m

=
(
∂te
− i
ℏ ϵn(t−t

′)
)
θ(t − t ′)δn,m + e−

i
ℏ ϵn(t−t

′) (∂tθ(t − t ′)) δn,m − 1
iℏ
ϵne
− i
ℏ ϵn(t−t

′)θ(t − t ′)δn,m

=

(
1

iℏ
ϵne
− i
ℏ ϵn(t−t

′)
)
θ(t − t ′)δn,m︸ ︷︷ ︸

X

+e−
i
ℏ ϵn(t−t

′)︸ ︷︷ ︸
=1 for t=t ′

(
δ(t − t ′)

)
δn,m −

1

iℏ
ϵne
− i
ℏ ϵn(t−t

′)θ(t − t ′)δn,m︸ ︷︷ ︸
X

= δ(t − t ′)δn,m
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imaginary part, the result is undefined.

G(x⃗ , x⃗ ′, ϵ+ iη)
Eq. 4.20
=

1

iℏ
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)

∫ ∞
0

dt ′ e−
i
ℏ (ϵn−ϵ−iη)t

′

=
1

iℏ
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)

[
iℏ

ϵn − ϵ− iη
e−

i
ℏ (ϵn−ϵ−iη)t

′
]∞
0

η>0
=

1

iℏ
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)
−iℏ

ϵn − ϵ− iη

= −
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)

ϵn − ϵ− iη

=
∑
n

ϕn(x⃗)ϕ
∗
n(x⃗

′)

ϵ− ϵn + iη
for η > 0 (4.21)

Notice the restriction that the imaginary part of ϵ+ iη must be positive. The Green’s function is
only defined in the upper half-plane of the complex plane. While we can evaluate the final expression
also in the lower half plane, the Green’s function is simply not defined there and the numbers are
meaningless.5

Thus, we can express the Green’s function as

GREEN’S FUNCTION IN THE ENERGY REPRESENTATION

Ĝ(ϵ+ iη)
Eq. 4.21
=

∑
n

|ϕn⟩
1

ϵ− ϵn + iη
⟨ϕn| =

(
(ϵ+ iη)1̂− ĥ

)−1
for η > 0 (4.22)

The imaginary part of the Green’s function provides the density of states. A pole of the Green’s
function contributes a Lorentzian at the real axis, which turns into a delta-function, if the pole
approaches the real-ϵ axis.

EQUATION OF MOTION FOR THE SINGLE-PARTICLE GREEN’S FUNCTION IN THE
ENERGY REPRESENTATION

The Green’s function as function of the energy obeys the equation(
ϵ− ĥ

)
Ĝ(ϵ) = 1̂ with Im(ϵ) > 0. (4.23)

where the energy ϵ is considered as complex variable

which can be verified by insertion

(
ϵ− ĥ

)
Ĝ(ϵ) =

(
ϵ− ĥ

)∑
n

|ϕn⟩
1

ϵ− ϵn
⟨ϕn| =

∑
n

|ϕn⟩
ϵ− ϵn
ϵ− ϵn

⟨ϕn| =
∑
n

|ϕn⟩⟨ϕn| = 1̂ (4.24)

4.3 Green’s function as propagator

There is a very close relationship between the Green’s function and the propagator. With these
relations we can proceed to Green’s functions for time-dependent Hamilton operators.

5The part with η < 0 describes an anti-causal Green’s function.
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Fig. 4.2: Green’s function for a system with two eigenvalues ϵ± = ±2 a.u. This example describes
one spin component of a non-interacting hydrogen molecule and hopping t = 2. Left: Green’s
function G(ϵ) in the complex-ϵ plane. Caution: The Re[ϵ]-axis points towards the left and the Im(ϵ)-
axis points forward. The energy-dependent Green’s function is meaningful only in the half-plane with
Im(ϵ) > 0. Right: Green’s function G(ϵ+ iη) as function of real ϵ with a small, positive η. The full,
blue line is with η = 0.1 while the dashed,red line is for η = 10−4. Top: real part of G(ϵ). Bottom:
imaginary part.

4.3.1 Definition of the propagator

Let me define the propagator 6 Û(t, t ′), which transforms an initial state at time t ′ into a final state
at time t according to

∣∣ψ(t)〉 = Û(t, t ′)∣∣ψ(t ′)〉 (4.25)

where |ψ(t)⟩ obeys the time-dependent Schrödinger equation with the Hamiltonian ĥ(t).

6in German: Zeitentwicklungsoperator
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DEFINING EQUATIONS FOR THE PROPAGATOR

The propagator operator Û(t, t ′) obeys the differential equation(
iℏ∂t − ĥ(t)

)
Û(t, t ′) = 0̂ (4.26)

with the boundary condition

Û(t, t) = 1̂ . (4.27)

How can we construct the propagator Û(t, t ′)? We begin with solving the time-dependent
Schrödinger equations for a number of different initial conditions. This yields a set of time-dependent
wave functions |ϕn(t)⟩ that satisfy the time-dependent Schrödinger equation

(
iℏ∂t − ĥ(t)

)∣∣ϕn(t)〉 = 0 . (4.28)

These wave functions need not be eigenstates of the Hamiltonian ĥ(t) at any time t.
Because the propagator for equal times Û(t, t) = 1̂, let me represent the identity in terms of

these solutions of the Schrödinger equation.

1̂ =
∑
m,n

|ϕm(t)⟩O−1m,n(t)⟨ϕn(t)| (4.29)

where Om,n(t ′) = ⟨ϕm(t ′)|ϕn(t ′)⟩ is the time-dependent overlap matrix. I use the notation O−1m,n(t) =(
O−1(t)

)
m,n

.
The Schrödinger equation and the initial conditions can simultaneously be satisfied by

Û(t, t0) =
∑
m,n

|ϕm(t)⟩O−1m,n(t0)⟨ϕn(t0)| (4.30)

which can be verified by inserting Û(t, t0)|ψ(t0)⟩ with a general wave function |ψ(t0)⟩ =
∑

n |ϕn(t0)⟩cn
into the Schrödinger equation and its initial conditions. Notice that the overlap operator is evaluated
from the initial state. This apparent asymmetry between initial and final state is OK because the
propagator must not be symmetric under interchange of initial and final time arguments.

PROPAGATOR

The propagator can be written in closed form asa

Û(t, t ′) =
∑
m

∣∣∣ϕm(t)〉∑
n

(
O−1(t ′)

)
m,n

〈
ϕn(t

′)
∣∣∣︸ ︷︷ ︸

⟨πm(t ′)|

with On,m(t ′) =
〈
ϕn(t

′)
∣∣∣ϕm(t ′)〉 (4.31)

where each of the states |ϕn(t)⟩ obeys the time-dependent Schrödinger equation and where the set
{|ϕn(t ′)⟩} spans the complete, but not necessarily orthonormal, one-particle Hilbert space.

aIt is not a mistake that the expression is not symmetric with respect to exchanging t and t ′. For times t, t ′ on the
real axis, the overlap operator is time independent.

From Eq. 4.31, we can immediately extract some properties of ÛI(t)
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PROPERTIES OF THE PROPAGATOR

Û(t, t)
Eq. 4.31
= 1̂ initial condition (4.32)

Û(t2, t3)Û(t3, t1)
Eq. 4.31
= Û(t2, t1) transitivity (4.33)

Û(t1, t2)Û(t2, t1)
Eqs. 4.33,4.32

= 1̂ time inversion (4.34)

Û(t2, t1)
Eq. 4.34
= Û−1(t1, t2) inverse (4.35)

Two other conditions hold only for real-valued time arguments. We will not make use of them,
because, later, we will use complex-valued time arguments, where they are no more valid. Caution is
required, because they are widely used and taken for granted.

Û(t2, t1)
Eq. 4.31
= Û†(t1, t2) for t1, t2 ∈ R; hermitian conjugate (4.36)

Û†(t2, t1)
Eqs. 4.35,4.36

= Û−1(t2, t1) for t1, t2 ∈ R; unitarity (4.37)

4.3.2 Relation between Green’s function and propagator

GREEN’S FUNCTION AND PROPAGATOR

The Green’s function can be expressed by the propagator Ûas

Ĝ(t, t ′) =
1

iℏ
θ(t − t ′)Û(t, t ′) (4.38)

where θ(x) is the Heaviside step function.

The relation is proven by inserting ansatz Eq. 4.38 into the equation of motion Eq. 4.14 of the
Green’s function. Note that the derivative of the Heaviside step function is the delta function.

(
iℏ∂t − ĥ(t)

)
Ĝ(t, t ′)

Eq. 4.38
=

(
iℏ∂t − ĥ(t)

) 1
iℏ
θ(t − t ′)Û(t, t ′)︸ ︷︷ ︸

Ĝ(t,t ′)

=
(
iℏ∂t

1

iℏ
θ(t − t ′)

)
︸ ︷︷ ︸

δ(t−t ′)

Û(t, t ′) +
1

iℏ
θ(t − t ′)

(
iℏ∂t − ĥ(t)

)
Û(t, t ′)︸ ︷︷ ︸

=0 (Eq. 4.26)

Eq. 4.26
= Û(t, t ′)︸ ︷︷ ︸

=1̂ for t = t ′

δ(t − t ′) Eq. 4.32
= 1̂δ(t − t ′) (4.39)

The comparison with the equation of motion Eq. 4.14 of the Green’s function completes the proof
of Eq. 4.38.

4.3.3 Propagator as time-ordered exponential

Evaluating the propagator using Eq. 4.31 requires the knowledge of the wave functions at all times.
This is of little practical value. Here, I will derive an expression that refers to the Hamiltonian, namely
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PROPAGATOR AS TIME-ORDERED EXPONENTIAL

Û(t2, t1) = TD exp
(
−
i

ℏ

∫ t2

t1

dt ′ ĥ(t ′)

)
(4.40)

where TD is Dyson’s time-ordering operator defined below. a

aCompare with Eq. 31 of[56]

Consider the propagation of a wave function with a time-dependent Hamiltonian.[
iℏ∂t 1̂− ĥ(t)

]
|ψ(t)⟩ = 0 (4.41)

Let me build up an iterative equation, by replacing the derivative by its differential quotient.

|ψ(t + ∆)⟩ − |ψ(t)⟩
∆

= −
i

ℏ
ĥ(t)|ψ(t)⟩+O(∆)

⇒ |ψ(t + ∆)⟩ = |ψ(t)⟩ −
i

ℏ
ĥ(t)|ψ(t)⟩∆ +O(∆2)

=
(
1̂−

i

ℏ
ĥ(t)∆

)
|ψ(t)⟩+O(∆2)

= exp
(
−
i

ℏ
ĥ(t)∆

)
|ψ(t)⟩+O(∆2)

⇒ |ψ(t)⟩ = lim
∆→0

[
j=0∏
N−1
exp
(
−
i

ℏ
ĥ(tj)∆

)]
︸ ︷︷ ︸

Û(t,0)

|ψ(0)⟩ (4.42)

where tj = j∆ and ∆ = t/N.
I have introduced the product sign with the reversed positions of initial and final value of the

running index to indicate that the terms are arranged in the opposite order than normal, namely

N∏
j=0

Xj
def
= X1X2 · · ·XN and

j=0∏
N

Xj
def
= XNXN−1 · · ·X1 (4.43)

Now comes the difficult point: It is desirable to combine the exponentials of Eq. 4.42 in a single
exponential of an integral. For this purpose, I need the rule eaeb = ea+b. This rule is valid for
numbers, but not for operators that do not commutate. The reason is that a and b occur in different
orders for the left-hand and the right-hand side. For the left-hand side

eaeb =

( ∞∑
n=0

1

n!
an

)( ∞∑
m=0

1

m!
bm

)
(4.44)

the terms a are always left of the terms b. For the right-hand side

ea+b =

∞∑
n=0

1

n!
(a + b)n (4.45)

the terms a and b are in a different order.
This problem that eâ+b̂ differs from eâeb̂ for non-commutating operators â and b̂, is solved by a

simple trick: We simply define a recipe Tab that places the â terms in every product of the expansion
of eâ+b̂ in front of the b̂ terms. This leads to the identity

eâeb̂ = Tabeâ+b̂ (4.46)
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For the problem at hand we need a recipe that arranges the Hamiltonians h(tj) in ascending order
from right to left. This recipe is Dyson’s time-ordering operator.

DYSON’S TIME-ORDERING OPERATOR

Dyson’s time-ordering operator rearranges the operators in a product
∏
j Âj(tj) such that they appear

in increasing order from right to left.
Dyson’s time-ordering operator TD (named P-product in Eq. 29 of [56]) is

TDÂ(t)B̂(t ′) =

{
Â(t)B̂(t ′) for t ≥ t ′

B̂(t ′)Â(t) for t < t ′
(4.47)

The time-ordering operator is not an operator in the conventional sense: Namely, it does not act on
states in the Hilbert or Fock space to map them onto other states. Rather, it is a prescription for
manipulating a mathematical expression.

Later, we will learn about another time-ordering operator, namely Wick’s time-ordering opera-
tor[57] . Wick’s time-ordering operator is similar to Dyson’s time-ordering operator, but it introduces
a sign change for every interchange of fermionic operators.

With the time-ordering operator, the propagator can be expressed as

Û(t, 0)
Eq. 4.42
= lim

∆→0

[
j=0∏
N−1
exp
(
−
i

ℏ
ĥ(tj)∆

)]

= TD lim
∆→0

[
j=0∏
N−1
exp
(
−
i

ℏ
ĥ(tj)∆

)]

= TD lim
∆→0

exp(− i
ℏ

N∑
j=0

ĥ(tj)∆
)

= TD exp
(
−
i

ℏ

∫ t

0

dt ĥ(t)

)
(4.48)

With this, we arrived at the desired form Eq. 4.40 for the propagator as a time-ordered exponential.
Finally, we can express the Green’s function in terms of a time-ordered exponential

GREEN’S FUNCTION AND TIME-ORDERED EXPONENTIAL

Ĝ(t2, t1)
Eq. 4.38
=

1

iℏ
θ(t2 − t1)TD exp

(
−
i

ℏ

∫ t2

t1

dt ′ ĥ(t ′)

)
(4.49)

4.4 Projected Density of States

So far, the Green’s function is still a fairly abstract object. Let us therefore show a few physical
quantities that can be obtained from the Green’s function. With the density of states D̂(ϵ), we gain
access to the excitation spectrum of the Hamiltonian.

On the one hand, the projected density of states is an extremely useful quantity which can be
obtained from the Green’s function. On the other hand, the Green’s function can be obtained from
a known density of states D(ϵ).

The density of states has been defined discussed extensively in ΦSX: Introduction to solid-state
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theory.[1]7. The role of the density of states will be taken over by the spectral function, when we
deal with interacting electron systems.

4.4.1 Density of states from the Green’s function

PROJECTED DENSITY OF STATES

For a system with time-translation symmetry, the Green’s function provides us with the density of
states

D̂(ϵ) =
∑
n

|ϕn⟩δ(ϵ− ϵn)⟨ϕn|︸ ︷︷ ︸∑
α,β |χα⟩Dα,β(ϵ)⟨χβ |

= −
1

2πi
lim
η→0+

(
Ĝ(ϵ+ iη)− Ĝ†(ϵ+ iη)

)
. (4.50)

This result followsa from the better known equation for the density of states projected onto a state
|ψ⟩ , namely

Dψ(ϵ) =
∑
n

⟨ψ|ϕn⟩δ(ϵ− ϵn)⟨ϕn|ψ⟩
Eq. 4.22
= −

1

π
lim
η→0+

Im[⟨ψ|Ĝ(ϵ+ iη)|ψ⟩] (4.51)

aEq. 4.50 follows from Eq. 4.51, because two operators are identical, when all conceivable expectation values are
identical.

Proof of Eq. 4.51 In appendix A.5 on p. 388, we show that the imaginary part of a pole in the
complex plane is a Lorentzian8 and that the Lorentzian turns into a delta function when the pole
approaches the real axis, that is

lim
η→0+

Im
(
−
1

π

1

x + iη

)
= δ(x) . (4.53)

This will be required in the following.
Let me begin the proof with the right-hand side of Eq. 4.51.

−
1

π
lim
η→0+

Im
(
⟨ψ|Ĝ(ϵ+ iη)|ψ⟩

)
Eq. 4.22
= −

1

π
lim
η→0+

Im
(∑

n

⟨ψ|ϕn⟩
1

ϵ− ϵn + iη
⟨ϕn|ψ⟩

)
⟨ψ|ϕn⟩⟨ϕn |ψ⟩∈R

=
∑
n

⟨ψ|ϕn⟩
{
−
1

π
lim
η→0+

Im
( 1

ϵ− ϵn + iη

)}
⟨ϕn|ψ⟩

Eq. 4.53
=

∑
n

⟨ψ|ϕn⟩δ(ϵ− ϵn)⟨ϕn|ψ⟩ = ⟨ψ|D̂(ϵ)|ψ⟩ q.e.d(4.54)

Thus, we arrived at the expression for the density of states projected onto the orbital |ψ⟩. This
concludes the proof of Eq. 4.51.

7The density of states is defined in Eq. 5.16 of ΦSX: Introduction to solid state physics. The projected density of
states is defined in Eq. 5.23 therein.

8A Lorentzian is a function of the form

Lϵ̄,Γ(ϵ) =
1

π

1
2
Γ

(ϵ− ϵ̄)2 + ( 1
2
Γ)2

(4.52)

The function is normalized and has a peak at position ϵ̄ of width Γ. It is the prototypical spectral line shape. Editor:
The definition here is consistent with https://mathworld.wolfram.com/LorentzianFunction.html. It
differs from the definition in Eq. A.22 on p. 388 by a factor 2 in the width parameter.

https://mathworld.wolfram.com/LorentzianFunction.html
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Proof of Eq. 4.50 From Eq. 4.51 proven just before, we obtain

⟨ψ|D̂(ϵ)|ψ⟩ =
∑
n

⟨ψ|ϕn⟩δ(ϵ− ϵn)⟨ϕn|ψ⟩
Eq. 4.51
= −

1

π
lim
η→0+

Im[⟨ψ|Ĝ(ϵ+ iη)|ψ⟩]

= −
1

π
lim
η→0+

⟨ψ|Ĝ(ϵ+ iη)|ψ⟩ − ⟨ψ|Ĝ(ϵ+ iη)|ψ⟩∗

2i

=
〈
ψ
∣∣∣{− 1

π
lim
η→0+

Ĝ(ϵ+ iη)− Ĝ†(ϵ+ iη)
2i

}∣∣∣ψ〉 (4.55)

The equation above holds for any state |ψ⟩. Now, I exploit that if an identity holds for arbitrary
expectation values, then also the underlying operator identity holds.

This

D̂(ϵ) =
∑
n

|ϕn⟩δ(ϵ− ϵn)⟨ϕn| = −
1

2πi
lim
η→0+

(
Ĝ(ϵ+ iη)− Ĝ†(ϵ+ iη)

)
. (4.56)

which proves Eq. 4.50.

4.4.2 Total density of states

The total density of states9 can be obtained

Dtot(ϵ)
def
=

∑
n

δ(ϵ− ϵn)

=
∑
n

∫
d4x ⟨x⃗ |ϕn⟩δ(ϵ− ϵn)⟨ϕn|x⃗⟩

Eq. 4.51
= −

1

π
Im

[∫
d4x ⟨x⃗ |Ĝ(ϵ+ iη)|x⃗⟩

]
= −

1

π
lim
η→0+

Im
(
Tr[Ĝ(ϵ+ iη)]

)
(4.57)

4.4.3 Electron density

Integration over the occupied states provides us with the probability that an electron is in a given
orbital. The orbital |ψ⟩ could also be |x⃗⟩, in which case we obtain the electron density.

n(r⃗) =
∑
σ

∑
n

∫ ϵF

dϵ ⟨r⃗ , σ|ϕn⟩δ(ϵ− ϵn)⟨ϕn|r⃗ , σ⟩

= −
1

π

∑
σ

∫ ϵF

dϵ Im
(
⟨r⃗ , σ|Ĝ(ϵ)|r⃗ , σ⟩

)
(4.58)

4.5 Green’s function from the density of states

The density of states can be defined as an energy-dependent operator

D̂(ϵ) =
∑
n

|ϕn⟩δ(ϵ− ϵn)⟨ϕn| (4.59)

where |ϕn⟩ and ϵn are eigenstates and eigenvalues of the Hamiltonian.

9The total density of states is defined in Eq. 5.22 of ΦSX: Introduction to solid state physics[1]
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Because the Green’s function is itself a sum over the states of the system, we can represent the
Green’s function in terms of the density of states. This implies that we should be able to work with
the density of states or the spectral function as the fundamental quantity, from which the Green’s
function is constructed in the desired form when it is required.

GREEN’S FUNCTION FROM THE DENSITY OF STATES

With the density of states Eq. 4.59 the one-particle Green’s function is

Ĝ(t, t ′)
Eq. 4.17
=

1

iℏ

∫
dϵ D̂(ϵ) θ(t − t ′)e−

i
ℏ ϵ(t−t

′)

Ĝ(ϵ+ iη)
Eq. 4.22
=

∫
dϵ′

D̂(ϵ′)

ϵ− ϵ′ + iη (4.60)
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4.6 Home study and practice

4.6.1 Role of boundary conditions

Editor: This needs to be done: show in an exercise why and how boundary conditions
for Green’s functions are considered

4.6.2 Green’s function for a Lorentzian-shaped density of states

Introduction

The band structure ϵ̄n(k⃗) of a solid describes the position of the poles of the Green’s function. For a
non-interacting system, the poles of the Green’s function lie on the real axis. For every k-point, the
k-resolved density of states, respectively the spectral function A(ϵ, k⃗) , is a sequence of delta-peaks
at the corresponding one-particle energies ϵ̄n(k⃗).

A(ϵ, k⃗) =
∑
n

Ω

∫
d3k

(2π)3
δ(ϵ− ϵ̄n(k⃗)) (4.61)

As the interaction between the electrons is switched on, the electrons scatter at other electrons.
As a result neither the energy nor the crystal momentum of the electron is a conserved quantity any
more. A scattering process is described by annihilating the electron and by creating it again with
a new energy and momentum. This implies that the electrons obtain a finite life time. The finite
lifetime τ = ℏ/Γ(k⃗) results in a broadening of the band structure. The poles of the Green’s function
move away from the real energy axis into the complex plane and the delta-peaks of the spectral
functions turn into Lorentzians.

A(ϵ, k⃗) =
∑
n

Ω

∫
d3k

(2π)3
1

π

Γn(k⃗)

(ϵ− ϵ̄n(k⃗))2 + Γ2n(k)
(4.62)

As a result, each band obtains a width inversely proportional to its life time. Note, that the description
via single poles breaks down, when the interaction become sufficiently strong.

The occurrence of finite lifetimes and the corresponding broadening of spectral densities is a
general feature of systems coupled to a continuous spectrum of states. In this exercise, we will
explore a single state with finite lifetime.
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Problem

Exercise: A very general observation is that a finite line width of an absorption or emission band is
related to a finite lifetime of an excitation. The prototypical shape of a band with a finite line width
is a Lorentzian. Here we determine the corresponding Green’s function.
A Lorentzian shaped density of states has the form

⟨π|D̂(ϵ)|π⟩ =
1

π

Γ

(ϵ− ϵ̄)2 + Γ2 (4.63)

The density of states is normalized so that its weight integrated to one. The peak is centered at
energy ϵ̄, and it has a full-width-at-half-maximum (FWHM)a of 2Γ.
The Green’s function for the Lorentzian-shaped density of states has a surprisingly simple form of a
single damped oscillation.

⟨π|Ĝ(t, t ′)|π⟩ =
1

iℏ
θ(t − t ′)e−

i
ℏ (ϵ̄−iΓ)(t−t

′) (4.64)

This result can be represented by a single pole in the complex plane at ϵ = ϵ̄− iΓ.
Problem:

1. Derive Eq. 4.64 from Eq. 4.63. (Hint: I used residue theorem.)

2. determine the Green’s function in energy representation.

aThe german expression for FWHM is “Halbwertsbreite”.

Discussion

1. Derive Eq. 4.64 from Eq. 4.63. (Hint: I used residue theorem.)

⟨π|G(t, t ′)|π⟩ Eq. 4.60
=

1

iℏ

∫
dϵ ⟨π|D̂(ϵ)|π⟩ θ(t − t ′)e−

i
ℏ ϵ(t−t

′)

Eq. 4.63
=

1

iℏ

∫ ∞
−∞

dϵ
1

π

Γ

(ϵ− ϵ̄)2 + Γ2 θ(t − t
′)e−

i
ℏ ϵ(t−t

′)

= θ(t − t ′)
Γ

iπℏ

∫ ∞
−∞

dϵ
1

(ϵ− ϵ̄+ iΓ)(ϵ− ϵ̄− iΓ)e
− i
ℏ ϵ(t−t

′) (4.65)

These integrals can be solved with the residue theorem:

RESIDUE THEOREM

When f (z) is holomorphic in the region Ω of the complex plane, i.e. ∂f
∂z∗ = 0, with the exception

of discrete points, the counterclockwise integral about the boundary ∂Ω of Ω can be mapped to the
sum of the residues of the poles in Ω.∮

∂Ω

f (z) = 2πi
∑
j

Reszj [f ] (4.66)

The residual for a simple pole is Reszj [f ] = limz→zj (z − zj)f (z).
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The function f (ϵ) = 1
(ϵ−ϵ̄+iΓ)(ϵ−ϵ̄−iΓ)e

− i
ℏ ϵ(t−t

′) has two poles at ϵ = ϵ̄∓ Γ. The residuals are

Resϵ̄+iΓ[f ] =
1

2iΓ
e−

i
ℏ (ϵ̄+iΓ)(t−t

′)

Resϵ̄−iΓ[f ] =
−1
2iΓ
e−

i
ℏ (ϵ̄−iΓ)(t−t

′) (4.67)

The exponential function e−
i
ℏ ϵ(t−t

′) damps out the function for Im(ϵ) → −∞. Therefore, we
choose a contour for the residual theorem, that proceeds along the real axis from +R+ ϵ̄ to −R+ ϵ̄
and closes via a half-circle passing through −iR + ϵ̄.

Im[z]

Re[z]

R
ε−ιΓ

ε+ιΓ

1. In the limit R → ∞, the integral of the half circle goes to zero. This is because the function
values fall off like 1

R2 , while the length of the half-circle expands like πR. I describe the half-circle
as r(s) = ϵ̄+ R eis = ϵ̄+ R cos(s) + iR sin(s)∣∣∣∣∫ π

0

ds
dr

ds
f (r(s))

∣∣∣∣ = ∣∣∣∣∫ π

0

ds iR eis
1

|r(s)− ϵ̄+ iΓ|2) e−
i
ℏ r(s)(t−t

′)︸ ︷︷ ︸∣∣∣e− i
ℏ r(s)(t−t

′)
∣∣∣≤1 for Im(r(s)) < 0

∣∣∣∣ (4.68)

≤
∣∣∣∣∫ π

0

ds iR eis
1

R2

∣∣∣∣ < π

R
→ 0 for R→∞ (4.69)

2. The integral along the closed contour is∫
γ

dϵ f (z) = 2πiResϵ̄−iΓ[f ] =
−π
Γ
e−

i
ℏ (ϵ̄−iΓ)(t−t

′) (4.70)

3. Thus, the integral along the real axis in the positive direction is∫ ∞
−∞

dϵ f (ϵ) =
π

Γ
e−

i
ℏ (ϵ̄−iΓ)(t−t

′) (4.71)

Combining this result with the prefactors, I obtain

⟨π|Ĝ(t, t ′)|π⟩ = θ(t − t ′)
Γ

iπℏ

∫ ∞
−∞

dϵ
1

(ϵ− ϵ̄+ iΓ)(ϵ− ϵ̄− iΓ)e
− i
ℏ ϵ(t−t

′)

= θ(t − t ′)
Γ

iπℏ
π

Γ
e−

i
ℏ (ϵ̄−iΓ)(t−t

′)

=
1

iℏ
θ(t − t ′)e−

i
ℏ (ϵ̄−iΓ)(t−t

′) (4.72)

2. determine the Green’s function in energy representation.
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The energy representation is obtained via Eq. 4.60. Simpler is however the direct back Fourier trans-
form of the Green’s function on the time domain.

G(ϵ) =

∫
dt G(t, 0)e

i
ℏ ϵt

=

∫ ∞
−∞

dt
1

iℏ
θ(t)e−

i
ℏ (ϵ̄−iΓ)te

i
ℏ ϵt

=

∫ ∞
0

dt
1

iℏ
e−

i
ℏ (ϵ̄−ϵ−iΓ)t

=
1

iℏ
e−

i
ℏ (ϵ̄−ϵ−iΓ)t

− i
ℏ (ϵ̄− ϵ− iΓ)

∣∣∣∣∣
∞

0

=
1

ϵ− ϵ̄+ iΓ (4.73)

Thus, the Green’s function has a single pole in the complex plane. The pole is displaced from the
real energy axis by Γ.

Observations

1. Interesting is that such a complicated density of states such as a Lorentzian yields a simple
result, namely a single harmonic contribution.

2. the Green’s function falls off exponentially with time. It seems that a perturbation of the system
dies out after a certain while, when it is characterized by Lorentzian peaks in the density of
states.

3. The Lorentzian shaped density of states has infinite energy moments
∫
dϵ D(ϵ)(ϵ − ϵ̄)n with

n ≥ 2. Editor: Discuss problems and how to cope with it.

4. Editor: Is the dynamics still unitary? This question requires the link to the
propagator to be established.



Chapter 5

Composite and open systems:
down-folding and retarded potentials

Deep down, the purpose of a Green’s function is to describe the influence of one subsystem onto
another or to describe the influence of an environment onto the system of interest. In many-particle
physics, the environment is an electron gas, which affects the motion of electrons and holes in a
solid. Let me therefore describe how the Green’s function enters the description of open systems.

Consider a composite system consisting of two subsystems.

Examples:

• A molecule A adsorbed to a surface B. We can investigate the broadening of the molecular
levels, and thus the spectroscopic properties of the adsorbed molecule.

• A material consisting of two spatially separated materials A and B with an interface in between.

• A traveling electron A that interacts with a phonon B. We may want to understand the
transport properties of the electron in the presence of the phonon, which may act as an elastic
or inelastic scattering center.

• A open system A in contact with an environment B, called a bath. This problem allows one to
investigate questions such as decoherence, dephasing, loss of information.

The coupling may however be also more general: We may consider a finite set of one-particle
orbitals to describe main features of a system. The subset of Fock space spanned by Slater determi-
nants from these orbitals is system A. The one-particle orbitals orthogonal to those of subsystem A
are used to define system B. The impact of the subsystem B can be incorporated into the description
of system A just as an environment can be considered in a physical subsystem.

5.1 Systems in contact: down-folding

Let us consider a Hilbert space, which is divided into an important subspace A =
{
|χAα⟩

}
and an

unimportant subspace B =
{
|χBα⟩

}
. The subspace A may describe the system of interest, while the

system B may describe the environment. The latter is often also called the bath.
We consider non-interacting electrons and a time-independent Hamiltonian. Furthermore, let me

limit the discussion to orthonormal basissets {|χα⟩}.

179
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A one-particle wave function of the complete system is a superposition of the one-particle basis
states of the system A of interest and the bath B.

|ψ⟩ =
∑
α∈A
|χAα⟩cAα +

∑
β∈B
|χBβ ⟩cBβ (5.1)

The stationary Schrödinger equation has the form1(
HAA − ϵ111AA V AB

V BA HBB − ϵ111BB

)(
c⃗A

c⃗B

)
= 0 (5.3)

with the norm

|c⃗A|2 + |c⃗B|2 = 1 (5.4)

for an orthonormal basisset.
The Hamilton matrix elements are

HAAα,β = ⟨χAα|Ĥ|χAβ ⟩ with α, β ∈ A
HBBα,β = ⟨χBα |Ĥ|χBβ ⟩ with α, β ∈ B
V ABα,β = ⟨χAα|Ĥ|χBβ ⟩ with α ∈ A, β ∈ B

V BAα,β = ⟨χBα |Ĥ|χAβ ⟩ =
(
V A,Bβ,α

)∗
with α ∈ B, β ∈ A (5.5)

The matrices 111AA, 111BB, 000AB, and 000BA are the unit and zero-matrices in the respective subspaces.

Down-folding: From the second line of the Schrödinger equation Eq. 5.3, we obtain a relation that
links c⃗B to c⃗A.

V BAc⃗A + (HBB − ϵ111BB)c⃗B = 0

⇒ c⃗B = (ϵ111BB −HBB)−1V BAc⃗A Eq. 4.23
= ḠBB(ϵ)V BAc⃗A (5.6)

where

ḠBB(ϵ)
def
= (ϵ111BB −HBB)−1 (5.7)

is the Green’s function of the isolated bath, i.e. of system B. The bar on-top of the symbol for the
bath Green’s function distinguishes it from the BB matrix elements of the Green’s function for the
entire system.

1 

HAA1,1 − ϵ HAA1,2 . . . HAA1,M V AB1,1 . . . V AB1,N

HAA2,1 HAA2,2 − ϵ . . . HAA2,M V AB2,1 . . . V AB2,N
...

...
. . .

...
...

. . .
...

HAAM,1 HAAM,2 . . . HAAM,M − ϵ V ABM,1 . . . V ABM,N

V BA1,1 V BA1,2 . . . V BA1,M HBB1,1 − ϵ . . . HBB1,N
...

...
. . .

...
...

. . .
...

V BAN,1 V BAN,2 . . . V BAN,M HBBN,1 . . . HBBN,N − ϵ





cA1

cA2
...

cAM

cB1
...

cNM


= 0 (5.2)
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The wave function |ψ⟩ of the complete system can be represented by energy-dependent orbitals
|χ̃Aα⟩ from system A

|ψ⟩ =
∑
α∈A

∣∣χAα〉cAα +∑
β∈B

∣∣χBβ 〉cBβ
Eq. 5.6
=

∑
α∈A

∣∣χAα〉cAα +∑
β∈B

∣∣χBβ 〉∑
α∈A

∑
γ∈B

ḠBBβ,γ (ϵ)V
BA
γ,α c

A
α︸ ︷︷ ︸

cBβ

=
∑
α∈A

(∣∣χAα〉+∑
β∈B

∣∣χBβ 〉∑
γ∈B

ḠBBβ,γ (ϵ)V
BA
γ,α

)
︸ ︷︷ ︸

|χ̃Aα(ϵ)⟩

cAα

=
∑
α∈A

∣∣χ̃Aα(ϵ)〉cAα (5.8)

The energy-dependent orbitals |χ̃Aα⟩ have the contribution of the environment glued on, that is they
leak into the environment.

ORBITALS WITH DOWN-FOLDED ENVIRONMENT

∣∣χ̃Aα(ϵ)〉 def
=
∣∣χAα〉+ ∑

β,γ∈B

∣∣χBβ 〉ḠBBβ,γ (ϵ)V BAγ,α for α ∈ A

=
(
1̂ +

∑
β,γ∈B,δ∈A

∣∣χBβ 〉ḠBBβ,γ (ϵ)V BAγ,δ ⟨πδ|
)∣∣χAα〉 for α ∈ A (5.9)

where ⟨πδ|χα⟩ = δδ,α.

Equation for the coefficients in A: The result Eq. 5.6 for the wave-function coefficients c⃗B in
subsystem B is inserted into back into the first line of the Schrödinger equation Eq. 5.3

(HAA − ϵ111AA)c⃗A + V AB c⃗B = 0
Eq. 5.6⇒

[
HAA + V ABḠBB(ϵ)V BA︸ ︷︷ ︸

M(ϵ)

−ϵ111AA
]
c⃗A = 0

Eq. 5.12⇒
[
M(ϵ)− ϵ111AA

]
c⃗A = 0 (5.10)
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DOWN-FOLDED WAVE-FUNCTION EQUATION

The energies ϵ and corresponding wave-function coefficients c⃗A, in the energy-dependent basis set
Eq. 5.9, are obtained from [

M(ϵ)− ϵ111AA
]
c⃗A = 0 (5.11)

where

M(ϵ)
def
= HAA + V ABḠBB(ϵ)V BA︸ ︷︷ ︸

ΣΣΣAA(ϵ)

(5.12)

If Eq. 5.11 has a solution c⃗A for a given energy ϵ, the wave function

|ψ⟩ =
∑
α∈A
|χ̃Aα(ϵ)⟩cAα (5.13)

solves the Schrödinger equation for the complete system with that energy. The orbitals |χ̃Aα(ϵ)⟩ have
contributions, both, in A and in B. For a normalized wave function |ψ⟩, the norm

∑
α∈A |c⃗Aα |2 of

vector c⃗A differs usually from 1.

In order to obtain a solution for Eq. 5.11, one needs to find those energies for which M(ϵ)− ϵ111AA
has a zero eigenvalue. This is the case, when the determinant det[M(ϵ) − ϵ111AA] vanishes. For an
energy-independent matrix M, this is equivalent to solving the characteristic equation for the energy
levels. For an energy-dependent M(ϵ), one needs to calculate the determinant as function of energy,
and, when a zero is encountered, to determine the eigenvector of M(ϵ)− ϵ111AA with eigenvalue zero,
respectively the eigenvector of M(ϵ) with energy ϵ. This procedure quickly becomes a difficult task
for larger systems.

Eq. 5.11 looks like a Schrödinger equation with an energy-dependent Hamiltonian M(ϵ). On the
positive side, the size of the matrix equation corresponds to only the subsystem A, which is usually
much smaller than the complete system. On the negative side, the matrix equation has, unlike the
Schrödinger equation, a non-linear energy dependence. As defined in Eq. 5.12, M(ϵ) appears like a
Hamiltonian with an energy-dependent potential. This potential is called the self energy ΣΣΣAA(ϵ).

SELF ENERGY DESCRIBING THE COUPLING TO A BATH

ΣΣΣAA(ϵ)
def
= V ABḠBB(ϵ)V BA (5.14)

ḠBB is the Green’s function of the isolated subsystem B.

The self energy will play an important, and more general, role in the Green’s functions world.

Role of the self energy

Editor: Relate the self energy to level repulsion and lifetime. Use a one-pole model
G(ℏω) = 1/[ℏω−ϵ+iΓ]. Real part produced energy level shift, Imaginary part produces
broadening. This may not be the best place for this discussion.

5.1.1 Effective Schrödinger equation for an embedded system:

One should resist the impetus to simply drop the energy dependence of M(ϵ) and interprete Eq. 5.11
as an approximate Schrödinger equation. With little extra effort, one can solve a linear-algebraic
problem, which is substantially more accurate and that preserves a lot of the physical content of the
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non-linear equation Eq. 5.11. In this section, I describe how we arrive at an Scḧrodinger equation of
an open system. This Schrödinger equation is approximate, but in many cases already quite accurate.
In this section, I will also show different ways to arrive at this very same Schrödinger equation. Each
of these routes emphasizes a different physical aspect of the problem. In practice you will encounter
these as seemingly distinct methodologies. It is useful to understand that and how they are related.

Editor: Is it simpler, to first linearize the equation and then show that Hamilton
and overlap matrices coincide with the matrix elements with orbitals at fixed energies?

Approximation of an energy-independent basisset

Despite the similarity, Eq. 5.11 also has a fundamental difference to the Schrödinger equation, namely
that the normalization of the vector c⃗A needs to consider the bath contribution. In this section, we
will show the relation to the Schrödinger equation. Here the normalization is taken into account by
an overlap matrix.

In order to make the connection of Eq. 5.12 with a Schrödinger equation evident, let us work
out2 the Hamiltonian and the overlap matrix for the energy-dependent basisset defined in Eq. 5.9.

H̃α,β(ϵ)
def
=

〈
χ̃Aα
∣∣Ĥ∣∣χ̃Aβ〉

Eq. 5.9
=

(〈
χAα
∣∣+∑

γ

(
V ABḠBB(ϵ)

)
α,γ

〈
χBγ
∣∣)Ĥ(∣∣χAβ〉+∑

δ

∣∣χBδ 〉(ḠBB(ϵ)V BA)
δ,β

)
Eq. 5.5
=

(
HAA + 2V ABḠBB(ϵ)V BA + V ABḠBB(ϵ) HBB︸︷︷︸

ϵ111−(ϵ111−HBB)︸ ︷︷ ︸
(GBB )−1

ḠBB(ϵ)V BA
)
α,β

Eq. 5.7
=

(
HAA + V ABḠBB(ϵ)V BA + ϵ V AB

(
ḠBB(ϵ)

)2
V BA

)
α,β

(5.15)

Õα,β(ϵ)
def
=

〈
χ̃Aα
∣∣χ̃Aβ〉

Eq. 5.9
=

(〈
χAα
∣∣+∑

γ

(
V ABḠBB(ϵ)

)
α,γ

〈
χBγ
∣∣)(∣∣χAβ〉+∑

δ

∣∣χBδ 〉(ḠBB(ϵ)V BA)
δ,β

)
Eq. 5.5
=

(
111AA + V AB

(
ḠBB(ϵ)

)2
V BA

)
α,β

(5.16)

Now, we fix the energy defining the orbitals to a specific value ϵν and write down the resulting
Schrödinger equation. [

H̃(ϵν)− ϵ Õ(ϵν)
]
c⃗A = 0 (5.17)

This expression is approximate, because it ignores the energy dependence of the basis states |χ̃Aα(ϵ)⟩
of Eq. 5.9. No other approximations are made.

Taylor expansion in the energy

Below, I will show that the very same Schrödinger equation as Eq. 5.17 can also be obtained from a
Taylor expansion of M(ϵ)− ϵ111AA to first order in the energy.

2We use that the Green’s function ḠBB(ϵ) is hermitian, which follows from the defining equation.
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EFFECTIVE SCHRÖDINGER EQUATION

Eq. 5.11 for the energies and wave functions can be linearized by discarding non-linear terms in ϵ−ϵν .
An approximate Schrödinger equation is obtained[ (
M(ϵν)− ϵν111AA

)
︸ ︷︷ ︸
H̃(ϵν)−ϵν Õ(ϵν) (Eq. 5.23)

+(ϵ− ϵν)
d(M(ϵ)− ϵ111AA)

dϵ

∣∣∣∣
ϵν︸ ︷︷ ︸

−Õ(ϵν) (Eq. 5.25)

]
c⃗A

Eqs. 5.21,5.22
=

[
H̃(ϵν)− ϵ Õ(ϵν)

]
c⃗A ≈ 0︸︷︷︸
=O
(
(ϵ−ϵν)2

)
(5.18)

with the normalization

c⃗A,∗Õ(ϵν)c⃗
A = 1 (5.19)

The eigenvector c⃗A defines the wave function |ψ⟩ via

|ψ⟩ =
∑
α∈A
|χ̃Aα(ϵν)⟩cAα (5.20)

with orbitals defined by Eq. 5.9.

The (approximate) equation Eq. 5.18 is of fundamental importance. It describes the down-folding
of the environment contribution into the description of an effective system, which is of the size of
the system of interest. Down-folding leads at first to an equation (Eq. 5.11) that is non-linear in
the energy. This nonlinear problem is mapped approximately onto an eigenvalue problem (Eq. 5.18),
which can be solved with standard methods from linear algebra.

DOWN-FOLDED HAMILTON- AND OVERLAP MATRICES FROM SELF ENERGY

The energy-dependent matrix M(ϵ)
Eq. 5.12
= HAA+ΣΣΣAA(ϵ) determines the downfolded Hamilton- and

overlap matrices by

H̃α,β(ϵν)
def
=
〈
χ̃Aα(ϵν)

∣∣Ĥ∣∣χ̃Aβ (ϵν)〉 Eq. 5.23
= Mα,β(ϵν)− ϵν

dMα,β

dϵ

∣∣∣∣
ϵν

(5.21)

Õα,β(ϵν)
def
=
〈
χ̃Aα(ϵν)

∣∣χ̃Aβ (ϵν)〉 Eq. 5.25
= δα,β −

dMα,β

dϵ

∣∣∣∣
ϵν

(5.22)

The matrix elements include the environment (B) contribution.

The two identities needed to prove the identity Eq. 5.18, respectively Eqs. 5.21, 5.22, are derived
below in Eq. 5.23 and Eq. 5.25.

1. Firstly, we show the identity for ϵ = ϵν . We use the definitions for Hamiltonian Eq. 5.15 and
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overlap matrix Eq. 5.16.

H̃(ϵ)− ϵÕ(ϵ) =

H̃(ϵ) (Eq. 5.15)︷ ︸︸ ︷(
HAA + 2V ABḠBB(ϵ)V BA + V ABḠBB(ϵ)HBBḠBB(ϵ)V BA

)
−ϵ
(
111AA + V AB

(
ḠBB(ϵ)

)2
V BA

)
︸ ︷︷ ︸

Õ(ϵ) (Eq. 5.16)

=
(
HAA − ϵ111AA

)
+ 2V ABḠBB(ϵ)V BA + V ABḠBB(ϵ)

(
HBB − ϵ111BB

)
︸ ︷︷ ︸

−Ḡ−1(ϵ)

ḠBB(ϵ)

︸ ︷︷ ︸
=−111BB

V BA

=
(
HAA − ϵ111AA

)
+ V ABḠBB(ϵ)V BA

Eq. 5.12
= M(ϵ)− ϵ111AA (5.23)

2. Now, we determine 3the energy derivative of M(ϵ)− ϵ111

d(M(ϵ)− ϵ111AA)
dϵ

Eq. 5.12
= V AB

d
(
ϵ111BB −HBB

)−1
dϵ︸ ︷︷ ︸

dḠBB(ϵ)/dϵ

V BA − 111AA

= −111AA + V AB

−(ϵ111BB −HBB)−1︸ ︷︷ ︸
ḠBB(ϵ)

d
(
ϵ111BB −HBB

)
dϵ︸ ︷︷ ︸
111BB

(
ϵ111BB −HBB

)−1
︸ ︷︷ ︸

ḠBB(ϵ)

 V BA
= −

[
111AA + V AB

(
ḠBB(ϵ)

)2
V BA

]
Eq. 5.16
= −Õ(ϵ) (5.25)

This completes the proof of Eq. 5.18

Energies accurate to second order in (ϵ− ϵν): In order to judge the accuracy of the Schrödinger
equation, we need to investigate the error introduced by the first-order Taylor expansion in energy.
We will see, that the error in the energy is of second order in (ϵ− ϵν).

I start from the assumption that the error of the eigenvector c⃗A is of first order in (ϵ− ϵν). This
is a reasonable assumption because the result is correct for ϵ = ϵν .

The energy can be obtained from the Schrödinger equation as

[
H̃ − ϵÕ

]
c⃗A = 0 ⇒ c⃗A∗

[
H̃ − ϵÕ

]
c⃗A = 0 ⇒ ϵ =

c⃗A∗H̃c⃗A

c⃗A∗Õc⃗A
(5.26)

Next, we consider the energy as a functional of the vector c⃗A. We will see that the energy depends
only to second order on an error in the c⃗A. Given that that c⃗A is accurate to first order in ϵ − ϵν ,

3The derivative of an inverse matrix is

dA−1(x)

dx
= −A−1(x)

dA(x)

dx
A−1(x) (5.24)

This relation is obtained by forming the derivative of A(x)A−1(x) = 111.
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this will show that the energy is only sensitive to second order in ϵ− ϵν .

δϵ = ϵ+ (δc⃗A)∗

[
H̃c⃗A

c⃗A∗Õc⃗A
−
Õc⃗A

(
c⃗A∗H̃c⃗A

)
(
c⃗A∗Õc⃗A

)2
]
+

[
· · ·

]
δc⃗A +O((δc⃗A)2)

= ϵ+ δc⃗A∗

[
H̃c⃗A

c⃗A∗Õc⃗A
−
Õc⃗A

(
c⃗A∗Õc⃗A ϵ

)
(
c⃗A∗Õc⃗A

)2
]
+

[
· · ·

]
δc⃗A +O((δc⃗A)2)

= ϵ+
δc⃗A∗

=0︷ ︸︸ ︷(
H̃ − ϵÕ

)
c⃗A

c⃗A∗Õc⃗A
+

=0︷ ︸︸ ︷
c⃗A∗
(
H̃ − ϵÕ

)
δc⃗A

c⃗A∗Õc⃗A
+O((δc⃗A)2)

= ϵ+O((δc⃗A)2) = ϵ+O((ϵ− ϵν)2) (5.27)

Limitations

While the non-linear equation Eq. 5.11 is exact, the Schrödinger equation Eq. 5.18 is only approxi-
mate. It is valid in an energy region around the expansion energy ϵν .

Convergence radius: The Taylor expansion has one important caveat: Every Taylor expansion
has a convergence radius beyond which the Taylor expansion does no more converge to the correct
result. Usually, the convergence radius is given by the distance of the next pole or discontinuity from
the expansion point. In the present case, the eigenstates of the isolated subsystem B introduce a
singularity into the Green’s function ḠBB. Thus, the Taylor expansion will usually be reliable within
a band gap of the bath B, but the validity will not reach beyond the band edges of its spectrum.

Contact with Green’s functions

In this section on embedding, we encountered already a number of relations that are fundamental to
the Green’s-function formalism.

• One central quantity is the self energy defined in Eq. 5.14. On the one hand, the downfolding
of a subsystem (B) introduces an additional energy-dependent potential acting on A. On the
other hand, the coupling V AB, V BA, enters only as part of the self energy.

• Below, in Eq. 5.40, we will see that M(ϵ) is directly related to the Green’s function projected
onto the system of interest, namely

ϵ111AA −M(ϵ) Eq. 5.40
=

(
GAA(ϵ)

)−1
(5.28)

• We can use the two relations Eq. 5.25 and Eq. 5.23 together with Eq. 5.28 to extract the
effective Hamiltonian from the Green’s function

H̃(ϵ) = ϵ
d
(
GAA(ϵ)

)−1
dϵ

−
(
GAA(ϵ)

)−1
Õ(ϵ) =

d
(
GAA(ϵ)

)−1
dϵ

(5.29)

5.2 Green’s function of a system coupled to a bath

In the previous section, the embedding has been described based on wave functions. We have seen
how the Green’s function of the bath enters in the description. A quantity of central importance
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has been the matrix M(ϵ). We mentioned already that this matrix is closely related to GAA(ϵ), the
Green’s function for the entire system projected on the system of interest. While the wave-function
based description is more transparent, I want translate the same into the more abstract language of
Green’s functions.

One of the main advantages of the Green’s-function formalism is that Green’s functions are
modular building blocks, that can be stacked together to construct the Green’s function for more
complex systems.

5.2.1 Coupling to a bath in the energy domain

Let me express the equation defining the Green’s function for a composite system. We use the same
notation as in the previous section.(

ϵ111AA −HAA −V AB

−V BA ϵ111BB −HBB

)(
GAA(ϵ) GAB(ϵ)

GBA(ϵ) GBB(ϵ)

)
Eq. 4.23
=

(
111AA 000AB

000BA 111BB

)
(5.30)

After performing the matrix multiplication, we select the two equations, which contain both,
GAA(ϵ) and GBA(ϵ). One equation expresses GBA(ϵ) by GAA(ϵ)

−V BAGAA(ϵ) +
(
ϵ111BB −HBB

)
GBA(ϵ)

Eq. 5.30
= 000BA

⇒ GBA(ϵ) =
(
ϵ111BB −HBB

)−1
V BAGAA(ϵ) (5.31)

The result is used to eliminate GBA(ϵ) from the other equation(
ϵ111AA −HAA

)
GAA(ϵ)− V ABGBA(ϵ) Eq. 5.30

= 111AA

⇒
(
ϵ111AA −HAA︸ ︷︷ ︸
[ḠAA(ϵ)]−1

− V AB
(
ϵ111BB −HBB

)−1
V BA︸ ︷︷ ︸

ΣΣΣAA(ϵ)

)
GAA(ϵ) = 111AA (5.32)

This yields an equation for GAA(ϵ), the Green’s function projected onto the system of interest.

RETARDED POTENTIALS BY COUPLING TO A BATH

[
ϵ111AA −HAA −ΣΣΣAA(ϵ)

]
GAA(ϵ) = 111AA (5.33)

with the energy-dependent self energy defined in Eq. 5.14

ΣΣΣAA(ϵ)
Eq. 5.14
= V ABḠBB(ϵ)V BA (5.34)

ḠBB is the Green’s function of the isolated subsystem B.

Isolated Green’s function and coupling are sufficient: Eq. 5.33 shows that the Green’s function
GAA(ϵ) of the composite system can be constructed from the Green’s functions of the isolated
systems and the Hamilton matrix elements connecting the two systems. This is convenient because
it shows how a complex system can be built up by stacking together the Green’s function of its
components.

With the Green’s function of the isolated systems,

ḠAA(ϵ)
def
=
(
ϵ111AA −HAA

)−1
(5.35)
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and ḠBB(ϵ) defined in Eq. 5.7, we obtain

GAA(ϵ)
Eq. 5.33
=

[(
ḠAA(ϵ)

)−1
− V ABḠBB(ϵ)V BA

]−1
(5.36)

Eq. 5.36 is a variant of the so-called Dyson equation. It will show up repeatedly in equivalent
forms such as

GAA
Eq. 5.36
=

[(
ḠAA

)−1 −ΣΣΣ]−1 (5.37)(
GAA

)−1 Eq. 5.36
=

(
ḠAA

)−1 −ΣΣΣ (5.38)

GAA
Eq. 5.36
= ḠAA + ḠAAΣΣΣGAA (5.39)

= ḠAA + ḠAAΣΣΣḠAA + ḠAAΣΣΣḠAAΣΣΣḠAA + ḠAAΣΣΣḠAAΣΣΣḠAAΣΣΣḠAA + . . .

The last form shows the principles for the perturbation expansion of the Green’s function.

Green’s function and M(ϵ): In Eq. 5.12 of the previous section, we introduced the object M(ϵ),
which plays the central role for the description of an embedded system. It defines the wave functions
and its energies of the composite system.
M(ϵ) is directly related to GAA(ϵ) defined in Eq. 5.33.

M(ϵ)
Eq. 5.12
= HAA + V ABḠBB(ϵ)V BA︸ ︷︷ ︸

ΣΣΣAA(ϵ)

Eq. 5.14
= ϵ111AA −

(
ϵ111AA −HAA −ΣΣΣAA(ϵ)

)
Eq. 5.33
= ϵ111AA −

(
GAA(ϵ)

)−1
(5.40)

This equation is equivalent to Eq. 5.28 on p. 186, which had been introduced earlier without proof.
Eq. 5.11, which defines the energies and wave functions is equivalent to(

GAA(ϵ)
)−1

c⃗A
Eq. 5.11
= 0 (5.41)

It thus specifies the poles of GAA(ϵ) as the energies of the composite system. The singular vectors
are the corresponding eigenstates.

The normalization condition needed to define c⃗A is specified by the same Green’s function GAA(ϵ):

1
Eq. 5.19
= c⃗A,∗Õ(ϵ)c⃗A

Eq. 5.25
= c⃗A,∗

d(ϵ111AA −M(ϵ))
dϵ

c⃗A
Eq. 5.40
= c⃗A,∗

d
(
GAA(ϵ)

)−1
dϵ

c⃗A

⇒ c⃗A,∗
d
(
GAA(ϵ)

)−1
dϵ

c⃗A = 1 (5.42)

Where are all the bath states: It seems surprising that nearly all the information of a composite
system can be mapped onto a small subsystem.

Indeed some information is lost: If the isolated bath has eigenstates that do not couple to the
system of interest, so that V A,B c⃗B = 0, they do not show up in the self energy. Thus, they do not
have any effect on the system GAA.

Such states however are related to a pole of the bath Green’s function. This pole leads to a
singularity in the extended orbital defined in Eq. 5.9. If theses singularities are ignored, a large
amount of the bath B is unaccounted. However, this is exactly what is desired when focusing on
system A.
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5.2.2 Coupling to a bath in the time domain

The energy representation is limited to systems with time translation symmetry. Furthermore it
obscures the dynamical properties of the system, which is a source of misunderstandings. Therefore,
I will repeat the same derivation in the time domain.

Let me consider the defining equation Eq. 4.14 of the Green’s function for a composite system.
While we do not make the time dependence of the Hamilton matrix elements explicit, the derivation
also works for time-dependent problems.(

111AAiℏ∂t −HAA −V AB

−V BA 111BB iℏ∂t −HBB

)(
GAA(t, t ′) GAB(t, t ′)

GBA(t, t ′) GBB(t, t ′)

)
=

(
111AA 000AB

000BA 111BB

)
δ(t − t ′) (5.43)

The symbols are defined in Eq. 5.5.
As in the previous section, I select the two equations containing both, GAA(t, t ′) and GBA(t, t ′).
Let me collect the upper-left element of this equation Eq. 5.43(

111AAiℏ∂t −HAA
)
GAA(t, t ′)− V ABGBA(t, t ′) = 111AAδ(t − t ′) (5.44)

I eliminate GBA in Eq. 5.44 by expressing it in terms of GAA. For that purpose, I take the lower-
left element of Eq. 5.43, which is the second equation besides Eq. 5.44 containing both Green’s
functions.

−V BAGAA(t, t ′) +
(
111BB iℏ∂t −HBB

)
GBA(t, t ′) = 000BA

⇒
(
111BB iℏ∂t −HBB

)
GBA(t, t ′) = V BAGAA(t, t ′) (5.45)

Let me now introduce the bath Green’s function defined earlier in Eq. 5.7 in an energy represen-
tation. Here, we need a more general definition, which is also valid for time-dependent Hamiltonians.(

111BB iℏ∂t −HBB(t)
)
ḠBB(t, t ′) = 111BBδ(t − t ′) (5.46)

Insertion of the bath Green’s function ḠBB into Eq. 5.45 for GBA yields

(
111BB iℏ∂t −HBB

)
GBA(t, t ′)

Eq. 5.45
=

∫
dt ′′

111BBδ(t−t ′′)︷ ︸︸ ︷(
111BB iℏ∂t −HBB

)
ḠBB(t, t ′′) V BAGAA(t ′′, t ′)

Eq. 5.46
=

(
111BB iℏ∂t −HBB

)[∫
dt ′′ ḠBB(t, t ′′)V BAGAA(t ′′, t ′)

]
⇒ GBA(t, t ′) =

∫
dt ′′ ḠBB(t, t ′′)V BAGAA(t ′′, t ′) + CBAhom(t, t

′) (5.47)

The object CBAhom(t, t
′) is any object that obeys the Schrödinger equation for subsystem B. It describes

contributions from system B, that are not induced by subsystem A.
The result for GBA can now be inserted into Eq. 5.44 to obtain an equation for GAA(
111AAiℏ∂t −HAA

)
GAA(t, t ′)− V AB

∫
dt ′′ ḠBB(t, t ′′)V BAGAA(t ′′, t ′)− V ABCBAhom(t, t

′) = 111AAδ(t − t ′)

(5.48)

This equation can also be written in the form∫
dt ′′

[(
111AAiℏ∂t −HAA

)
δ(t − t ′′)− V ABḠBB(t, t ′′)V BA

]
GAA(t ′′, t ′) = 111AAδ(t − t ′) + V ABCBAhom(t, t

′)

(5.49)
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What happens with CBAhom? Together with the differential equation Eq. 4.14 defining the Green’s
function, also the boundary condition has been specified as Ĝ(−∞, t ′) = 0̂, which implies Ĝ(t, t ′) = 0̂
for t < t ′. This boundary condition is specific for the causal Green’s function.4

A homogeneous solution of the Schrödinger equation (111BB iℏ∂t − HBB)c⃗ = 0 is either zero or
non-zero for all times.5 Because also GAA and ḠBB are causal, the block GBA of the Green’s function
is only causal if CBA vanishes.

RETARDED POTENTIALS BY COUPLING TO A BATH

∫
dt ′′

[(
111AAiℏ∂t −HAA(t)

)
δ(t − t ′′)−ΣΣΣAA(t, t ′′)

]
GAA(t ′′, t ′) = 111AAδ(t − t ′) (5.50)

with the retarded potential

ΣΣΣAA(t, t ′) = V AB(t)ḠBB(t, t ′)V BA(t ′) (5.51)

ḠBB is the Green’s function of the isolated subsystem B, which satisfies Eq. 5.46.

Instead of a differential equation for the Green’s function, we obtain now an integro-differential
equation.

5.3 Retarded and time-dependent potentials

In this section, I want to elaborate on the role of retarded and time-dependent potentials. Both refer
to a time dependence of the self energy, which is why they are easily confused. I will show, how a
retarded and an energy-dependent potential appears in the energy-based representation.

5.3.1 Time-independent Schrödinger equation with a retarded potential

Consider a Schrödinger equation that has a nonlocal potential in time. That is, it has a Hamiltonian
ĥ + Σ̂(t, t ′) with a retarded potential Σ̂(t, t ′) .

[
iℏ∂t − ĥ

]
|ψ(t)⟩ −

∫
dt ′ Σ̂(t, t ′)|ψ(t ′)⟩ = 0 (5.52)

I am using here the symbol Σ̂, which is later used for the self energy, because the self energy has
the form for a retarded potential. At this point, its meaning is more general.

In order to ensure causality, the retarded potential has to obey Σ̂(t, t ′) = 0 for t ′ > t.
For a translation-invariant problem in time, for which the potential Σ̂(t, t ′) depends only on the

relative time argument t − t ′, we can go into the energy representation.6

Σ̂(t, t ′)
Eq. A.4
=

∫
dϵ

2πℏ
Σ̂(ϵ)e−

i
ℏ ϵ(t−t

′) (5.53)

and use the following Ansatz for the wave function

|ψ(t)⟩ Eq. A.4
=

∫
dϵ

2πℏ
|ψ(ϵ)⟩e−

i
ℏ ϵt (5.54)

4Later, we will see that there are Green’s function for which this requirement is modified.
5This is evident from the conservation of the norm of the wave function.
6A word regarding units. Σ(t, t ′) has the unit energy divided by time. Σ(ϵ) has the unit energy.
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I insert this potential Σ̂ into the retarded Schrödinger equation Eq. 5.52

[
iℏ∂t − ĥ

]
|ψ(t)⟩ −

∫
dt ′

Σ̂(t,t ′)︷ ︸︸ ︷∫
dϵ

2πℏ
Σ̂(ϵ)e−

i
ℏ ϵ(t−t

′) |ψ(t ′)⟩ = 0[
iℏ∂t − ĥ

] ∫ dϵ

2πℏ
|ψ(ϵ)⟩e−

i
ℏ ϵt︸ ︷︷ ︸

|ψ(t)⟩ from Eq. 5.54

−
∫

dϵ

2πℏ
e−

i
ℏ ϵtΣ̂(ϵ)

∫
dt ′ e

i
ℏ ϵt

′ |ψ(t ′)⟩︸ ︷︷ ︸
|ψ(ϵ)⟩ via Eq. A.3

= 0

⇒
∫

dϵ

2πℏ
e−

i
ℏ ϵt
(
ϵ− ĥ − Σ̂(ϵ)

)∣∣ψ(ϵ)〉 = 0
(5.55)

This equation is satisfied for all times only if all coefficients vanish individually, i.e.[
ϵ1̂− ĥ − Σ̂(ϵ)

]
|ψ(ϵ)⟩ = 0 . (5.56)

In the energy representation, the retarded potential is thus turned into an energy-dependent
potential. If the potential were local in time, its Fourier transform would be a constant in ϵ and the
potential Σ(ϵ) would be energy independent.

In order to solve the above equation, we must satisfy

SCHRÖDINGER EQUATION WITH A RETARDED POTENTIAL

For a system with a retarded potential Σ̂, which is invariant under time-translations, the Schrödinger
equation has the form [

ϵ1̂− ĥ − Σ̂(ϵ)
]
|ψ(ϵ)⟩ = 0 (5.57)

with an energy-dependent Hamiltonian ĥ + Σ̂(ϵ).
An approximate Schödinger equation with an energy-independent potential can be obtained from
Eq. 5.57 by a first-order Taylor expansion in the deviation ϵ − ϵν about some reference energy ϵν .
This will naturally include an overlap operator.

If we consider the case, where the self energy is due to coupling to another system, the wave
function |ψ(ϵ)⟩ =

∑
α∈A |χAα⟩cAα is localized on the subsystem A. The wave function |ψ̃(ϵ)⟩, which

also contains the contribution of system B, is recovered using Eq. 5.9.

|ψ̃(ϵ)⟩ Eq. 5.9
=

(
1̂ +

∑
β,γ∈B,δ∈A

∣∣χBβ 〉ḠBBβ,γ (ϵ)V BAγ,δ ⟨πδ|
)
|ψ(ϵ)⟩ (5.58)

with ⟨πα|χβ⟩ = δα,β.
Note however, that the energies obtained from this equation are, in general, complex and that

the wave functions are not necessarily orthonormal. (I do not have a proof either way.)

5.3.2 Time-dependent potential in an energy representation

In order to make the contrast to the retarded potential clear, let me investigate a time-dependent
potential in the same manner.

Let me consider a time-dependent Hamiltonian ĥ + Ŵ (t) with

Ŵ (t) =
∑
n

ŵne
−iωnt (5.59)

and represent the wave function in the form∣∣ψ(t)〉 = ∫ dϵ

2πℏ
∣∣ψ(ϵ)〉e− i

ℏ ϵt (5.60)



192 5 COMPOSITE AND OPEN SYSTEMS: DOWN-FOLDING AND RETARDED
POTENTIALS

The Schrödinger equation with the time-dependent potential is[
iℏ∂t 1̂− ĥ − Ŵ (t)

]
|ψ(t)⟩ = 0

⇒
∫

dϵ

2πℏ
e−

i
ℏ ϵt
[(
ϵ1̂− ĥ

)∣∣ψ(ϵ)〉−∑
n

ŵn
∣∣ψ(ϵ− ℏωn)〉] = 0

⇒
(
ϵ1̂− ĥ

)∣∣ψ(ϵ)〉−∑
n

ŵn
∣∣ψ(ϵ− ℏωn)〉 = 0 (5.61)

The energy components of the wave functions are no more independent of each other. Each Fourier
component in the potential introduces a sequence of overtones in the wave function, that is, com-
ponents with ϵ+ ℏωn. The overtones are responsible for a non-trivial dynamics of the wave function
beyond a harmonic oscillation.

For further information on strong time-dependent potentials, I refer to Floquet theory. Floquet
theory studies perturbations that are periodic in time. In this case it is possible to translate Bloch
theorem, formulated for potentials that are periodic in space, to potentials that are periodic in time7

We can remember, that a wave function having contributions with distinct energies has a non-
linear time evolution and is not the result of a Hamiltonian with time-translation symmetry.

5.3.3 Summary

In this section we learned that a part of a quantum system can be investigated, if the Green’s function
of the isolated remaining system, ˆ̄GBB is available. The remaining system acts on the system of
interest with a retarded potential, which we call a self energy Σ̂(t, t ′). The retardation describes
the time delay between action on the remaining system and its back-action, like in an echo. In an
energy representation the self energy acts like an energy-dependent potential. If the back-action is
instantaneous, the potential is local in time, that is non-retarded, and hence also energy-independent.

Schrödinger equations with an energy-dependent Hamiltonian can be solved by piece-wise lin-
earization in the energy, which yields, for each piece, a generalized eigenvalue problem with an overlap
matrix. The overlap matrix differs from unity, because the wave function has a “tail” extending into
the remaining system.

The reader should be able to distinguish time-dependent from retarded potentials. The reader
should be able to translate each between the time-representation and energy representation.

Editor: This is under construction. Drop this

1. general potential

V (ϵ, ϵ′) =

∫
dt

∫
dt ′ V (t, t ′)e

i
ℏ (ϵt+ϵ

′t ′) (5.62)

2. local in time, but time dependent

3. retarded, but time independent

4. constant: time independent and local in time

V̂ (t, t ′) = F̂

V̂ (ϵ, ϵ′) = F̂ δ(ϵ)δ(ϵ′) (5.63)

Further information about one-particle Green’s functions can be found in the Book by Economou[58].

7Floquet theorem actually predates Bloch theorem. The latter is an application of the Floquet theorem, which is
more general.
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5.3.4 Other uses of retarded or energy-dependent potentials

• In the proximity of the nucleus the kinetic energy of the electrons becomes so large that they
become relativistic. In order to describe relativistic effects, one often down-folds the two
small components of the four-component spinor in the Dirac equation. The small components
can be attributed to positrons, the antiparticles of electrons. As result one obtains an energy-
dependent equation for a two-component spinor describing the spin-up and spin-down electrons.
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5.4 Home study and practice

5.4.1 Minimal model for a quantum system coupled to a bath

Introduction

The following set of three problems shall demonstrate different aspects of dealing with composite
systems using Green’s functions. In problem 5.4.1, I start with two atoms forming a molecule, which
has already discussed explicitly in 1.5.1 and 1.5.2. Then, in problem 5.4.2, I replace one of the atoms
with one having a finite life time. In the third problem 5.4.3, the second atom is replaced by an
explicit extended system.

In order to gain insight into the coupling between systems, let me investigate a minimal model.
The model describes a spin-less Hubbard dimer without interaction: The two Hubbard atoms are
denoted as A and B. The hopping parameter between the two subsystems is t and the energy of
the orbital at A is at zero, i.e. ϵ̄A = 0. The orbital of the bath site B is at energy ϵ̄B. In order to
practice, how to replace one part of a combined system by another one, we start with a symmetric
dimer ϵ̄B = ϵ̄A. An asymmetric dimer is then constructed by replacing atom B by one with a different
atomic level, i.e. ϵ̄B ̸= ϵ̄A.

This technique is used, for example, to study point defects in crystals. One example is the
Anderson impurity model[59], which describes a strongly correlated atom, the Anderson impurity,
in an otherwise perfect crystal, the bath8. The Anderson model was introduced to explain that
impurities in a free-electron-like metal can produce local magnetic moments observed experimentally.
The Anderson model has also been used to explain the Kondo effect, an unsuspected increase of the
electric resistance below the Kondo temperature. The Kondo effect is one of the famous quantum
effects of interacting electrons. For more information, I refer to chapter ?? on p. ??. The Hubbard
dimer can be considered as a minimal Anderson impurity model. The subsystem A represents the
Anderson impurity, while the subsystem B represents the bath. In the following problems, I exclude
the electron interaction for the sake of simplicity. This turns the Anderson model into the simpler
Fano model[60], which has been introduced almost simultaneously with the Anderson model. The
Fano model has been introduced to study the asymmetric line-shape of absorption lines.

8The term bath is probably related to that of the heat bath of thermodynamics.
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Problem

Consider the spin-less dimer with the Hamiltonian

ĥ = |πA⟩ϵ̄A⟨πA|+ |πB⟩ϵ̄B⟨πB| − t
(
|πA⟩⟨πB|+ |πB⟩⟨πA|

)
(5.64)

Without restriction of generality we choose ϵ̄A = 0.
I use the notation for non-orthonormal local orbitals with local orbitals |χα⟩ and projector functions
|πα⟩, that obey the bi-orthogonality condition ⟨χα|πβ⟩ = δα,β. Nevertheless, in this problem the
orbitals are assumed to be orthonormal, that is ⟨χα|χβ⟩ = δα,β.

1 Determine the Green’s function Ĝ(ϵ) for the dimer with a given value for ϵ̄B = 0. Calculate
GAA(ϵ), GBB(ϵ) and the Green’s function ḠBB(ϵ) of the isolated atom B.

2. Calculate the retarded potential ∆ΣAA(ϵ), which acts on system A due to replacing atom B by
one with the atomic level at ϵ̄B.

3. Construct the Green’s function for atom A in the asymmetric dimer (with ϵ̄B ̸= 0) from the
Green’s function of the symmetric dimer and the retarded potentials produced by site B.

4. Determine the density of states on site A

5. Editor: This problem shall describe how the charge oscillates in sites A,
when it is in contact with B. The initial condition is that the particle
is completely on site A. The charge oscillates on A as it oscillates back
and forth between A and B with the excitation frequency. In the next
problem we can discuss how a continuous spectrum in B leads to a decay
of the occupation in A, as it leaks into an environment with an infinite
number of states.

Discussion

1 Determine the Green’s function Ĝ(ϵ) for the dimer with a given value for ϵ̄B = 0. Calculate
GAA(ϵ), GBB(ϵ) and the Green’s function ḠBB(ϵ) of the isolated atom B.

The Hamiltonian of the dimer with ϵ̄B = 0 is

h =

(
0 −t
−t 0

)
(5.65)

The Hamiltonian is at times represented as 2×2-matrix and sometimes as operator. The operator
form has the vector of kets attached on the left side to the matrix and the vector of bras on the right
side. The operator form has the advantage, that the basisset is made explicit when it is used. In the
exercise at hand, we also deal with one-dimensional Hilbert spaces, namely for the isolated atom A
and the isolated atom B. In that case, the matrix becomes a number.

One can evaluate the Green’s function by inverting the matrix ϵ111 − h. This can be done either
directly, or via eigenstates and eigenvalues. While both methods are demonstrated, only one is
required.

• Green’s function by inversion of ϵ111− h

G(ϵ)
Eq. 4.23
=

(
ϵ111− h

)−1
=

1

ϵ2 − t2

(
ϵ −t
−t ϵ

)
(5.66)



196 5 COMPOSITE AND OPEN SYSTEMS: DOWN-FOLDING AND RETARDED
POTENTIALS

I have been using the simple formula for the inversion of a 2× 2 matrix.9

• Green’s function by diagonalization: This method is more involved than direct inversion, but it
is instructive.

The eigenstates of h are

c⃗1 =
1√
2

(
1

1

)
with energy ϵ1 = −t and (5.68)

c⃗2 =
1√
2

(
1

−1

)
with energy ϵ2 = +t

The Green’s function is (with the dyadic (outer) product ⊗)

G(ϵ) =
∑

n∈{1,2}

c⃗n ⊗ c⃗∗n
ϵ− ϵn

=
1

2

(
1 1

1 1

)
1

ϵ+ t
+
1

2

(
1 −1
−1 1

)
1

ϵ− t

=
1

ϵ2 − t2

[
1

2

(
1 1

1 1

)
(ϵ− t) +

1

2

(
1 −1
−1 1

)
(ϵ+ t)

]

=
1

ϵ2 − t2

(
ϵ −t
−t ϵ

)
(5.69)

From this result, I can directly look up the diagonal elements of the Green’s function

GAA(ϵ) =
ϵ

ϵ2 − t2 and GBB(ϵ) =
ϵ

ϵ2 − t2 (5.70)

respectively, as operators,

ĜAA(ϵ) = |χA⟩
ϵ

ϵ2 − t2 ⟨χA| and ĜBB(ϵ) = |χB⟩
ϵ

ϵ2 − t2 ⟨χB| (5.71)

The Green’s function ḠBB for the isolated bath is obtained directly from the 1× 1 Hamiltonian
hBB by inverting ϵ− hBB. In our special case, we have set ϵ̄B = ϵ̄A = 0.

ḠBB(ϵ) =
1

ϵ
(5.72)

2. Calculate the retarded potential ∆ΣAA(ϵ), which acts on system A due to replacing atom B by
one with the atomic level at ϵ̄B.

The self energy of the bath site with a specified ϵ̄B is

ΣAA(ϵ)
Eq. 5.34
= V ABḠBB(ϵ)V BA =

t2

ϵ− ϵ̄B
(5.73)

The site B is replaced by replacing the self energy with that of the new system. This implies that
the replacement is represented by a self energy ∆Σ, which is the difference of the one with ϵ̄B ̸= 0
and the one with ϵ̄B = 0

∆Σ(ϵ) =
t2

ϵ− ϵ̄B
−
t2

ϵ
=

ϵ̄Bt
2

ϵ(ϵ− ϵ̄B)
(5.74)

9 (
a b

c d

)−1
=

1

ad − bc

(
d −b
−c a

)
(5.67)
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3. Construct the Green’s function for atom A in the asymmetric dimer ϵ̄B ̸= 0 from the Green’s
function of the symmetric dimer and the retarded potentials produced by site B.

In the following, I use two arguments for the Green’s function: the second is the “normal” energy
argument, while the first is the value of ϵ̄B, which can be either ϵ̄B or zero.

The equation for the Green’s function on site A is

ĜAA(ϵ̄B; ϵ) =
[
ϵ1̂AA − ĥAA − V̂ AB ˆ̄GBB(ϵ̄B; ϵ)V̂ BA

]−1
=
[
ϵ1̂AA − ĥAA − V̂ AB ˆ̄GBB(0; ϵ)V̂ BA︸ ︷︷ ︸(

ĜAA(0;ϵ)
)−1 − V̂ AB

(
ˆ̄GBB(ϵ̄B; ϵ)− ˆ̄GBB(0; ϵ)

)
V̂ BA︸ ︷︷ ︸

∆Σ̂AA

]−1

=
[(
ĜAA(0; ϵ)

)−1
− ∆Σ̂AA(ϵ)

]−1
(5.75)

Let me now insert the “numbers”. GAA(ϵ) is the sole matrix element of ĜAA(ϵ) = |χA⟩GAA(ϵ)⟨χA|.

GAA(ϵ̄B; ϵ)
Eqs. 5.70, 5.74

=
[ ϵ2 − t2

ϵ︸ ︷︷ ︸(
GAA(0;ϵ)

)−1−
t2ϵ̄B

ϵ(ϵ− ϵ̄B)︸ ︷︷ ︸
∆ΣAA(ϵ)

]−1

=
ϵ(ϵ− ϵ̄B)

(ϵ2 − t2)(ϵ− ϵ̄B)− t2ϵ̄B

=
ϵ(ϵ− ϵ̄B)

ϵ3 − t2ϵ− ϵ2ϵ̄B + t2ϵ̄B − t2ϵ̄B
=

ϵ− ϵ̄B
ϵ2 − t2 − ϵϵ̄B

=
ϵ− ϵ̄B(

ϵ− 12 ϵ̄B −
√(

1
2 ϵ̄B
)2
+ t2

)(
ϵ− 12 ϵ̄B +

√(
1
2 ϵ̄B
)2
+ t2

) (5.76)

With this result we could in principle stop. However, the expression is still fairly intransparent. Let
us therefore divide the result into the sum of the two poles.

Let us perform a partial-fraction decomposition10

x − c
(x − a)(x − b) =

c−b
a−b (x − a)−

c−a
a−b (x − b)

(x − a)(x − b) =
a − c
a − b

1

x − a +
c − b
a − b

1

x − b (5.77)

with

c = ϵ̄B

a =
1

2
ϵ̄B +

√(
1

2
ϵ̄B

)2
+ t2

b =
1

2
ϵ̄B −

√(
1

2
ϵ̄B

)2
+ t2

⇒
a − c
a − b =

−ϵ̄B/2 +
√
(ϵ̄B/2)2 + t2

2
√
(ϵ̄B/2) + t2

=
1

2

(
1−

ϵ̄B/2√
(ϵ̄B/2)2 + t2

)
c − b
a − b =

ϵ̄B/2 +
√
(ϵ̄B/2)2 + t2

2
√
(ϵ̄B/2) + t2

=
1

2

(
1 +

ϵ̄B/2√
(ϵ̄B/2)2 + t2

)
(5.78)

10German(partial fraction decomposition)=Partialbruchzerlegung.
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GAA(ϵ̄B; ϵ)
Eq. 5.77
=

1

2

1− ϵ̄B/2√
(ϵ̄B/2)

2+t2

ϵ− ϵ̄B/2−
√
(ϵ̄B/2)

2 + t2
+
1

2

1 + ϵ̄B/2√
(ϵ̄B/2)

2+t2

ϵ− ϵ̄B/2 +
√
(ϵ̄B/2)

2 + t2
(5.79)

The first term is the pole with the upper energy and the second term is the pole with the lower
energy.

• The poles of the Green’s function lie exactly at the energy eigenvalues of the asymmetric dimer.
This is a sanity check that the method works.

• For the symmetric dimer, i.e. for ϵ̄B = 0, we obtain G(0)AA(ϵ) obtained previously.

• For ϵ̄B →∞ we obtain the Green’s function for the isolated atom A.

• The weights of the two poles add up to one. This demonstrates an important sum rule for the
Green’s function.

4. Determine the projected density of states on site A

The density of states on site A is obtained as

DA(ϵ)
Eq. 4.50
= −

1

π
lim
η→0
Im
[
⟨πA|Ĝ(ϵ+ iη)|πA⟩

]
(5.80)

where the |πA⟩ are the projector functions for the orbitals |χα⟩.
The density of states is a 2×2matrix in a two-dimensional basisset D̂(ϵ) =

∑
α,β∈{A,B} |χα⟩Dα,β⟨χβ |.

The projected density of states for site A is the matrix element DAA(ϵ) on the diagonal, which I ab-
breviate as DA(ϵ).

In the following, I will use

lim
η→0+

Im
(
−
1

π

1

x + iη

)
Eq. 4.53
= δ(x) (5.81)

The projected density of states is

DA(ϵ) = −
1

π
lim
η→0+

Im
[
⟨πA|Ĝ(ϵ+ iη)|πA⟩

]
= −

1

π
lim
η→0
Im
[
GAA(ϵ̄B; ϵ+ iη)

]
(5.82)

We use the Green’s function from Eq. 5.79

GAA(ϵ̄B; ϵ+ i0
+)

Eq. 5.79
=

1

2

1− ϵ̄B/2√
(ϵ̄B/2)

2+t2

ϵ− ϵ̄B/2−
√
(ϵ̄B/2)

2 + t2
+
1

2

1 + ϵ̄B/2√
(ϵ̄B/2)

2+t2

ϵ− ϵ̄B/2 +
√
(ϵ̄B/2)

2 + t2
(5.83)

to obtain the projected density of states.

⇒ DA(ϵ) =
1

2

1− ϵ̄B/2√
(ϵ̄B/2)

2 + t2

 δ(ϵ− ϵ̄B/2−√(ϵ̄B/2)2 + t2)︸ ︷︷ ︸
upper peak

+
1

2

1 + ϵ̄B/2√
(ϵ̄B/2)

2 + t2

 δ(ϵ− ϵ̄B/2 +√(ϵ̄B/2)2 + t2)︸ ︷︷ ︸
lower peak

(5.84)

The result is shown in figure 5.1.
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Fig. 5.1: Density of states projected onto orbital A, which is coupled to a second orbital B. The
energy axis is the left edge of the graph and the projected density of states is the height. The orbital
energy ϵ̄B changes from left ϵ̄B ≪ ϵ̄A to right ϵ̄B ≫ ϵ̄A. As ϵ̄B crosses the energy ϵ̄A, an avoided
band crossing occurs. The positions of the maxima are the positions of the two energy levels. The
height is the contribution of of that state at the first atom.

When we choose a |ϵ̄B|≫t, we recognize one peak of the density of states lies near zero, i.e. near
ϵ̄A, while the other lies near ϵ̄B. The peak near ϵ̄B has the smaller weight compared to the one near
zero. For ϵ̄B near zero, we can observe the level repulsion.

It shows that the spectral function at site A is only affected by site B if the two energies are close
to each other.

One can verify that the peaks of the density of states obtained this way coincide precisely with
the energies obtained for the asymmetric dimer in the exercise Eq. 1.5.2 on p. 28.

There is a sum rule, which says that the integral of the density of states Eq. 2.120 projected onto
one orbital integrates to one, respectively to the norm of that orbital. 11

∫
dϵ ⟨χ|D̂(ϵ)|χ⟩ = ⟨χ|χ⟩ (5.87)

Hence, the weight of a side-peak in the density of states is lost from main peak.

5. Editor: This problem shall describe how the charge oscillates in sites A,
when it is in contact with B. The initial condition is that the particle
is completely on site A. The charge oscillates on A as it oscillates back
and forth between A and B with the excitation frequency. In the next
problem we can discuss how a continuous spectrum in B leads to a decay
of the occupation in A, as it leaks into an environment with an infinite
number of states.

11One exploits that the density of states

D̂(ϵ)
Eq. 2.120
=

∑
n

|ϕn⟩δ(ϵ− ϵn)⟨ϕn| (5.85)

integrates to the unit operator.∫ ∞
−∞

dϵ D̂(ϵ) =
∑
n

|ϕn⟩
(∫ ∞
−∞

dϵ δ(ϵ− ϵn)︸ ︷︷ ︸
=1

)
⟨ϕ| =

∑
n

|ϕn⟩⟨ϕ| = 1̂ (5.86)
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Editor: The following is not finished yet!

Ĝ(t, t ′)
Eq. 4.60
=

1

iℏ
θ(t − t ′)

∫
dϵ D̂(ϵ)e−

i
ℏ ϵ(t−t

′)

Ĝ(t, t ′)
Eq. 4.38
=

1

iℏ
θ(t − t ′)Û(t, t ′)

|ψ(t)⟩ = Û(t, t ′)|ψ(t ′)⟩ = iℏĜAA(t, t ′)|ψ(t ′)⟩ for t > t ′

|ψ(t)⟩ = iℏ
(
1

iℏ

∫
dϵ D̂(ϵ)e−

i
ℏ ϵ(t−t

′)

)
|ψ(t ′)⟩

=

∫
dϵ D̂(ϵ)e−

i
ℏ ϵ(t−t

′)|ψ(0)⟩ (5.88)

⟨πA|ψ(t)⟩ = ⟨πA|
∫
dϵ D̂(ϵ)e−

i
ℏ ϵ(t−t

′)|ψ(0)⟩ (5.89)
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5.4.2 System in contact with a bath having a finite lifetime

Introduction

Problem

Consider a two-state system, such as a spin-less Hubbard dimer with a ground state at energy 0 and
one excited state at energy ϵA. This two-state system is coupled to a bath having a Lorentzian spectral
function centered at ϵ̄B and having a life-time broadening Γ. The full-width-at-half-maximum
(FWHM) is 2Γ.
The density of states (or spectral function) of a Lorentzian peak at energy ϵ̄ with lifetime ℏ/Γ is (see
also Eq. 4.63)

D(ϵ) =
1

π

Γ

(ϵ− ϵ̄)2 + Γ2 (5.90)

In Eq. 4.73, we obtained the Green’s function for this system as

Ḡ(ϵ) =
1

ϵ− ϵ̄+ iΓ (5.91)

Consider the Hamiltonian from exercise 5.4.1 and replace the subsystem B by a system with
Lorentzian density of states.

1. Determine the Green’s function on subsystem A in the time and the energy representation.
Plot the result.

2. Determine the energy in subsystem A, the expectation value of the Hamiltonian in the subspace
A, as function of time. Discuss energy conservation.

3. Determine the wave function of subsystem A as function of time.

Discussion

1. Determine the Green’s function on subsystem A in the time and the energy representation.
Plot the result.

ΣAA(ϵ) = V ABḠBB(ϵ)V BA =
t2

ϵ− ϵ̄B + iΓ

∆ΣAA(ϵ) =
t2

ϵ− ϵ̄B + iΓ
−
t2

ϵ
=

t2(ϵ̄B − iΓ)
ϵ(ϵ− ϵ̄B + iΓ)

(5.92)
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GAA(ϵ) =
((ḠAA)−1︷ ︸︸ ︷
ϵ− hAA−ΣAA,(0)(ϵ)︸ ︷︷ ︸(

GAA(0;ϵ)

)−1 −∆ΣAA(ϵ)
)−1

=

(
ϵ2 − t2

ϵ
−

t2(ϵ̄B − iΓ)
ϵ(ϵ− ϵ̄B + iΓ)

)−1
=

(
(ϵ2 − t2)(ϵ− ϵ̄B + iΓ)− t2(ϵ̄B − iΓ)

ϵ(ϵ− ϵ̄B + iΓ)

)−1
=

(
ϵ3 − (ϵ̄B − iΓ)ϵ2 − t2ϵ+ (ϵ̄B − iΓ)t2 − t2(ϵ̄B − iΓ)

ϵ(ϵ− ϵ̄B + iΓ)

)−1
=

(
ϵ2 − (ϵ̄B − iΓ)ϵ− t2

ϵ− ϵ̄B + iΓ

)−1
=

ϵ− ϵ̄B + iΓ
ϵ2 − (ϵ̄B − iΓ)ϵ− t2

=
ϵ− ϵ̄B + iΓ[

ϵ− (ϵ̄B − iΓ)/2−
√(

ϵ̄B−iΓ
2

)2
+ t2

][
ϵ− (ϵ̄B − iΓ)/2 +

√(
ϵ̄B−iΓ
2

)2
+ t2

] (5.93)

Editor: This is sufficient for plotting. One should continue with the partial
fraction decomposition. See Eq. 5.77 on p. 197

Fig. 5.2: Density of states (up) at an avoided band crossing, where the crossing band has a finite
lifetime (top), compared to that for site B with infinite lifetime (bottom). Density of states as
function of the energy (front-to-back) at the first orbital |χA⟩ in the dimer as function of the energy
ϵ̄B (left-to-right) of the second orbital. The positions of the maxima are the positions of the two
energy levels. The height is the contribution of of that state at the first atom.

Editor: This is nonsense!!!: Let me now transform the Green’s function into the
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time domain:

GAA(ϵ) =

∫ ∞
−∞

dτ e
i
ℏ ϵτGAA(t + τ, t)

GAA(t + τ, t) =

∫ ∞
−∞

dϵ e−
i
ℏ ϵτGAA(ϵ)

=

∫ ∞
−∞

dϵ e−
i
ℏ ϵτ

1

ϵ− ϵ̄B + iΓ

= e
1
ℏ (i ϵ̄+Γ)τ

∫ ∞
−∞

dϵ e−
i
ℏ (ϵ−ϵ̄+iΓ)τ

1

ϵ− ϵ̄B + iΓ
(5.94)

2. Determine the energy in subsystem A, the expectation value of the Hamiltonian in the subspace
A, as function of time. Discuss energy conservation.

Editor: This problem is not yet done!

3. Determine the wave function of subsystem A as function of time.

Editor: This problem is not yet done!
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5.4.3 Fano-Anderson model

Introduction

Editor: Check out

• Coherent Two-Dimensional Spectroscopy of a Fano Model”, by Daniel Finkelstein-Shapiro
and Felipe Poulsen and Tõnu Pullerits and Thorsten Hansen, https://arxiv.org/
pdf/1605.08572.pdf for introduction and references. See also “Erratum: Coherent
two-dimensional spectroscopy of a Fano model [Phys. Rev. B 94, 205137 (2016)]”
D Finkelstein-Shapiro, F Poulsen, T Pullerits, T Hansen Physical Review B 96 (23),
239906

• “On the Ubiquity of Beutler-Fano Profiles: from Scattering to Dissipative Processes”
Daniel Finkelstein-Shapiro and Arne Keller, https://arxiv.org/pdf/1710.04800.
pdf

• Non-linear Fano Interferences in Open Quantum Systems: an Exactly Solvable Model,
https://arxiv.org/pdf/1509.04653.pdf

The Fano model12[60] describes an atom which is adsorbed on a metal. It demonstrates the
broadening of an energy level when it couples to a continuum.

12This exercise follows Stefanucci and van Leeuwen[2], section 2.3.2.

https://arxiv.org/pdf/1605.08572.pdf
https://arxiv.org/pdf/1605.08572.pdf
https://arxiv.org/pdf/1710.04800.pdf
https://arxiv.org/pdf/1710.04800.pdf
https://arxiv.org/pdf/1509.04653.pdf
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Problem

The Fano model describes a spinless electron with the Hamiltonian

ĥ = ϵd d̂
†d̂︸ ︷︷ ︸

ĤAA

+
∑
k⃗

ϵk⃗ ĉ
†
k⃗
ĉk⃗︸ ︷︷ ︸

ĤBB

+
∑
k⃗

(
Vk⃗ d̂

†ĉk⃗ + V
∗
k⃗
ĉ†
k⃗
d̂

)
︸ ︷︷ ︸

ĤAB+ĤBA

(5.95)

The creation operator d̂† creates a particle on the impurity A. The creation operators ĉ†
k⃗

create

particles in the bath B. The index k⃗ reminds of a Bloch vector, albeit here it can be any label
identifying the bath states.
The Hamiltonian corresponds to a non-interacting many-particle system. The one-particle Green’s
function is an operator in the one-particle Hilbert space, even for a many-particle system. aFor a
non-interacting system, the Green’s function is identical to that of the one-particle system.

1. Calculate the Hamilton matrix with elements hα,β.

2. Determine the bath Green’s function

3. Determine the self energy due to coupling to the bath. Work out real and imaginary part of
the self energy at the real axis.

4. Determine the Green’s function at the impurity, when it is coupled to the bath

5. Sketch the density of states at the impurity for two cases:

• The impurity state lies within the spectrum of the bath

• The impurity state lies outside the spectrum of the bath

Consider a rectangular density of states of the bath with a width W and value 1
W . Let the

center of the density of states be ϵ̄. The hopping Vk⃗ = −t shall be constant.

aFor a many-particle Hamiltonian Ĥ in Fock space, (E1̂ − Ĥ)−1 is called resolvent rather than Green’s function.
The resolvent is an operator in Fock space.

Discussion

1. Calculate the Hamilton matrix with elements hα,β.

The Hamiltonian can be expressed as ĥ =
∑

α,β hα,β ĉ
†
αĉβ with

h =


ϵd . . . vk⃗ . . .
...

. . . 0

v ∗
k⃗

ϵk⃗
... 0

. . .

 (5.96)

The Hamilton operator in one-particle Hilbert space would be

ĥ =
∑
α,β

|πα⟩hα,β⟨πβ | (5.97)

where ⟨πα| are the projector functions for the set of orbitals |χα⟩. In our case, the first orbital is
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|χd⟩, while the remaining orbitals |χk⃗⟩ are Bloch waves in the bath, which are characterized by the
Bloch-vector k⃗ .

2. Determine the bath Green’s function

The Green’s function of the isolated bath is

ˆ̄GBB(ϵ)
Eq. 5.7
=

∑
k⃗

|χk⃗⟩
1

ϵ− ϵk⃗
⟨χk⃗ | (5.98)

3. Determine the self energy due to coupling to the bath. Work out real and imaginary part of
the self energy at the real axis.

The self energy is

Σ̂AA(ϵ)
Eq. 5.34
= V̂ AB ˆ̄GBB(ϵ)V̂ BA = |πd⟩

∑
k⃗

|Vk⃗ |2

ϵ− ϵk⃗

 ⟨πd | (5.99)

4. Determine the Green’s function at the impurity, when it is coupled to the bath

In the complex plane, the Green’s function is

ĜAA(ϵ)
Eq. 5.33
=

(
|πd⟩(ϵ− ϵd)⟨πd |︸ ︷︷ ︸

ˆ̄GAA(ϵ)

−Σ̂AA(ϵ)
)−1

for Im(ϵ) > 0 (5.100)

The retarded Green’s function is only defined in the half-plane with positive imaginary part of the
energy.Editor: refer to where this has been discussed 13

On the real energy axis,

ĜAA(ϵ)
Eq. 5.33
= lim

η→0+

(
|πd⟩(ϵ+ iη − ϵd)⟨πd |︸ ︷︷ ︸

ˆ̄GAA(ϵ+iη)

−Σ̂AA(ϵ+ iη)
)−1

for ϵ ∈ R (5.101)

Let me divide the self energy into real and imaginary part

Σ̂AA(ϵ) = |πd⟩
(
Λ(ϵ) + iΓ(ϵ)

)
⟨πd | for Im(ϵ) > 0 (5.102)

Right on the real axis, the self energy is real-valued, but also ill defined, because the imaginary part
of the self energy is discontinuous as one crosses the real energy axis. Because we are interested in
the retarded Green’s function, we need to select a positive imaginary part of the energy, where the
self energy is complex-valued.

13The retarded Green’s function G(t2, t1) = 0 vanishes for t2 < t1. The energy-dependent Green’s function is linked
to the energy-dependent Green’s function via Eq. 4.20 Ĝ(ϵ, t1) =

∫∞
−∞ dt2Ĝ(t2, t1)e

i
ℏ ϵ(t2−t1).
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The Green’s function is14

ĜAA(ϵ) =

(
|πd⟩

(
ϵ− ϵd − Λ(ϵ)− iΓ(ϵ)

)
⟨πd |

)−1
= |χd⟩

(
ϵ− ϵd − Λ(ϵ)− iΓ(ϵ)

)−1
⟨χd |

= |χd⟩
ϵ− ϵd − Λ(ϵ) + iΓ(ϵ)(
ϵ− ϵd − Λ(ϵ)

)2
+ Γ2(ϵ)

⟨χd | (5.105)

The imaginary part of the self energy is connected15 to the density of states of the isolated system
B weighted with the coupling parameters |Vk⃗ |2 to system A.

lim
η→0+

Γ(ϵ+ iη) = lim
η→0+

Im

∑
k⃗

|Vk⃗ |2

ϵ+ iη − ϵk⃗

 = −π∑
k⃗

|Vk⃗ |
2δ(ϵ− ϵk⃗) (5.106)

I used Eq. A.20 on p. 388, limη→0+ Im(1/(x + iη)) = −πδ(x).

5. Sketch the density of states at the impurity for two cases:

• The impurity state lies within the spectrum of the bath

• The impurity state lies outside the spectrum of the bath

Consider a rectangular density of states of the bath with a width W and value 1
W . Let the

center of the density of states be ϵ̄. The hopping Vk⃗ = −t shall be constant.

The density of states projected onto the atomic orbital of subsystem A is obtained via Eq. 4.51 from16

14The inverse of an operator Â =
∑
α,β |πα⟩Aα,β⟨πβ | is

Â−1 =
∑
γ,δ

|χγ⟩
(
A−1

)
γ,δ
⟨χδ | (5.103)

Here the ⟨πα| are the projector functions for the orbitals |χα⟩, which obey the bi-orthogonality condition ⟨πα|χβ⟩ = δα,β .
The projector functions can be written as ⟨πα| =

∑
β S
−1
α,β⟨χβ |, when both span the same Hilbert space. With these

definitions, we can test the form of the inverse. We need to show ÂÂ−1 = 1̂.

1̂
!
=
∑
α,β

|πα⟩Aα,β⟨πβ |︸ ︷︷ ︸
Â

∑
γ,δ

|χγ⟩
(
A−1

)
γ,δ
⟨χδ |︸ ︷︷ ︸

Â−1

=
∑
α,β

∑
γ,δ

|πα⟩Aα,β⟨πβ |χγ⟩︸ ︷︷ ︸
δβ,γ

(
A−1

)
γ,δ
⟨χδ |

=
∑
α,δ

|πα⟩
∑
β

Aα,β
(
A−1

)
β,δ︸ ︷︷ ︸

δα,δ

⟨χδ | =
∑
α

|πα⟩⟨χα| =
∑
α,β

|χβ⟩S−1β,α⟨χα| = 1̂ q.e.d (5.104)

15The imaginary part of the Green’s function of system B is related to its density of states and the self energy is
the Green’s function times the coupling of the subsystems.

16The matrix element is formed with the projector functions |πd ⟩ rather than with the orbitals |χd ⟩. For an or-
thonormal set like ours the two can be chosen identical. We have chosen the projector function, because this is the
correct choice also for a non-orthonormal basisset. The convention is that matrix elements of observables a built with
the orbitals |χ⟩ and act with the projector functions onto states. The density of states is, like the density matrix, not
an observable but it describes a state. Therefore the matrix elements are build with the projector functions and they
act with the orbitals onto observables.
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p. 172.

Dd(ϵ)
Eq. 4.51
= −

1

π
lim
η→0+

Im
[
⟨πd |Ĝ(ϵ+ iη)|πd⟩

]
for ϵ ∈ R

Eq. 5.102
= −

1

π
Im

[(
ϵ− ϵd − Λ(ϵ)− iΓ(ϵ)

)−1]

= −
1

π

[
Γ(ϵ)(

ϵ− ϵd − Λ(ϵ)
)2
+ Γ2(ϵ)

]

=
1

π

−Γ(ϵ)(
ϵ− ϵd − Λ(ϵ)

)2
+ Γ2(ϵ)

(5.107)

Constant density of states in the bath: Let me start the discussion with the most simple case,
namely that the self energy is a constant, i.e. energy-independent. Hence, also Λ and Γ are constants.
The resulting density of states Dd(ϵ) of system A in contact with B is a Lorentzian centered at ϵd+Λ
with a width proportional to |Γ|. This shows that an energy level broadens, when it is coupled to
a continuum of states. The width of the resulting peak is the life-time broadening. Its inverse
is related to the time, for which the particle remains in system A before it is scattered into the
environment, namely system B. The position of the Lorentzian is shifted by the quasi-particle shift
ReΣ = Λ away from the original position of the d-level.

Box-shaped bath density of states: Let me now investigate the next more realistic case: The
bath shall have a box-shaped density of states with a finite with. The coupling Vk⃗ shall be, again,
constant, i.e. Vk⃗ = −t.

DB(ϵ) =
∑
k⃗

δ(ϵ− ϵ̄k⃗) =

{
1
W for ϵ̄− 12W < ϵ < ϵ̄+ 12W

0 else
(5.108)

The result for density of states projected onto the impurity is shown in the lower graph17 of
Fig. 5.3. In the following I will discuss this figure. Let me consider two limiting cases.

• If the coupling t is small compared to the band width W of system B, we can approximate the
system by the limit of infinite band width of system B. In that case, the situation is close to
the case of a constant self energy discussed before. The resulting density of states Dd(ϵ) on
system A is a Lorentzian with a lifetime broadening that grows with the coupling t between
the two systems.

• If the coupling t is large compared to the band width W of system B, the band width of system
B can be neglected and system B can be approximated by a single energy level at the center
of the band. The situation is close to the case of a dimer, where one atom is the system A
and the other is system B. The density of states has one bonding level at low energies and an
antibonding level at high energies. For the degenerate case ϵ̄d − ϵ̄ ≪ t the weight of the two
peaks on system A will be similar. In the non-degenerate limit ϵ̄d − ϵ̄ ≫ t, the weight of the
state, which is closer to the d-level, will be dominant compared to the other, which is further
away.

17The graph Fig. 5.3 shows the density of state Dd shifted by 15t for better visibility.

Dd (ϵ) = −
1

π
Im
[ 1

ϵ− ϵd + iη + t2

W
ln

(
ϵ− 12W+iη
ϵ+ 12W+iη

)]

ϵd =
1

4
; W = 1; η = 0.01; t ∈ {0,

1

10
,
2

10
,
3

10
,
4

10
,
5

10
,
6

10
,
7

10
} (5.109)
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Fig. 5.3: Upper graph: Real part (blue) and imaginary part (red) of the bath Green’s function
ḠBB(ϵ) = − 1W ln(

ϵ−W/2+iη
ϵ+W/2+iη ) for η = 0.01 and W = 1 with a constant density of states D(ϵ) = 1 in

the energy window between − 12 ≤ ϵ ≤
1
2 . Lower graph: Density of states at atom A in contact with

the bath B for ϵd = 1
4 and hopping parameters t ∈ {0, 110 , . . . ,

7
10}.

Let me now walk you through the individual results in figure 5.3 step by step: For small hopping
t = 0.1 the density of states of the d-level broadens due to the hybridization with the bath. As the
coupling increases, the d-level broadens further. A peak emerges beyond the band of the bath, which
inherits the life time from the original energy level. Also at the lower end of the bath spectrum a
second peak emerges. The two peaks correspond to the bonding states and the antibonding states
between the two systems. The weight that enters into the separated peaks i removed from the
density of states in within the spectrum of the bath.

Analogy with the dimer: I find it useful to rationalize the findings considering one bath state at
a time. A pair of states is analogous to the di-atomic molecule investigated in exercises 1.5.1 and
1.5.2. For the following discussion, I recommend to inspect figure 1.4 on p. 30, which I am repeating
here for your convenience.

2

2

ϕ
b, σ

t
|ε |−ε1

χ1,σ

χ2,σ

ϕ
a, σ

Let me identify the orbital |χ1⟩ on the left atom with the impurity A, and the orbital |χ2⟩ on the
right with the bath B. Let me leave the obvious level repulsion aside and let us focus on the wave
functions. As the two states |χ1⟩ and |χ2⟩ hybridize and form the bonding and antibonding states.
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Some weight from site A is transferred from the bonding to the antibonding state. That is, also
the antibonding state |ϕa⟩ has a contribution from |χ1⟩. The density of states projected onto the
impurity has a large contribution at the energy of the impurity level and a smaller contribution at the
energy of the bath level. The charge sum rule ensures that the total weight from the impurity is still
equal to unity. When we take many bath states into account in a similar way, we will notice that
the density of states projected onto the impurity is smeared out. Because the hybridization becomes
smaller when the initial levels are more distant, the density of states is peaked close to the position
of the original impurity level and it falls of further away. This effect is the lifetime broadening.

Editor: Why is it called lifetime broadening? Imagine a wave function which is
completely localized on the impurity site A. If the impurity is coupled to the bath,
the initial state is not an eigenstate of the combined system. The wave function
is

|ψ(t)⟩ =
∑

n∈{a,b}

|ϕn⟩e−
i
ℏ ϵnt⟨ϕn|χ1⟩ (5.110)

The time-dependent probability on site A is thus... Editor: This argument needs
to be completed

Editor: Are the limiting cases covered? (1) impurity level in the continuum of
bath states. (2) impurity level separated far from the bath states. (3) strong coupling:
impurity and surface site form a dimer, which is weakly coupled to the continuum.

Sanity check: Correspondence with Fano’s paper

Editor: This section is not meant for the reader.
The exercise presented here is closely connected to the original paper by Fano[60]. As a sanity

check of the derivations, am adding here a one-to-one correspondence of the most relevant equations
from Fano’s paper and the formulas above.

1. Fano-Eq.2 is Eq. 5.1

|ΨE⟩ = |ϕ⟩a +
∫
dϵ′ |ψE′⟩b(E′) Fano-Eq.2

|ψ⟩ = |χA⟩cA +
∑
β∈B
|χBβ ⟩cBβ This text Eq. 5.1 (5.111)

2. Fano-Eq.3a,b is my Eq. 5.3. The definitions Eϕ = ⟨ϕ|Ĥ|ϕ⟩ and VE = ⟨ϕ|Ĥ|ψ(E)⟩ are used.

⟨ϕ|
(
Ĥ − E1̂

)(
|ϕ⟩a +

∫
dE′ |ψ(E′)⟩b(E′)

)
= 0

⇒ (Eϕ − E)a +
∫
dE′ V ∗E′b(E

′) = 0 Fano-Eq.3a

⟨ψE′′ |
(
Ĥ − E1̂

)(
|ϕ⟩a +

∫
dE′ |ψ(E′)⟩b(E′)

)
= 0

⇒ VE′′a +

∫
dE′ (E′′ − E)δ(E′′ − E′)b(E′) = 0

⇒ VE′a + (E
′ − E)b(E′) = 0 Fano-Eq.3b (5.112)

3. Fano-Eq.4 is my Eq. 5.6.

bE′ =

[
1

E − E′ + z(E)δ(E − E
′)

]
VE′a Fano-Eq.4

c⃗B = (ϵ111BB −HBB)−1V BAc⃗A This work Eq. 5.6 (5.113)
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Fano introduces the quantity z(E). Fano refers to the PhD thesis of van Kampen[61]. (Check
chapter 6, p 50). We may add to c⃗B any state from the bath, for which (ϵ111BB−HBB)c⃗B = 0.
This solution of the homogeneous equation is described by Fano by adding z(E)

Fano obtains z(E) by inserting his Eq.4 into his Eq.3a.

Eϕa +

∫
dE′ V ∗E′

[
1

E − E′ + z(E)δ(E − E
′)

]
VE′a = Ea

Eϕ +

(∫
dE′

|VE′ |2

E − E′

)
+ z(E)|VE |2 = E

z(E) =
1

|VE |2

(
E − Eϕ +

∫
dE′

|VE′ |2

E − E′

)
Fano-Eq.9 with Fano-Eq.8 (5.114)

Let me repeat this in my notation (
HAA − ϵ111AA)

)
c⃗A + V AB c⃗B = 0(

HAA − ϵ111AA)
)
c⃗A + V AB

[
(ϵ111BB −HBB)−1V BAc⃗A + c⃗B,hom

]
= 0(

HAA − ϵ111AA + V AB(ϵ111BB −HBB)−1V BA
)
c⃗A + V AB c⃗B,hom = 0

(5.115)

Let me now write c⃗B,hom = V ABz(E)V BAc⃗A.(
HAA − ϵ111AA + V AB(ϵ111BB −HBB)−1V BA

)
c⃗A + V ABzV BAc⃗A = 0

V ABzV BA = −
(
HAA − ϵ111AA + V AB(ϵ111BB −HBB)−1V BA

)
(5.116)

|ΨE⟩ = |ϕ⟩+
∫
dE′ |ψE′⟩

|VE′ |2

E − E′ +
∫
dE′ |ψE′⟩V ∗E′z(E)δ(E − E′)VE′

= |ϕ⟩+
∫
dE′ |ψE′⟩

|VE′ |2

E − E′ + |ψE⟩V
∗
E z(E)VE

= |ϕ⟩+
∫
dE′ |ψE′⟩

|VE′ |2

E − E′ − |ψE⟩
(
E − Eϕ −

∫
dE′

|VE′ |2

E − E′
)

︸ ︷︷ ︸
|VE |2z(E)

(5.117)

|Ψ(E)⟩ = |ϕ⟩+
∫
dk |ψk⟩

|Vk |2

E − Ek
+

∫
dk |ψk⟩|Vk |2z(k)δ(E − Ek)

= |ϕ⟩+
∫
dk |ψk⟩

|Vk |2

E − Ek
+ |ψk(E)⟩V ∗k(E)z(E)Vk(E)

= |ϕ⟩+
∫
dk |ψk⟩

|Vk |2

E − Ek
− |ψk(E)⟩

(
E − Eϕ −

∫
dk

|Vk |2

E − Ek

)
︸ ︷︷ ︸

|Vk(E)|2z(E(k))

= |ϕ⟩+ |ψk(E)⟩
(
E − Eϕ

)
+

∫
dk
(
|ψk⟩ − |ψk(E)⟩

) |Vk |2
E − Ek

(5.118)

Fano-Anderson model by direct diagonalization

Editor: This is not finished. It is not meant for the reader.
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In this section, I perform a numerical calculation on the Fano model with a finite number of bath
states. The goal is to explore in detail, how the surface states separate from the continuum.

Editor: Caution: Here I am using the symbol ϵ̄a, rather than ϵ̄d used before.
I start from the Hamiltonian

ĥ = |πa⟩ϵ̄a⟨πa|+
∑
k

|πk⟩ϵ̄k⟨πk |+
∑
k

(
|πa⟩Vk⟨πk |+ |πk⟩V ∗k ⟨πa|

)
ĥ = ϵ̄aĉ

†
a ĉa +

∑
k

ϵ̄k ĉ
†
k ĉk +

∑
k

(
Vk ĉ

†
a ĉk + V

∗
k ĉ
†
k ĉa

)

=


ĉ†a

ĉ†1
ĉ†2
...



ϵ̄a V1 V2 · · ·
V ∗1 ϵ̄1 0 · · ·
V ∗2 0 ϵ̄2 · · ·
...

...
...

...



ĉa

ĉ1

ĉ2
...

 (5.119)

The first Hamiltonian in the equation above is a one-particle Hamiltonian, while the second, despite
using the same symbol, is a one-particle-at-a-time Hamiltonian, which acts in Fock space.

Eigenvalues The characteristic equation is

(
ϵ̄a − ϵ−

∑
k

|Vk |2

ϵ̄k − ϵ

)∏
k

(ϵ̄k − ϵ) = 0⇒ ϵ− ϵ̄a −

Σ(ϵ)︷ ︸︸ ︷∑
k

|Vk |2

ϵ− ϵ̄k
= 0 (5.120)

The zeros of the function determine the positions of the eigenstates.
It is convenient to take the arcus tangens of this function to avoid the infinities. We name the

resulting function y(ϵ)

y(ϵ)
def
= −

1

π
arctan

(∑
k

V 2k
ϵ− ϵ̄k

+ ϵ̄a − ϵ

)
(5.121)

This function is shown in figure 5.4 for the case at hand.
To be concrete, let me choose a specific coupling Vk between bath and impurity: The system

B shall be a metallic system with band edges at A and B. The squared coupling parameters shall
sum up to t, an effective hopping parameter. First an energy-dependent coupling parameter V (ϵ) is
defined. It has the shape of an inverted parabola, with zeros at the band edges and with the desired
norm

∫ B
A dϵ V

2(ϵ) = t. Then we choose a specific number M of bath sites and obtain the coupling
parameters as V 2k =

1
M V (ϵk)

The bare energies ϵ̄k of the bath sites are placed on an equi-spaced grid with M − 1 points with
A < ϵ̄k < B. (The value ϵ̄M = B does not contribute, because VM = 0.)

ϵ̄k = A+ (B − A)
k

M

Vk = t

√
(ϵ̄k − A)(B − ϵ̄k) + 10−3

−AB(B − A)− 13(B3 − A3) +
1
2(B

2 − A2)(A+ B)
(5.122)

A good guidance is obtained by an approximation of the real system, where the continuum of
states is replaced by a single state at ϵ̄b, the center of gravity of the spectrum of system B,

ϵ̄b =

∑
k |Vk |2ϵ̄k∑
k |Vk |2

, (5.123)

with a hopping term equal to t = 1
M

∑M
k=1 V

2
k .
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Fig. 5.4: y(ϵ) = − 1π arctan
(
1
M

∑M
j=1

V 2(ϵj )
ϵ−ϵ̄k + ϵ̄a − ϵ

)
as function of energy. The dashed line replaces

the “continuum” by a single state in its center. (1) ϵ̄a = 0, t = 0.2, A = −0.5, B = 0.5, M = 10
Bonding and antibonding states with the impurity inside the continuum. (2) ϵ̄a = 0, t = 1, A = −0.5,
B = 0.5, M = 10 Bonding and antibonding states with the impurity outside the continuum. (3)
ϵ̄a = −1, t = 0.5, A = −0.5, B = 0.5, M = 10 (3) ϵ̄a = −1, t = 0.5, A = −0.5, B = 0.5, M = 10
(4) ϵ̄a = −1, t = 1.4, A = −0.5, B = 0.5, M = 10

The eigenstates of the approximate system are determined by the zeros of the function ȳ(ϵ),
which is shown as dashed red line

ȳ(ϵ) = −
1

π
arctan

(
t2

ϵ− 12(A+ B)
+ ϵ̄a − ϵ

)
(5.124)

whose zeros describe the eigenstates of the approximate system shown in figure 5.4.
There are three possible cases

• Weak coupling: bonding and antibonding state of the two-state problem lie in the continuum.
The impurity level is broadened into a resonance inside the continuum.

• one of the two states of the two-state problem lies inside the continuum and the other outside.

• Strong coupling: the bonding state of the two-state problem lies below the continuum and a
the antibonding state lies outside. Two sharp states lie outside the continuum.

Level repulsion by the impurity level displaces the energy levels in the continuum, but the contin-
uum levels cannot be displaced beyond the neighboring energy level. Thus, the displacement in the
continuum is of order 1

M . In the limit M → ∞, the displacement approaches zero, but the overall
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displacement of the weight ∼ M 1
M remains finite. This is also important to satisfy the sumrule that

the trace of the Hamiltonian is invariant under unitary transformation, which says that the sum of
the energy levels is equal to the trace.

Eigenstates

|ψ⟩ = |χa⟩a +
∑
k

|χk⟩bk

(ĥ − ϵ)|ψ⟩ = |χa⟩
(
(ϵ̄a − ϵ)a +

∑
k

Vkbk

)
︸ ︷︷ ︸

(A)

+
∑
k

|ϕk⟩
(
Vka + (ϵ̄k − ϵ)bk

)
︸ ︷︷ ︸

(B)

!
= 0 (5.125)

This equation can only be satisfied at the zeros of the characteristic equation, respectively of y(ϵ),
defined earlier.

Let me satisfy the equation above by finding the zeros of (B) and then of (A).

Vka + (ϵ̄k − ϵ)bk︸ ︷︷ ︸
(B)

= 0 ⇒ bk =
1

ϵ− ϵ̄k
Vka

|ψ⟩ =
[
|χa⟩+

∑
k

|ϕk⟩
1

ϵ− ϵ̄k
Vk

]
a =
|χa⟩+

∑
k |ϕk⟩

1
ϵ−ϵ̄k Vk√

1 +
∑

k
|Vk |2
(ϵ−ϵ̄k )2

(5.126)

The second equation,

0 = (ϵ̄a − ϵ)a +
∑
k

Vkbk︸ ︷︷ ︸
(A)

=

[
(ϵ̄a − ϵ) +

∑
k

Vk
1

ϵ− ϵ̄k
Vk︸ ︷︷ ︸

Σ(ϵ)

]
a , (5.127)

is, in essence, identical to the characteristic equation and determines the positions of the energy
levels of the combined system.

The energy of the impurity level in contact with system B is estimated by a Taylor expansion of
(A) about the bare impurity level ϵ̄a

0 = (ϵ̄a − ϵ) +
∑
k

Vk
1

ϵ̄a − ϵ̄k
Vk︸ ︷︷ ︸

Σ(ϵ̄a)

−
∑
k

Vk
1

(ϵ̄a − ϵ̄k)2
Vk︸ ︷︷ ︸

∂ϵΣ(ϵ̄a)

(ϵ− ϵ̄a) +O(ϵ− ϵ̄a)2

ϵ = ϵ̄a +
Σ(ϵ̄a)

1 + ∂ϵ|ϵ̄a Σ
for small |ϵ− ϵ̄a| (5.128)

This energy is the next zero of the characteristic polynomial, respectively of y(ϵ), which lies next to
ϵ̄a. In the continuum limit for the spectrum of subsystem B, the energy derivative of the self energy
approaches infinity inside the spectrum of B. This result is not meaningful. Thus, the expression
above provides an approximation for the shift of the impurity level, only if the bare level lies outside
the spectrum of system B.

Editor: This is open ended...
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5.4.4 Surface Green’s function of a one-dimensional linear chain

Editor: For the Greens function of a few simple examples, see “The pedagogical introduction
to equilibrium Green’s function” by Odashima et al.[62].

Introduction

In the previous problem on the Fano model, we studied an adsorbed atom on a surface. For the
surface, however, we simply assumed the shape of the density of states. The Green’s function of the
surface will be a useful model to study (1) adsorbed atoms, (2) two-dimensional band structures of
three-dimensional systems and (3) interfaces obtained by gluing to surfaces together.

Problem

Consider a half-infinite one-dimensional chain of atoms with one orbital per site. To keep things
simple, consider only a single spin direction. The orbital energy is ϵ̄ and the hopping parameter is t.

ĥ =

N∑
j=1

|πj ⟩ϵ̄⟨πj | − t
N∑
j=1

(
|πj⟩⟨πj+1|+ |πj+1⟩⟨πj |

)
(5.129)

1. Construct eigenvalues and eigenstates of a finite chain of hydrogen atoms. Inspect the disper-
sion relation, the quantization of wave vectors, the energy levels, and the density of states in the
limit of an infinitely long chain. Ensure that the eigenstates are normalized and describe how.
Trick: Extend the chain by one bead in each direction to formulate the boundary conditions.

2. Form the Green’s function of the finite chain.

3. Let one of the ends of the chain go to infinity and thus form the Green’s function of the
half-infinite chain.

4. Calculate the density of states on each atom of the half-infinite chain. Discuss the changes
of the density of states as function of distance from the surface. Discuss, how the density of
states of the infinite chain is obtained.

5. Calculate the Green’s function of the terminal site as function of ϵ−ϵ̄
2t .

During the calculation, I required the integral formula [Bronstein-Eq. 347 on p.55[63]] below:

∫
dx

1

a + cos(x)
=

{
2√
a2−1 arctan

(a−1) tan(x/2)
a2−1 for a2 > 1

1√
1−a2 ln

(1−a) tan(x/2)+
√
1−a2

(1−a) tan(x/2)−
√
1−a2 for a2 < 1

(5.130)

Discussion

1. Construct eigenvalues and eigenstates of a finite chain of hydrogen atoms. Inspect the disper-
sion relation, the quantization of wave vectors, the energy levels, and the density of states in
the limit of an infinitely long chain. Ensure that the eigenstates are normalized and describe
how.

Trick: Extend the chain by one bead in each direction to formulate the boundary conditions.
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Consider a finite chain with N atoms. The distance between the atoms is the lattice constant
alat.

The Hamiltonian is

ĥ =

N∑
j=1

|πj⟩ϵ̄⟨πj | − t
N−1∑
j=1

(
|πj⟩⟨πj+1|+ |πj+1⟩⟨πj |

)
(5.131)

The eigenstates can be built up from plane waves with the correct dispersion relation and boundary
conditions. The dispersion relation follows from the Schrödinger equation.

[
ĥ − ϵ1̂

] N∑
j=1

|χj⟩cj,n = 0

⇒ −tcj+1 − t∗cj−1 + (ϵ̄− ϵ)cj = 0 (5.132)

Except for the end-points the problem has translation invariance which suggests to use the eigenstates
of the translation, namely plane waves cj,n = Ceiknalatj .

−teiknalat − t∗e−iknalat + (ϵ̄− ϵn) = 0
ϵn = ϵ̄− 2Re[teiknalat ] = ϵ̄− 2Re[t] cos(knalat) + 2Im[t] sin(knalat) (5.133)

In the following, we consider the hopping parameter as real-valued quantity. Editor: Nevertheless
let us discuss the role of the imaginary part of the Hopping parameter. (no time
inversion symmetry, magnetic fields?....

The boundary conditions can be enforced as follows. Let us extend the chain by one bead in each
direction, so that there is one atom at j = 0 and one with j + 1. This ensures that all atoms with
j ∈ {1, . . . , N} do not experience the surface. Then I introduce the boundary condition that the
coefficients c0,n = 0 and cN+1,n = 0. This ensures that the outermost true atoms obey the equation
appropriate for the surface. (no contribution from j = 0 and j = N + 1.

With this argument the wave functions can be written down as

|ϕ(kn)⟩ =
N∑
j=1

|χj⟩ sin(knalatj)

√
2

N + 1
(5.134)

and

ϵ(kn) = ϵ̄− 2t cos(knalat) (5.135)

with

kn =
π

alat(N + 1)
n for n = 1, . . . , N (5.136)

The quantization condition follows from sin(knalat(N + 1)) = 0, so that kn = π
alat(N+1)

n

The normalization comes from the fact that the 1
π

∫ π
0 dx sin

2(x) = 1
2 Editor: This also

holds for a discrete sum, which needs to be shown.
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2. Form the Green’s function of the finite chain.

The Green’s function is

Ĝ(ϵ+ iη) =

N∑
n=1

|ϕn⟩
1

ϵ− ϵn + iη
⟨ϕn|

=

N∑
j,j ′=1

N∑
n=1

|χj ⟩⟨πj |ϕn⟩
ϵ− ϵn − iη
(ϵ− ϵn)2 + η2︸ ︷︷ ︸
1

ϵ−ϵn −iπδ(ϵ−ϵn)

⟨ϕn|πj ′⟩⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{ N∑
n=1

⟨πj |ϕn⟩⟨ϕn|πj ′⟩
ϵ− ϵn︸ ︷︷ ︸

hermitian

−iπ
N∑
n=1

⟨πj |ϕn⟩⟨ϕn|πj ′⟩δ(ϵ− ϵn)︸ ︷︷ ︸
anti hermitian

}
⟨χj ′ | (5.137)

This is a good point to learn about the Kramers-Kronig relations. The equation above shows
that the Green’s function can be obtained directly from the density of states.

1. Let me extract the density of states using Eq. 4.50.

D̂(ϵ)
Eq. 4.50
= −

1

2πi
lim
η→0+

(
Ĝ(ϵ+ iη)− Ĝ†(ϵ+ iη)

)
.

=

N∑
j,j ′=1

|χj⟩
{ N∑
n=1

⟨πj |ϕn⟩⟨ϕn|πj ′⟩δ(ϵ− ϵn)
}
⟨χj ′ | (5.138)

2. Later, we can reconstruct the Green’s function from the density of states as

Ĝ(ϵ+ i0+) =

∫
dϵ′

D̂(ϵ′)

ϵ− ϵ′ + i0+ =
∫
dϵ′

D̂(ϵ′)

ϵ− ϵ′ − iπD̂(ϵ) (5.139)

The last equation uses the Kramers-Kronig relation, which allows to construct the real part
from the imaginary part of a function that is analytic in the positive half plane.

Now, I work out the density of states. Even though only the Green’s function, and thus the
density of states has only been requested for the terminal site, I will show here the derivation for
the full density-of-states matrix, because it will allow me to demonstrate some interesting physical
effects.

D̂(ϵ) =

N∑
j,j ′=1

|χj⟩
{ N∑
n=1

⟨πj |ϕn⟩⟨ϕn|πj ′⟩δ(ϵ− ϵn)
}
⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{ N∑
n=1

⟨πj |ϕ(kn)⟩⟨ϕ(kn)|πj ′⟩δ(ϵ− ϵ(kn))
}
⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{ N∑
n=1

2

N + 1
sin(knalatj) sin(knalatj

′)δ
(
ϵ− ϵ̄+ 2t cos(knalat)

)}
⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{
2alat

π

N∑
n=1

∆k︸ ︷︷ ︸
→
∫ π
alat
0 dk

sin(knalatj) sin(knalatj
′)δ
(
ϵ− ϵ̄+ 2t cos(knalat)

)}
⟨χj ′ |

(5.140)

where kn = nπ
alat(N+1)

for n = 1, . . . , N and ∆k = π
alat(N+1)

.
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Let me do the continuum limit N → ∞. I will use k(ϵ) = 1
a lat arccos

(
ϵ−ϵ̄
2t

)
. which is obtained

from the dispersion relation Eq. 5.135.

D̂(ϵ) =

N∑
j,j ′=1

|χj⟩
{
2alat

π

∫ π
alat

0

dk sin(kalatj) sin(kalatj
′)δ
(
ϵ− ϵ̄+ 2t cos(kalat)

)}
⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{
2alat

π

∫ ϵ̄+2t

ϵ̄−2t
dϵ

(
dϵ

dk

)−1
sin(k(ϵ)alatj) sin(k(ϵ)alatj

′)δ
(
ϵ− ϵ̄+ 2t cos(k(ϵ)alat)

)}
⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{
2alat

π

∫ ϵ̄+2t

ϵ̄−2t
dϵ
sin(k(ϵ)alatj) sin(k(ϵ)alatj

′)

2talat sin(k(ϵ)alat)
δ
(
ϵ− ϵ̄+ 2t cos(k(ϵ)alat)

)}
⟨χj ′ |

=

N∑
j,j ′=1

|χj⟩
{
2

2πt

sin(k(ϵ)alatj) sin(k(ϵ)alatj
′)

sin(k(ϵ)alat)

}
⟨χj ′ | (5.141)

I will come back to this result in Eq. 5.141 later. Let me now limit the derivation again to the
terminal site and work out the Green’s function.

⟨π1|D̂(ϵ)|π1⟩
Eq. 5.141
=

2

2πt
sin
(
k(ϵ)alat

)
=
2

2πt
sin

(
arccos

(
ϵ− ϵ̄
2t

))

=
1

πt

√
1−

(
ϵ− ϵ̄
2t

)2
(5.142)

The density of states at the terminal site has the form of a half circle x2 + y2 = 1 with y(x) =√
1− x2. This allows one to check whether the density of states integrates up to one.

∫ ϵ̄+2t

ϵ̄−2t
dϵ
1

πt

√
1−

(
ϵ− ϵ̄
2t

)2
︸ ︷︷ ︸

D1,1(ϵ)

=
1

2
π(2t)2︸ ︷︷ ︸

area of half circle

1

2πt2︸ ︷︷ ︸
adjust height to 1/(πt)

= 1 (5.143)

The Green’s function is then reconstructed from the density of states

Ĝ(ϵ+ i0+) =

∫
dϵ′

D̂(ϵ′)

ϵ− ϵ′ + i0+ =
∫
dϵ′

D̂(ϵ′)

ϵ− ϵ′ − iπD̂(ϵ)

=

∫ ϵ̄+2t

ϵ̄−2t
dϵ′

1

ϵ− ϵ′
2

2πt

√
1−

(
ϵ′ − ϵ̄
2t

)2
︸ ︷︷ ︸

D1,1(ϵ′)

−iπ
2

2πt

√
1−

(
ϵ− ϵ̄
2t

)2
︸ ︷︷ ︸

D1,1(ϵ)

x= ϵ′−ϵ̄
2t
=

2

2πt

∫ 1
−1
dx

√
1− x2

ϵ−ϵ̄
2t + x

− i
1

t

√
1−

(
ϵ− ϵ̄
2t

)2
(5.144)

Let me resolve the integral for the real part of the Green’s function I use a def
= ϵ−ϵ̄

2t .

∫ ϵ̄+2t

ϵ̄−2t
dϵ′

√
1−

(
ϵ′−ϵ̄
2t

)2
ϵ− ϵ′ =

∫ 1
−1
dy

√
1− y2
a − y

y=− cos(x)
=

∫ π

0

dx sin(x)

√
1− cos2(x)
a + cos(x)

=

∫ π

0

dx
1− cos2(x)
a + cos(x)

=

∫ π

0

dx
1− a2 + a2 − cos2(x)

a + cos(x)
= (1− a2)

(∫ π

0

dx
1

a + cos(x)

)
+

(∫ π

0

dx (a − cos(x))
)

= (1− a2)
(∫ π

0

dx
1

a + cos(x)

)
+

(
ax − sin(x)

)π
0

= aπ + (1− a2)
(∫ π

0

dx
1

a + cos(x)

)
(5.145)
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The remaining integral is nontrivial. I use Bronstein-Eq. 347 on p.55[63].∫
dx

1

a + cos(x)

Eq. 5.130
=

{
2√
a2−1 arctan

(a−1) tan(x/2)
a2−1 for a2 > 1

1√
1−a2 ln

(1−a) tan(x/2)+
√
1−a2

(1−a) tan(x/2)−
√
1−a2 for a2 < 1

(5.146)

Now, I insert the boundary values. For a2 > 0, I use limδ→0+ arctan(c tan(π2 − δ)) =
π
2 sgn(x).

∫ π

0

dx
1

a + cos(x)
=


2√
a2−1

π
2
sgn(a−1)︷ ︸︸ ︷

arctan
tan(π/2)

a + 1
for a2 > 1

1√
1−a2

[
ln[1]− ln[−1]

]
︸ ︷︷ ︸

=0

for a2 < 1

= θ(a2 − 1)
2√
a2 − 1

π

2
sgn(a − 1)

=
π√
a2 − 1

sgn(a − 1)θ(a2 − 1) (5.147)

where θ(x) is the Heaviside step function.

⇒
∫ ϵ̄+2t

ϵ̄−2t
dϵ′

√
1−

(
ϵ′−ϵ̄
2t

)2
ϵ− ϵ′ = aπ +

(
1− a2

)∫ π

0

dx
1

a + cos(x)

= aπ + (1− a2)
π√
a2 − 1

sgn(a − 1)θ(a2 − 1)

= aπ − π
√
a2 − 1sgn(a − 1)θ(a2 − 1)

= π

{
ϵ− ϵ̄
2t
−
√(ϵ− ϵ̄

2t

)2
− 1 sgn

(ϵ− ϵ̄
2t
− 1
)
θ
((ϵ− ϵ̄
2t

)2
− 1
)}

= π

{
ϵ− ϵ̄
2t
−
√(ϵ− ϵ̄

2t

)2
− 1 sgn(ϵ− ϵ̄)θ

(
|ϵ− ϵ̄| − 2|t|

)}
(5.148)

The resulting Green’s function at the terminal site is

Ĝ(ϵ+ i0+) =
2

2πt

︷ ︸︸ ︷
π

{
ϵ− ϵ̄
2t
−
√(ϵ− ϵ̄

2t

)2
− 1 sgn(ϵ− ϵ̄)θ

(
|ϵ− ϵ̄| − 2|t|

)}
−i
1

t

√
1−

(
ϵ− ϵ̄
2t

)2
=
1

t

{
ϵ− ϵ̄
2t
−
√(ϵ− ϵ̄

2t

)2
− 1 sgn(ϵ− ϵ̄)θ

(
|ϵ− ϵ̄| − 2|t|

)
− i

√
1−

(
ϵ− ϵ̄
2t

)2}
(5.149)

The Green’s function of the terminal site is shown in fig. 5.5.

• The imaginary part of the Green’s function is, up to the prefactor, equal to the density of
states on the terminal site. The states at the surface are concentrated closer to the center to
the band as compared to the bulk, which can be attributed to the reduced number of nearest
neighbors.

• The real part of the Green’s function describes the “quasi-particle shift” of the energy levels of
an adsorbate due to the coupling to the half infinite chain. This effect is the level repulsion,
which we already encountered in the case of the molecular dimer.

– An adsorbate with an energy level below the band of the half-infinite chain will form a
bond and will be shifted to lower energies. The antibond will have its main weight in the
spectrum of the half-infinite chain.
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-1 0 1

-1

1

Fig. 5.5: Green’s function G11(ϵ) of the half-infinite chain of hydrogen atoms at the terminal site.
The real part is shown in blue, and the imaginary part in red. The atomic energy level ϵ̄ is placed to
zero and the hopping parameter has been chosen to t = 1

2 .

– An adsorbate with an energy level above the band of the half-infinite chain will form an
anti-bond and will be shifted to higher energies. The bond will have its main weight in the
spectrum of the half-infinite chain.

If one is familiar with the density of states of a linear chain in the bulk, the density of states on
the surface is surprising. In the bulk, the density of states is strongly peaked at the band edges.
Here, on the surface, the density of states has its maximum in the center and it falls of at the band
edges. This has to do with the fact that the wave functions behave like at the edges like sin(kx),
which has a small slope at the band edges, where kalat is close to zero or close to π. Because of
this small slope, the probability can only rise slowly away from the surface.

Discussion

-1 0 1

Fig. 5.6: Density of states at the surface of a linear chain of hydrogen atoms. Layers
1,2,3,4,5 and layer 20 are shown from bottom to top and displaced vertically for better visibility.
The horizontal axis shows ϵ−ϵ̄

2t . Editor: The density of states in the bulk exhibits
rapid oscillations with energy. This may be an expression that no propagating
solutions are allowed, because the system is fully coherent. Probably, this
differs from a Green’s function calculated with periodic boundary conditions.



5 COMPOSITE AND OPEN SYSTEMS: DOWN-FOLDING AND RETARDED POTENTIALS
221

++++++++++++++++++++++++++

This section will be removed

• Next, I decompose the product of the sine functions

sin(ax) sin(bx) =
eiax − e−iax

2i

eibx − e−ibx

2i

= −
1

4

(
ei(a+b)x − ei(a−b)x − e−i(a−b)x + e−i(a+b)x

)
= −
1

2

[
cos
(
(a + b)x

)
− cos

(
(a − b)x

)]
(5.150)

•

cos(nx) =
1

2

(
einx + e−inx

)
=
1

2

((
eix
)n
+
(
e−ix

)n)
= Re

[(
eix
)n]

= Re
[(
cos(x) + i sin(x)

)n]
= Re

[(
cos(x)± i

√
1− cos2(x)

)n]
(5.151)

The sign ± is undetermined, because sin2(x)+ cos2(x) = 1 determines only the absolute value
of the sinus, not its sign. However, because only the real part of the expression is of interest,
the result is independent of the sign chosen.

• Finally, I insert the dispersion relation cos
(
k(ϵ) 1alat

)
= ϵ−ϵ̄

2t .

• Here an attempt to obtain the complete Green’s function. Skip this
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The full Green’s function is then obtained from the Kramers-Kronig relation

Ĝ(ϵ+ i0+) =

∫
dϵ

D̂(ϵ′)

ϵ− ϵ′ − iπD̂(ϵ) (5.152)

Within the band, the Green’s function exhibits a branch cut at the real axis. Therefore, we do
not expect to find a closed solution. However, there is a solution only outside the band, that
is for |ϵ− ϵ̄| ≥ 2t.
We use the integral formula Bronstein: p68, Eq.25∫ π

0

dx
cos(nx)

1 + b2 − 2b cos(x) =
πbn

1− b2 ⇔
∫ π

0

dx
cos(nx)

1+b2

2b − cos(x)
=
2πbn+1

1− b2 (5.153)

which yields

1 + b2

2b
=
ϵ− ϵ̄
2t

⇒ b2 − 2
ϵ− ϵ̄
2t

b + 1 = 0 ⇒
(
b −

ϵ− ϵ̄
2t

)2
=

(
ϵ− ϵ̄
2t

)2
− 1

b =
ϵ− ϵ̄
2t
±

√(
ϵ− ϵ̄
2t

)2
− 1 |b|≤1=

ϵ− ϵ̄
2t

(
1−

√
1−

(
2t

ϵ− ϵ̄

)2)
(5.154)

For |ϵ− ϵ̄| ≥ 2t, this yields

Ĝ(ϵ) = −
1

π

∞∑
j,j ′=1

|χj ⟩
∫ π

0

dy
cos
(
y(j + j ′)

)
− cos

(
y(j − j ′)

)
ϵ− ϵ̄− 2t cos(y) ⟨χj |

= −
1

2πt

∞∑
j,j ′=1

|χj⟩
(
2π(bj+j

′+1 − bj−j ′+1)
1− b2

)
⟨χj | with b =

ϵ− ϵ̄
2t

(
1−

√
1−

(
2t

ϵ− ϵ̄

)2)

= −
1

t

∞∑
j,j ′=1

|χj ⟩
(
bj+j

′+1 − bj−j ′+1

1− b2

)
⟨χj | with b =

ϵ− ϵ̄
2t

(
1−

√
1−

(
2t

ϵ− ϵ̄

)2)
(5.155)

6. Determine the self energy describing the coupling to the half infinite chain

Editor: Remark: the self energy is not hermitian!! Check once again whether this
assumption has been made somewhere in the text.

The self-energy at site 0 is

Σ̂(ϵ) = V̂ AB ˆ̄GBB V̂ BA = |π0⟩t⟨π1|Ĝ(ϵ)|π1⟩t⟨π0| (5.156)

where Ĝ(ϵ) is given in Eq. 5.149.
The self energy is has different factors but otherwise it reflects the Green’s function on the

terminal site of the half-infinite chain shown in Fig. 5.5.

7. Construct the density of states of the adsorbate via the self energy
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(
ĜAA(ϵ)

)−1
= |π0⟩

[
ϵ− ϵ̄A − t2A⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
⟨π0|

ĜAA(ϵ+ iη) = |χ0⟩
1

ϵ− ϵ̄A − t2ARe
[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
− i t2AIm

[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
+ iη

⟨χ0|

= |χ0⟩
ϵ− ϵ̄A − t2ARe

[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
+ i t2AIm

[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
− iη(

ϵ− ϵ̄A − t2ARe
[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

])2
+
(
t2AIm

[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
+ η
)2 ⟨χ0|

(5.157)

The resulting density of states is obtained from the anti-hermitian part of the Green’s function

D̂AA(ϵ)
Eq. 4.50
= −

1

π
lim
η→0
|χ0⟩

t2AIm
[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
− η(

ϵ− ϵ̄A − t2ARe
[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

])2
+
(
t2AIm

[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
+ η
)2 ⟨χ0|
(5.158)

The small factor η is required to describe any states that result from the adsorbate and lie outside
of the spectrum of the half-infinite chain.

The adsorbate contributes an energy level at

ϵ = ϵ̄A + t2ARe
[
⟨π1| ˆ̄GBB(ϵ)|π1⟩

]
(5.159)

if this energy lies outside the spectrum of the half infinite chain. Then, the imaginary part of the
Green’s function vanishes at the position of the new energy level, and the width will be governed by
the small parameter η. Such a state will contribute a delta function to the density of states.

Because the self energy is a nonlinear function, Eq. 5.159 can have several solutions. For example,
when the coupling tA to the bath is much larger than the band width of the bath, there will be a
bonding energy level below the band of the half-infinite chain and one antibonding energy level above.
These two states resemble the bonding and antibonding states of a general dimeric molecule, where
the terminal site of the half-infinite chain plays the role of one of the atoms in the dimer.

When this energy level falls into the spectrum of the band of the bath, the broadening is due to
the coupling to the bath.

8. Determine the wave functions of the adsorbate and chain Editor: This needs to go into
the problem formulation.

Here we explore the tail of the wave function in the half-infinite chain, when an atom is absorbed
at the surface.

∣∣χ̃Aα(ϵ)〉 Eq. 5.9
=

∣∣χAα〉+ ∑
β,γ∈B

∣∣χBβ 〉ḠBBβ,γ (ϵ)V BAγ,α for α ∈ A

=
(
1̂ +

∑
β,γ∈B,δ∈A

∣∣χBβ 〉ḠBBβ,γ (ϵ)V BAγ,δ ⟨πδ|
)∣∣χAα〉 for α ∈ A (5.160)
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|χ̃A⟩ Eq. 5.9
=

(
|χA0 ⟩+

N∑
j=1

|χBj ⟩ḠBBj,1 (ϵ)tA
)
cA

=

(
|χ0⟩+

N∑
j=1

|χBj ⟩
∑
n

⟨πj |ϕn⟩
1

ϵ− ϵ(kn) + iη
⟨ϕn|π1⟩tA

)
cA

Eqs. 5.134 ,5.135
=

(
|χA0 ⟩+

2tA
N + 1

N∑
j=1

|χBj ⟩
N∑
n=1

∆k
1

π
(N + 1)alat︸ ︷︷ ︸
1/∆k

sin(knalatj) sin(knalat)

ϵ− ϵ̄+ 2t cos(knalat) + i0+

)
cA

=

(
|χA0 ⟩+

2alattA
π

∞∑
j=1

|χBj ⟩
∫ π

0

dk
sin(kalatj) sin(kalat)

ϵ− ϵ̄+ 2t cos(kalat) + i0+

)
cA

(5.161)

The coefficient cA acts as a normalization constant. In order to know a true solution of the
Schrödinger equation, we still need to determine the correct energy ϵ.

Let me do a variable transform

y = −2t cos(kalat) ⇒

{
dy = 2talat sin(kalat)dk

kalat = arccos
(
− y
2t

) (5.162)

∣∣χ̃Aα(ϵ)〉 =
(
|χ0⟩+

tA
πt

N∑
j=1

|χBj ⟩
∫ +2t
−2t

dy
sin
[
j arccos

(
− y
2t

)]
ϵ− ϵ̄− y + i0+

)
cA (5.163)

Editor: This result shall be analyzed numerically. The shape shall be shown.

• when the energy is far away from the band, the decay of the wave function is expected
to be exponential and rapid.

• when the energy lies inside the band, the wave function has a real and an imaginary
contribution. The imaginary contribution describes probably the continuum of
the half-infinite chain.

Once we found the behavior of the wave function as function of energy, we need to determine
the physical energies. For this purpose, we need to determine the poles of the Green’s function.

For that purpose, I analyze the adsorbate Green’s function GAA(ϵ). The poles are defined by the
equation

Editor: The following is guesswork!

ϵ− ϵ̄A − t2A⟨π1|ḠBB(ϵ)|π1⟩ = 0
ϵ− ϵ̄
2t
−
ϵ̄A − ϵ̄
2t

+
t2A
t

(
ϵ− ϵ̄
2t
− iπ

√
1−

(ϵ− ϵ̄
2t

)2)
= 0

x − xA + Bx − iπB
√
(1− x2) = 0

(1 + B)x − xA = iπB
√
1− x2 (5.164)

Re[x ] =
xA
1 + B

and Im[x ] = π
B

1 + B

√
1−

( xA
1 + B

)2
− Im[x ]2 (5.165)

for | ϵ−ϵ̄2t | < 1
—————————————————————–
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|π0⟩t2
[∫

dϵ′
D11(ϵ

′)

ϵ− ϵ′ − iπD11(ϵ)
]
⟨π0|

= −
1

πt
|π0⟩t2

[∫ ϵ̄+2t

ϵ̄−2t
dϵ′

√
1−

(
ϵ′−ϵ̄
2t

)2
ϵ− ϵ′ − iπ

√
1−

(
ϵ− ϵ̄
2t

)2]
⟨π0|

= −
1

πt
|π0⟩t2

[
−π

ϵ− ϵ̄
2t
− iπ

√
1−

(
ϵ− ϵ̄
2t

)2]
⟨π0|

= |π0⟩t
[
ϵ− ϵ̄
2t
+ i

√
1−

(
ϵ− ϵ̄
2t

)2]
⟨π0|

= |π0⟩t exp
(
i arccos

(ϵ− ϵ̄
2t

))
⟨π0| for |ϵ− ϵ̄| < |2t| (5.166)

This result is apparently only valid for energies within the band.
Bronstein p.55, Eq. 347∫

dx
1

a − cos(x) =
1√
1− a2

ln

∣∣∣∣∣(1 + a) tan(x/2)−
√
1− a2

(1 + a) tan(x/2) +
√
1− a2

∣∣∣∣∣ for a2 < 1∫ π

0

dx
1

a − cos(x) =
1√
1− a2

[
ln |1| − ln | − 1|

]
= 0 (5.167)

For the surface site, the Green’s function for ϵ−ϵ̄
2t | > 1 is

⟨π1|Ĝ(ϵ)|π1⟩
Eq. 5.155
= −

1

t

(
b3 − b
1− b2

)
=
1

t
b

=
1

t

ϵ− ϵ̄
2t
±

√(
ϵ− ϵ̄
2|t|

)2
− 1 with |ϵ− ϵ̄| > |2t| (5.168)

Now we combine the two regions of the self energy to

Σ̂(ϵ) = |t|


|π0⟩

[
ϵ−ϵ̄
2t + i

√
1−

(
ϵ−ϵ̄
2t

)2]⟨π0| for |ϵ− ϵ̄| < |2t|

|π0⟩
[
ϵ−ϵ̄
2|t| ±

√(
ϵ−ϵ̄
2|t|

)2
− 1
]
⟨π0| for |ϵ− ϵ̄| > |2t|

(5.169)

Editor: The sign of the hopping parameter is still inconsistent.

(
GAA(ϵ)

)−1
= |π0⟩

{
ϵ− ϵ̄A ± t2AḠBB11

}
⟨π0|]

=


|π0⟩

[
ϵ− ϵ̄A − tA

(
ϵ−ϵ̄
2t + i

√
1−

(
ϵ−ϵ̄
2t

)2)]⟨π0| for |ϵ− ϵ̄| < |2t|

|π0⟩
[
ϵ− ϵ̄A − tA

(
ϵ−ϵ̄
2|t| −

√(
ϵ−ϵ̄
2|t|

)2
− 1
)]
⟨π0| for |ϵ− ϵ̄| > |2t|

(5.170)

• For |ϵ− ϵ̄| < |2t| we obtain

ĜAA(ϵ) = |χ0⟩
1

tA

{
ϵ−ϵ̄A
tA
− ϵ−ϵ̄
2t + i

√
1−

(
ϵ−ϵ̄
2t

)2(
ϵ−ϵ̄A
tA
− ϵ−ϵ̄
2t

)2
+ 1−

(
ϵ−ϵ̄
2t

)2
}
⟨χ0| (5.171)
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• For |ϵ− ϵ̄| > |2t| we obtain (This is still wrong!!!)

ĜAA(ϵ) = |χ0⟩
1

tA

{
1

ϵ−ϵ̄A
tA
− ϵ−ϵ̄
2t +

√(
ϵ−ϵ̄
2t

)2 − 1
}
⟨χ0| (5.172)
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5.4.5 Downfold the positronic degrees of freedom in the Dirac equation

Editor: This is only a collection of stuff to formulate a problem later.
Electrons are described by the Dirac equation which describes an electron by a four-component

spinor wave function. (
γµiℏ∂µ −mc

)
ψ(x⃗) = 0 (5.173)

with

γ0 =

(
111 000

000 −111

)
and γ j =

(
000 σj

−σj 000

)
(5.174)

Minimal coupling

E → E − qΦ (5.175)

p⃗ → p⃗ − qA⃗ (5.176)

ϵ
def
= E −m0c2 (5.177)

M
def
= m0 +

ϵ− qΦ
2c2

(5.178)

(
qΦ− ϵ

∑
j∈{x,y ,z} σj(pi − qAi)c∑

j∈{x,y ,z} σj(pi − qAi)c −2Mc2

)(
|φ⟩
|χ⟩

)
= 0 (5.179)

(σ⃗A⃗)(σ⃗B⃗) = 111A⃗B⃗ + i σ⃗(A⃗× B⃗) (5.180)
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5.4.6 Inelastic tunneling (Sketch only)

Editor: Skip this. It is only a sketch
M. Galperin and MarC Ratner and Nitxzan, Arxiv, Inelastic electromn tunneling spectroscopy in

molecular junctions: Peaks and dips
S. Tikhodeev et al. Surf. Sci. 493,63 (2001)
T. Mii, S. Tikhodeev et al., Surf. Sci. 502-503, 26 (2002)
B.N.J. Persson and A. Baratovv, PRL 59,339 (1987)
B.N.J. Persson, Physica Scripta 38, 282 (1988)
A. Baratoff and Persson, J. Vacuum Science and Technology A 6, 331 (1988)

Consider an electron traveling along a Hubbard chain, which interacts on a single site with a
two-state system. The two-site system could be any system that may accept from or donate energy
to the traveling electron.

The Hamiltonian of the Hubbard chain is

HAAi,j =

{
t for j = i ± 1
0 else

(5.181)

The two-state system has the Hamiltonian

HBB =

(
0 0

0 ∆

)
(5.182)

The only non-zero element of the coupling is V AB0,2 = λ.
Solution:

GBB(ϵ) =

(
1
ϵ 0

0 1
ϵ−∆

)
(5.183)

The retarded potential has the form

ΣΣΣAA0,0 =
λ2

ϵ− ∆ (5.184)



Chapter 6

Dynamics in Fock space and complex
time

In this chapter, we step again into many-particle physics. We prepare the ground the unified formula-
tion of Green’s functions in many-particle physics. The key to this generality is to use a time variable
that evolves along a time contour in the complex plane. The various Green’s function approaches
can then be related to a particular choice of the time contour.

1. propagator in Fock space

2. ensembles

3. complex time contour

4. linear response

5. Heisenberg operators

6.1 Propagator in Fock space

In section 4.3.1, we introduced the propagator in the one-particle Hilbert space. As we proceed
to many-particle systems, we need to generalize it to the complete Fock space. The definition is
analogous: Instead of a complete basis of one-particle wave functions, we use now a complete basis
in the Fock space.

In order to make the distinction between one-particle and many-particle quantities evident, I will
use, as much as as possible, uppercase symbols for the many-particle properties and quantities that
refer to interacting systems.

Consider the time evolution for any many-particle state |Ψ(t)⟩ which is governed by the many-
particle Schrödinger equation [

iℏ∂t − Ĥ(t)
]
|Ψ(t)⟩ = 0 (6.1)

with the many-particle Hamiltonian Ĥ = ĥ + Ŵ .
The time evolution for any many-particle state |Ψ(t)⟩ can be expressed by the propagator Û(t, t ′)

in Fock space

|Ψ(t)⟩ = Û(t, t ′)|Ψ(t ′)⟩ (6.2)

The many-particle propagator Û differs from one-particle propagator Û, used earlier. Û acts in the
Fock space, while Û acts on the one-particle Hilbert space.

229
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The many-particle propagator is defined by the differential equation[
iℏ∂t − Ĥ(t)

]
Û(t, t ′) = 0 (6.3)

and the boundary condition is (with the unit operator 1̂ in Fock space)

Û(t, t) = 1̂ . (6.4)

Closed expression: The propagator has the form

Û(t, t ′) =
∑
m,n

∣∣Φm(t)〉(〈Φm(t ′)∣∣Φn(t ′)〉)−1
m,n

〈
Φn(t

′)
∣∣ (6.5)

where the many-particle wave functions |Φn(t ′)⟩ form a complete basisset in Fock space. Each such
state obeys the time-dependent Schrödinger equation[

iℏ∂t − Ĥ(t)
]
|Φn(t)⟩ = 0 (6.6)

The many-particle propagator obeys the same rules as those specified in section 4.3.1 on p. 169
for the propagator in the one-particle Hamiltonian.

Alternatively, we can also use the ordered exponential with Dyson’s time-ordering operator TD.

Û(t, t ′) = TD exp
(
−
i

ℏ

∫ t

t ′
dt ′′ Ĥ(t ′′)

)
(6.7)

Propagator for time-independent systems: For a stationary system, the propagator has the form

Û(t, t ′) =
∑
n

|Φn⟩e−
i
ℏEn(t−t

′)⟨Φn| (6.8)

where the |Φn⟩ are the orthonormal eigenstates of the time-independent Schrödinger equation in
Fock space.

Ĥ|Φn⟩ = |Φn⟩En (6.9)

For a time-independent Hamiltonian Ĥ, the propagator Û(t, t ′) from Eq. 6.8 can be expressed in
the compact form

Û(t, t ′) = e−
i
ℏ Ĥ(t−t

′) (6.10)

which is verified by insertion into the Schrödinger equation:

iℏ∂t Û(t, t ′)|ψ(t ′)⟩︸ ︷︷ ︸
|ψ(t)⟩

= Ĥ Û(t, t ′)|ψ(t ′)⟩︸ ︷︷ ︸
|ψ(t)⟩

(6.11)

Propagator for time-independent systems without interaction: For a non-interacting and time-
independent Hamiltonian Ĥ = ĥ, the propagator is, in occupation-number representation,

Û(t, t ′) =
∑
σ⃗

|σ⃗⟩e−
i
ℏ (
∑
j σj ϵj )(t−t ′)⟨σ⃗| (6.12)

Because the system is non-interacting, the eigenstates are Slater-determinants expressed in the one-
particle basis with states |ϕj⟩, that obey1

ĥ|ϕj ⟩ = |ϕj ⟩ϵj (6.13)

1Using ĥ both in the Fock space and the one-particle Hilbert space may be irritating. In this special case, it is
allowed considering that the one-particle Hilbert space is a sub-space of the Fock space.
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We use the occupation-number representation. (See also section 1.4.1 on p. 23)
The Hamilton eigenstates for this non-interacting Hamiltonian Ĥ = ĥ obey the eigenvalue equation

ĥ|σ⃗⟩ = |σ⃗⟩Eσ⃗ (6.14)

with energies

Eσ⃗ =

∞∑
j=1

σjϵj (6.15)

6.2 Time as complex variable

6.2.1 Motivation

By allowing arbitrary time contours in the complex plane, the Green’s-function formalism can be
introduced in a unified way[? ] rather than considering several distinct theories for zero-temperature
time-dependent problems, finite-temperature static problems and non-equilibrium problems.

This section, 6.2.1, aims at providing a motivation, before I describe what needs to be considered
in connection with complex time contours.

Allowing the time to vary along a contour in the complex plane is related to a mathematical trick
used in connection with finite temperature. The gist of this trick is that both propagator Û(t, t ′)
and thermal state-operator ρ̂T,µ are both expressed in terms of exponentials of the Hamiltonian. By
allowing complex time arguments, the state operator can be expressed, partly, by a propagator.

ρ̂T,µ =
e−β(Ĥ−µN̂)

Tr[e−β(Ĥ−µN̂)]
=
eβµN̂ Û(−iℏβ, 0)
Tr[eβµN̂ Û(−iℏβ), 0]

(6.16)

where I used the propagator (with frozen Ĥ)

Û(−iℏβ, 0) = exp
(
−
i

ℏ
Ĥ · (−iℏβ)︸ ︷︷ ︸

(t−0)

)
= e−βĤ (6.17)

A time-dependent expectation value is obtained by propagating the states of the ensemble to
the desired time. This allows us to start with a specific ensemble at t = 0 and propagate with a
time-dependent Hamiltonian to the desired time.

〈
A(t)

〉
T,µ
=
Tr
{
eβµN̂ Û(−iℏβ, 0) Û(0, t)Â Û(t, 0)

}
Tr
{
eβµN̂ Û(−iℏβ, 0) Û(0, t) Û(t, 0)

} = Tr
[
eβµN̂TC

{
ÂS(t)e

− i
ℏ
∫
C dt

′ Ĥ(t ′)
}]

Tr
[
eβµN̂TC

{
e−

i
ℏ
∫
C dt

′ Ĥ(t ′)
}] (6.18)

The propagation proceeds along the contour C leading along 0→ t → 0→ −iℏβ in the complex-time
plane. The time argument ÂS(t) = Â is only present to guide the time-ordering operator TC, which is
redefined to order along the one-dimensional time contour in the complex plane. A proper definition
of this time-ordering operator will follow in Eq. 6.36 on p. 235. The Schrödinger operator ÂS(t)
must not confused with a Heisenberg operator ÂH(t).

This example shall demonstrate the general principle, rather than providing a working technique.
The ensemble propagated here is, admittedly, weird. At this point this shall not disturb us. The
complex time contour will later be put into more reasonable use. The goal is to make it plausible
that thermal properties can be described with time arguments on the imaginary axis. For the time
being, this shall suffice as motivation. Details will be made clear later.

While I will not exploit the complex time contour for quite some time, introducing it here allows
me to define quantities already in its final generality.
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6.2.2 Definitions and working rules

Complex time contour: Consider time to proceed along a one-dimensional contour C in the complex
plane. Thus, time t(s) ∈ C is a complex-valued function of a one-dimensional real parameter s ∈ R.

t(s) : R→ C (6.19)

An example of such complex time contour is shown in the box containing Eq. 10.22 on p. 301.
Let me write down some definitions that are required to describe the dynamics along a complex

contour.

• a contour integral of a function f (t), along a contour C in the complex plane has the form∫ tb∈C

C;ta∈C
dt f (t)

def
=

∫ sb

sa

ds
dt(s)

ds
f (t(s)) (6.20)

where ta = t(sa) and tb = t(sb).

• Similarly, the contour derivative is

df

dt

def
=
df (t(s))

ds

(
dt

ds

)−1
= lim
∆→0

f (t(s + ∆))− f (t(s))
t(s + ∆)− t(s) (6.21)

The contour derivative is not to be confused with the Wirtinger derivatives (see appendix A.3
on p. 386)

df =
df

dt
dt +

df

dt∗
dt∗ (6.22)

• The contour step function for time arguments on the contour will be generalized so that it
refers to the parameter s.

θC(t1 − t2)
def
= θ(s1 − s2) where t1 = t(s1) and t2 = t(s2) (6.23)

• the contour delta function is defined as the derivative of the contour step function. Thus, we
can use

δ(s) =
dθ(s)

ds
=
dθ(t)

dt

dt

ds
= δ(t)

dt

ds
(6.24)

Thus,

δC(t − t ′)
def
=

(
dt

ds

)−1
δ(s − s ′) (6.25)

• The contour Schrödinger equation translates into[
iℏ∂t − Ĥ(t)

]
|ψ(t)⟩ =

[
iℏ
(
dt

ds

)−1
∂s − Ĥ(s)

]
|ψ(s)⟩ = 0 (6.26)

This converts the Schrödinger equation into a differential equation with respect to the real
one-dimensional parameter s.

• The propagator Û(t, t ′) of the one-particle states has been introduced previously in section 4.3.1
on p. 167. The contour propagator has the same form, which also holds for complex-valued
time arguments.

Û(t, t ′) =
∑
m,n

|ϕm(t)⟩O−1m,n(t ′)⟨ϕn(t ′)| (6.27)
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The time-dependent one-particle states {|ϕn(t)⟩} form a complete set of wave functions that
satisfy the contour Schrödinger equation. With

Om,n(t) = ⟨ϕm(t)|ϕn(t)⟩ , (6.28)

we denote the time-dependent overlap matrix. The orthonormality of wave functions is con-
served along the real time axis, but not away from it. Notice that the time argument of the
inverse overlap matrix is connected to the second time argument of the propagator, which
makes the expression asymmetric.

As a side remark, let me alert the you to an aspect that may easily be overlooked: The prop-
agator for a time-independent Hamiltonian has a surprisingly simple form, despite being valid
in the complex-time plane. Let me consider the solutions |ϕn(t)⟩ of the contour Schrödinger
equation for a time-independent Hamiltonian. The states shall be orthonormal at t = 0 and
eigenstates of the Hamiltonian with eigenvalues ϵn

|ϕn(t)⟩ = |ϕn(0)⟩e−
i
ℏ ϵnt

⇒ ⟨ϕn(t)| = e+
i
ℏ ϵnt

∗⟨ϕn(0)|
⇒ Om,n(t) = ⟨ϕm(t)|ϕn(t)⟩ = e+

i
ℏ ϵnt

∗ ⟨ϕm(0)|ϕn(0)⟩︸ ︷︷ ︸
δm,n

e−
i
ℏ ϵnt = δm,ne

+ i
ℏ ϵn(t

∗−t)

⇒
∑
n

O−1m,n(t)⟨ϕn(t)| =
∑
n

δm,ne
− i
ℏ ϵn(t

∗−t)︸ ︷︷ ︸
O−1m,n(t)

e+
i
ℏ ϵnt

∗⟨ϕn(0)|︸ ︷︷ ︸
⟨ϕn(t)|

= e+
i
ℏ ϵmt⟨ϕm(0)| (6.29)

The propagator for a time-independent Hamiltonian ĥ is

Û(t, t ′) =
∑
m,n

|ϕm(0)⟩e−
i
ℏ ϵmt︸ ︷︷ ︸

|ϕm(t)⟩

δm,ne
− i
ℏ ϵn((t

′)∗−t ′)︸ ︷︷ ︸
O−1m,n(t ′)

e+
i
ℏ ϵn(t

′)∗⟨ϕn(0)|︸ ︷︷ ︸
⟨ϕn(t ′)|

=
∑
n

|ϕn(0)⟩e−
i
ℏ ϵn(t−t

′)⟨ϕn(0)| = e−
i
ℏ ĥ(t−t

′) (6.30)

The result is simple in a non-trivial way. The complications related to the complex-conjugate
time and the inverse overlap matrix disappear.

For later reference, table 6.1 summarizes the rules for symbols on a complex contour. The
subscript C will not be carried through consistently.

∂t
(
dt
ds

)−1
∂s contour derivative∫ t(sb)

t(sa)
dt

∫ sb
sa
ds dtds contour integral

θC(t − t ′) θ(s − s ′) step function

δC(t − t ′)
(
dt
ds

)−1
δ(s − s ′) delta function

Table 6.1: Translation rules of quantities defined on a complex-time contour t(s) onto the real-
valued contour parameter s.

6.2.3 Memory hook

In this section, I make an attempt to make the choices for the contour derivatives, contour integrations
etc. plausible using a minimal problem, namely one with a one-dimensional Hilbert space. A one-
dimensional Hilbert space is spanned by a single orbital.
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Consider the propagator in this one-dimensional Hilbert space, which is a simple complex function
in the complex time plane. To simplify the discussion, we only consider the relative time argument,
rather than the arguments of initial and final time.

u(t) = e−
i
ℏ ϵt (6.31)

in the complex plane. This function is a cartoon of a propagator described below.

Fig. 6.1: Real part of the propagator u(t) in a one-dimensional Hilbert space in the complex time
plane. The propagator is a plane wave in the direction of the real time axis (towards right-front) and
an exponential along the imaginary time axis. (towards right-back)

Contour derivative: u(t) = e−
i
ℏ ϵt obeys the differential equation(

iℏ∂t − ϵ
)
u(t) = 0 (6.32)

when t proceeds along the real axis. This differential equation is analogous to the Schrödinger
equation.

Consider now a path along the imaginary time axis,i.e. t(s) = i s. The variable

τ
def
= −i t (6.33)

is called the imaginary time. Expressed in imaginary time, the propagator obeys the differential
equation (

ℏ∂τ − ϵ
)
u(t(τ)) = 0 (6.34)

This is the Schrödinger equation in imaginary time. Its solution u(t(τ)) = e
1
ℏ ϵτ is an exponential,

rather than a plane wave u(t(τ)) = e−
i
ℏ ϵτ obtained from the equation in real-valued time.

Both equations, Eq. 6.32 and Eq. 6.34, can be translated into each other using the replacement
rule

∂t =

(
dt

dτ

)−1
︸ ︷︷ ︸

−i

∂τ (6.35)

Both differential equations, Eq. 6.32 and Eq. 6.34, can be considered as differential equations
along one-dimensional contours C in the complex plane. In one case, the contour is defined by
t(s) = s and proceeds along the real time axis. In the other case, the contour is defined by t(s) = i s
and proceeds along the imaginary-time axis.
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6.2.4 Contour time-ordering operator

In section 4.3.3 on p. 169, the propagator has been represented as time-ordered exponential. In
order to correct for the misordering of operators, Dyson’s time-ordering operator Eq. 4.40 has been
introduced.

In order to use this expression in connection with Heisenberg-type creation and annihilation oper-
ators, we need to introduce Wick’s time-ordering operator. Wick’s time-ordering operator introduces
a sign change for every interchange of fermionic creation and annihilation operators.

Wick’s time-ordering operator can be considered as a generalization of Dyson’s time-ordering
operator. Dyson’s time-ordering operator has been introduced for observables, for which the fermionic
operators occur in pairs. In this case, the sign changes introduced by Wick’s time-ordering operator
compensate.

Wick’s time-ordering operator on the complex time contour is what we call the contour time-
ordering operator.

CONTOUR TIME-ORDERING OPERATOR

The time-ordering operator acts on a product of operators Â(t), which depend on the time-point
t(s) on a contour C in the complex plane. The time contour C : s → t(s) is parameterized by a
one-dimensional real-valued argument s.
The time-ordering operator rearranges the operators in the product such that the argument s increases
from right to left. The time-ordering operators are no operators in the conventional sense: Namely,
they do not act on states in the Hilbert or Fock space to map them onto other states. Rather, it is
a prescription in which order the operators in a product shall be arranged.
Wick’s time-ordering operator[57] or contour time-ordering operator. In his seminal paper[57]
laying the foundation for the diagrammatic expansion of the Green’s function, Wick introduced his
time-ordering operator. This object is generalized to the contour time-ordering operator TC.

TCÂ(t(s))B̂(t(s ′)) =


Â(t(s))B̂(t(s ′)) for s ≥ s ′

B̂(t(s ′))Â(t(s)) for s < s ′ and either Â or B̂ or both bosonic
−B̂(t(s ′))Â(t(s)) for s < s ′ and Â and B̂ fermionic

(6.36)

Creation and annihilation operators of identical fermions are called fermionic operators. Odd-
numbered products of such operators are themselves fermionic. Creation and annihilation operators
of identical bosons are called bosonic operators. Even numbered products are of bosonic type. Thus,
a Hamilton operator, which conserves the particle number is necessarily of bosonic type in the present
context. This is confusing because this Hamiltonian still describes fermions).
The special rule for fermionic operators is due to Wick’s theorem derived later. (In the expression
for the time-ordered exponential, the special rule would actually be incorrect. We use the same
object because Hamiltonians with fermionic operators are usually particle-number conserving, so that
fermionic operators occur in pairs. Pairs of fermionic operators are again bosonic so that only the
bosonic rule applies.) Editor: This should be explained better.

Time-ordered exponential on the contour

The propagator in Fock space with a time-dependent Hamiltonian Ĥ(t) has the form

Û(t2, t1) = TCe
i
ℏ
∫ t2
C,t1

dt ′ Ĥ(t) (6.37)

In the future, the contour will be implied in the time integral.
Expressed in the mapping t(s) the time-ordered exponential is more explicitly given as.

Û
(
t(s2), t(s1)

)
= TCe

i
ℏ
∫ s2
C,s1

ds dt(s)
ds
Ĥ
(
t(s)
)

(6.38)
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It will be important that the propagator is not unitary for time arguments away from the real time
axis. Transitivity still holds.

Û
(
t1, t2

)
Û
(
t2, t1

)
= 1̂

Û
(
t1, t2

)
̸= Û †

(
t2, t1

)
(6.39)

6.2.5 Heisenberg operators

Special care is required with the generalization of Heisenberg operators to the complex time contour,
because the propagator is unitary only when the contour lies on the real axis. We define the Heisenberg
operators as follows:

HEISENBERG OPERATORS

A Heisenberg operator ÂH(t) is obtained from a Schrödinger operator ÂS(t) with the propagator
Û(t, t ′) = TDe−

i
ℏ
∫
C dt

′Ĥ(t ′) as

ÂH(t)
def
= Û(0, t)ÂS(t) Û(t, 0) (6.40)

In the Heisenberg picture, the creation and annihilation operators are no more complex conjugates
of each other, unless the time lies on the real axis. Therefore, I introduce an alternate symbol +
to denote the creation operator in the Heisenberg picture, which is distinct from the one † used to
denote the hermitian conjugate.

ψ̂H(x⃗ , t)
def
= Û(0, t)ψ̂S(x⃗) Û(t, 0)

ψ̂+H(x⃗ , t)
def
= Û(0, t)ψ̂†S(x⃗) Û(t, 0) (6.41)

The creation and annihilation operators are not in general hermitian conjugates of each other.

ψ̂+H(x⃗ , t) ̸=
(
ψ̂H(x⃗ , t)

)†
unless for t ∈ R (6.42)

The field operators in the Heisenberg picture obey the commutator relations known from the
Schrödinger picture only for equal times.[

ψ+H(x⃗ , t), ψH(x⃗
′, t ′)

]
+
= δ(x⃗ − x⃗ ′) only for t = t ′[

ψ+H(x⃗ , t), ψ
+
H(x⃗

′, t ′)
]
+
= 0 only for t = t ′[

ψH(x⃗ , t), ψH(x⃗ ′, t
′)
]
+
= 0 only for t = t ′ (6.43)
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With this definition, the differential equation for the Heisenberg operators has the usual form2

iℏ∂tAH(t) =
(
iℏ∂t Û(0, t)

)
ÂS(t) Û(t, 0) + Û(0, t)

(
iℏ∂t ÂS(t)

)
Û(t, 0) + Û(0, t)ÂS(t)

(
iℏ∂t Û(t, 0)

)
=
[
ÂH(t), ĤH(t)

]
−
+ iℏ

(
∂Â

∂t

)
H

(6.45)

However, the time-dependent expectation value is obtained only for times on the real axis.

⟨A(t)⟩ def
=
⟨ψS(t)|ÂS|ψS(t)⟩
⟨ψS(t)|ψS(t)⟩

t∈R
=
⟨ψH|ÂH(t)|ψH⟩
⟨ψH|ψH⟩

for t ∈ R (6.46)

6.3 Home study and practice

2We use the differential equation [iℏ∂t − ĤS(t)] Û(t, 0) = 0 and Û(0, t) Û(t, 0) = 1̂. Specifically,

Û(0, t)
[(
iℏ∂t Û(t, 0)

)
− ĤS Û(t, 0)

]
Û(0, t) = 0

⇒ Û(0, t) iℏ∂t Û(t, 0) Û(0, t)︸ ︷︷ ︸
=0̂

− Û(0, t) Û(t, 0)︸ ︷︷ ︸
1̂

iℏ∂t Û(0, t)− Û(0, t)ĤS Û(t, 0) Û(0, t)︸ ︷︷ ︸
=1̂

= 0 (6.44)

From the latter, we obtain iℏ∂t Û(0, t) = − Û(0, t)ĤS(t), respectively iℏ∂t Û(0, t) = −ĤH Û(0, t).
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Chapter 7

Green’s functions in many-particle
physics

The transition of the Green’s-function formalism from one-particle systems to a many-particle prob-
lems is conceptually non-trivial. There are a number of equations that remain the same, but the
Green’s function in many-particle physics is a generalization of the one-particle case, which has a
different mathematical foundation. Often, I find that the Green’s function is defined as mathemat-
ical expression, and the motivation becomes evident only a posteriori. In this chapter, I will try to
motivate the choices that lead to the many-particle Green’s function beforehand.

7.1 One-particle Green’s functions in second quantization

The first step on the route from the Green’s function for one-particle systems to that for many
particles is to reformulate the one-particle Green’s function in the language of second quantization.

The Green’s function is obtained from the propagator Û(t2, t1) via Eq. 4.38. In order to extend
our definitions to the Fock space, I represent this propagator in terms of creation and annihilation
operators. Note, however, that we still work with a one-particle problem. Let me choose a basisset
of Hamilton eigenstates |ϕm⟩ and the corresponding creation and annihilation operators â†m and âm.
The basis functions can be expressed by the vacuum state |O⟩ and the creation operator as

|ϕm⟩
Eq. 3.22
= â†m|O⟩ . (7.1)

Because the basis {|ϕm⟩} is orthonormal and complete, we obtain

Û(t2, t1) =
∑
m,n

|ϕm⟩⟨ϕm|Û(t2, t1)|ϕn⟩⟨ϕn|

Eqs. 3.22, 6.2
=

∑
m,n

|ϕm⟩⟨O|âm Û(t2, t1)â†n|O⟩⟨ϕn|

Û(t,0)|O⟩=|O⟩
=

∑
m,n

|ϕm⟩ ⟨O| Û(0, t2)︸ ︷︷ ︸
⟨O|

âm Û(t2, t1)â†n Û(t1, 0)|O⟩︸ ︷︷ ︸
=|O⟩

⟨ϕn| (7.2)

where I used the many-particle propagator Û(t, t ′) in Fock space.
The propagators from t = 0 to t1 and from t2 to t = 0 have been included to make the final

result independent of a global shift of the energies. A global shift by ∆ introduces a phase factor
e−

i
ℏ∆(t2−t1) into the propagator Eq. 6.7. The propagation back to the initial state ensures that a

global shift, which is the energy of the vacuum state, does not affect the result. The invariance of
observables with respect to a global energy shift is attributed to gauge invariance in electrodynamics.

239
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The one-particle Green’s function is therefore

Ĝ(t2, t1)
Eq. 4.38
=

1

iℏ
θC(t2 − t1)

∑
m,n

|ϕm⟩⟨O| Û(0, t2)âm Û(t2, t1)â†n Û(t1, 0)|O⟩⟨ϕn| (7.3)

Even though they describe only a single particle, the many-particle states in the matrix element live in
Fock space and are propagated by the many-particle propagator Û(t, t ′) rather than the one-particle
propagator Û(t, t ′). The Green’s function itself is still an operator in the one-particle Hilbert space.

Eq. 7.3 suggests an interpretation of the Green’s function

G(x⃗2, t2, x⃗1, t1) = ⟨x⃗2|Ĝ(t2, t1)|x⃗1⟩

=
1

iℏ
θC(t2 − t1)⟨O| Û(0, t2)ψ̂(x⃗2) Û(t2, t1)ψ̂†(x⃗1) Û(t1, 0)|O⟩ (7.4)

as probability amplitude for finding a particle at time t2 in position x⃗2, which has been added to the
system at time t1 in position x⃗1. This will be a guiding principle in the definition of the Green’s
function for many-particle systems.

7.2 Propagate electrons in a non-interacting electron gas

While Eq. 7.3 describes an electron added to empty space, let us now study an electron added
to a non-interacting many-electron system. To keep things simple, I limit the discussion to time-
independent problems.

To generalize Eq. 7.3, I replace the vacuum state |O⟩ in Eq. 7.2 by an eigenstate |σ⃗⟩ of a non-
interacting Hamiltonian ĥ. I use the occupation-number representation for the eigenstates |σ⃗⟩ of ĥ
with energies Eσ⃗ =

∑∞
n=1 σnϵn. In this way, Eq. 7.2 generalizes to

Û(e)(t2, t1) =
∑
n,m

|ϕm⟩
[
⟨σ⃗| Û(0, t2) âm Û(t2, t1) â†n Û(t1, 0)|σ⃗⟩︸ ︷︷ ︸

â†n |σ⃗⟩e−
i
ℏ Eσ⃗t1︸ ︷︷ ︸

âm â
†
n |σ⃗⟩e−

i
ℏ (Eσ⃗+ϵn)(t2−t1)e−

i
ℏ Eσ⃗t1︸ ︷︷ ︸

âm â
†
n |σ⃗⟩e−

i
ℏ (Eσ⃗+ϵn−ϵm)(0−t2)e−

i
ℏ (Eσ⃗+ϵn)(t2−t1)e−

i
ℏ Eσ⃗t1

]
⟨ϕn|

Eq. 6.12
=

∑
n,m

|ϕm⟩
[
δm,n(1− σn)︸ ︷︷ ︸
⟨σ⃗|âm â†n |σ⃗⟩

e−
i
ℏ ϵn(t2−t1)

]
⟨ϕn|

=
∑
n

(1− σn) |ϕn⟩e−
i
ℏ ϵn(t2−t1)⟨ϕn| (7.5)

Except for the factor (1− σn), this is identical to the propagator for a one-particle system Eq. 6.12.
The factor (1− σn) filters away all occupied states in the Slater determinant |σ⃗⟩. This reflects that
an electron can not be added to a filled orbital.

Let me construct a similar propagator for the occupied states. The occupied states are selected
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Fig. 7.1: Comparison of a hole propagation forward in time with that of an electron backward in
time.

by first (at t2) applying the annihilator and later (at t1) the creator.

Û(h)(t1, t2) =
∑
n,m

|ϕm⟩
[
⟨σ⃗| Û(0, t1) â†n Û(t1, t2) âm Û(t2, 0)|σ⃗⟩︸ ︷︷ ︸

âm |σ⃗⟩e−
i
ℏ Eσ⃗t2︸ ︷︷ ︸

â†n âm |σ⃗⟩e−
i
ℏ (Eσ⃗−ϵm)(t1−t2)e−

i
ℏ Eσ⃗t2︸ ︷︷ ︸

â†n âm |σ⃗⟩e−
i
ℏ (Eσ⃗−ϵm+ϵn)(0−t1)e−

i
ℏ (Eσ⃗−ϵm)(t1−t2)e−

i
ℏ Eσ⃗t2

]
⟨ϕn|

Eq. 6.12
=

∑
n,m

|ϕm⟩
[
δm,nσn︸ ︷︷ ︸
⟨σ⃗|â†n âm |σ⃗⟩

e−
i
ℏ (−ϵm)(t1−t2)

]
⟨ϕn|

=
∑
n

σn |ϕn⟩e+
i
ℏ ϵn(t1−t2)⟨ϕn| (7.6)

The factor σn filters away the empty states, so that this term projects exactly onto the occupied
states, that have been missing in the electron propagator. However, because we removed an electron,
rather than adding one, the energy ϵn enters with a minus sign.

Combining the electron and hole propagators reproduces the one-particle propagator.

Û(t2, t1) =
∑
n

|ϕn⟩e−
i
ℏ (t2−t1)⟨ϕn|

= Û(e)(t2, t1) + Û
(h)(t1, t2)

=
∑
m,n

|ϕm⟩⟨σ⃗|
(
Û(0, t2)âS,m Û(t2, t1)â+S,n Û(t1, 0) + Û(0, t1)â

+
S,n Û(t1, t2)âS,m Û(t2, 0)

)
|σ⃗⟩⟨ϕn|

=
∑
m,n

|ϕm⟩⟨σ⃗|
[
âH,m(t2), â

+
H,n(t1)

]
+
|σ⃗⟩⟨ϕn| (7.7)

The time arguments for the hole propagator enter in the reversed order. This can loosely be
explained by considering a hole as an electron moving backwards in time: (see also Fig,7.1)

• A hole propagates from t2 to t1 with t1 > t2. At time t2 a positive charge appears and, at time
t1 it disappears. Rather than letting the positive charge disappear at t1 one could also have
created a negative charge, which compensates the positive charge created earlier.

• An electron propagates from a later time t1 to an earlier time t2 with t1 > t2: At the later
time t1 an electron is added and propagates into the future, returns to time t = 0 and from
there to t2, where it is removed from the system.

In both cases, the system becomes more positive at t2 and it becomes more negative at t1, indicating
that the process is the same, albeit expressed in different words.
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7.3 From the propagator of non-interacting electrons to the
Green’s function

So far, we generalized the propagator of an isolated electron to a propagator Eq. 7.2 of an electron,
respectively a hole that has been added to a non-interacting many-electron system.

In order to obtain the Green’s function, let us inspect the relation Eq. 4.38 from one-particle
quantum mechanics, which links the Green’s function to the propagator.

Ĝ(t2, t1) =
1

iℏ
θ(t2 − t1)Û(t2, t1)−

C

iℏ
Û(t2, t1)

= (1− C)
1

iℏ
θ(t2 − t1)Û(t2, t1)−

C

iℏ
θ(t1 − t2)Û(t2, t1) (7.8)

I extended Eq. 4.38 by adding the propagator scaled by a real-valued constant C. For the one-particle
case, the additional term is, up to a constant, the propagator, which obeys the Schrödinger equation.
Therefore, the Green’s function Ĝ(t, t ′) satisfies the defining differential equation for the Green’s
function for any finite C. For C ̸= 0, however, it violates the initial condition Ĝ(t, t ′) = 0̂ for
t = −∞.

In the many-particle case, the propagator has two terms: one for electrons and one for holes.
Each term solves the one-particle Schrödinger equation independently. I am free to convert the
propagator into Green’s functions for electrons and for holes independently.

I am using C = 0 for the electrons and C = 1 for the holes and I add the electron and hole
contributions together. In this way, the contour-ordered Green’s function is obtained.

ĜC(t2, t1) =
1

iℏ
θC(t2 − t1)Ûe(t2, t1)−

1

iℏ
θC(t1 − t2)Ûh(t1, t2)

=
∑
m,n

|ϕm⟩
{
1

iℏ
θC(t2 − t1) ⟨σ⃗| Û(0, t2)ân Û(t2, t1)â†m Û(t1, 0)|σ⃗⟩︸ ︷︷ ︸

electrons from (m, t1) to (n, t2)

−
1

iℏ
θC(t1 − t2) ⟨σ⃗| Û(0, t1)â†m Û(t1, t2)ân Û(t2, 0)|σ⃗⟩︸ ︷︷ ︸

holes from (n, t2) to (m, t1)

}
⟨ϕn| (7.9)

The order of the time arguments of the Green’s function does not specify, whether the system is
propagated forward or backward in time, but whether electrons or holes are propagated. For t2 > t1,
this Green’s function describes the propagator for electrons (but not holes) from the earlier time t1
to the later time t2. For t1 > t2, the Green’s function describes the propagator for holes (but not
electrons) from the earlier time t2 to the later time t1.

Other choices for the Green’s function are possible. For example, I could have used C = 1 for
both, the electron and the hole channel, which would lead again to a Green’s function, albeit another
one. It would produce the one-particle propagator for a non-interacting system, and it would solve
the differential for the Green’s function. What would change, is the boundary condition at t2 = −∞.
However, we make a different choice.

Why did we make this particular choice? From the background we have so far, we cannot motivate
it. We will see later, that this choice is required for Wick’s theorem, which again is the basis of the
diagrammatic expansion of the Green’s function. Other Green’s function are typically obtained from
the contour-ordered Green’s function. The reason will become clear in the derivation of Wick’s
theorem in appendix K on p. 561, and it will be discussed on p. p. 582

Make things compact: The contour-ordered Green’s function can be economically represented
using operators in the Heisenberg picture Eq. 6.40. Furthermore, we can make use of the contour
time-ordering operator TC from Eq. 6.36. (Remember that an interchange of two fermionic operators
by TC produces a sign flip.) Combining the propagators with the creation and annihilation operators,
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we obtain

ĜC(t2, t1)
Eq. 6.40
=

∑
m,n

|ϕm⟩
{
1

iℏ
θC(t2 − t1)⟨σ⃗|âH,m(t2)â+H,n(t1)|σ⃗⟩

−
1

iℏ
θC(t1 − t2)⟨σ⃗|â+H,n(t1)âH,m(t2)|σ⃗⟩

}
⟨ϕn|

Eq. 6.36
=

∑
m,n

|ϕm⟩
1

iℏ
⟨σ⃗|TC âH,m(t2)â+H,n(t1)|σ⃗⟩⟨ϕn| (7.10)

Some thought is required regarding the contour C chosen. Here the contour starts at zero, passes
to t = −∞, proceeds along the real axis to t = +∞, before it returns back to t = 0. The contour
can be modified by clipping closed loops. One exploits Û(t2, t1) Û(t1, t2) = 1̂. Therefore, it is not
necessary to move all the way to −∞ or +∞.

7.4 Propagate interacting electrons at finite temperature

From the choices done so far, the remaining steps are straightforward.

General (potentially interacting) electron systems: For the generalization from non-interacting
electrons to a general interacting electron system, we choose firstly the appropriate many-particle
propagator for interacting electrons. Secondly, we determine the expectation value with a specified
many-particle state |Φ⟩, which is not necessarily a Slater determinant. If one is interested in zero-
temperature results, one would choose the ground state of the interacting electron system.

ĜC(t2, t1) =
∑
m,n

|ϕm⟩
1

iℏ
⟨Φ|TC âH,m(t2)â+H,n(t1)|Φ⟩⟨ϕn| (7.11)

Finite temperature: In order to obtain results at finite temperature, we need to generalize the
Green’s function to general ensembles {|Φq⟩, Pq}, which can be described by the state operator
ρ̂ =

∑
q |Φq⟩Pq⟨Φq |.

ĜC(t2, t1) =
∑
m,n

|ϕm⟩
1

iℏ
∑
q

Pq⟨Φq |TC âH,m(t2)â+H,n(t1)|Φq⟩⟨ϕn|

=
∑
m,n

|ϕm⟩
1

iℏ
Tr
{
ρ̂ TC âH,m(t2)â+H,n(t1)

}
⟨ϕn| (7.12)

This is the most general expression for the contour-ordered Green’s function. It is convenient to
specialize this expression somewhat. Namely, we introduce thermal ensembles instead of the most
general ensemble. The limitation to thermal ensembles leads to considerable simplifications. Nev-
ertheless, I will show in section 7.6 below, that this is not a restriction. Namely, for an arbitrary
ensemble, one can construct a Hamiltonian that produces exactly that desired ensemble in thermal
equilibrium.

For a grand-canonical ensemble, the (von-Neumann) density matrix is (β = 1/(kBT ))

ρ̂T,µ
Eq. ??
=

1

ZT,µ
e−β(Ĥ−µN̂) (7.13)

with the partition function

ZT,µ = Tr
{
e−β(Ĥ−µN̂)

}
. (7.14)
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With the thermal density matrix Eq. 7.13, we obtain the propagator in the form

ĜC(t2, t1) =
∑
m,n

|ϕm⟩
1

iℏ
Tr
{
ρ̂T,µ TC âH,m(t2)â+H,n(t1)

}
⟨ϕn| (7.15)

This is now our final definition for the contour-ordered Green’s function. Let us now switch to a
representation of general orbitals |χα⟩, for which the creation and annihilation operators are ĉ†α and

ĉα (ĉ†α|O⟩
Eq. 3.77
= |πα⟩ with ⟨πα|χβ⟩ = δα,β).

CONTOUR-ORDERED GREEN’S FUNCTION FOR COMPLEX TIME ARGUMENTS

The contour-ordered Green’s function in complex time and orbital basis has the form

GCα,β(t, t
′) =

1

iℏ
Tr
{
ρ̂
(W )
T,µ TC ĉH,α(t)ĉ

+
H,β(t

′)
}

(7.16)

where ρ̂T,µ = 1
ZT,µ
e−β(Ĥ−µN̂) is the many-particle density matrix and Ĥ is the Hamiltonian with

interaction.a The operators

ĉH,α(t) = Û(0, t)ĉS,α Û(t, 0)
ĉ+H,α(t) = Û(0, t)ĉ

†
S,α Û(t, 0) (7.17)

are Heisenberg operators defined with the many-particle propagator Û(t, t ′) along the complex time
contour C
Below, I will tend to omit the superscript C of the Green’s function. The superscript will be
made explicit, when is required to separate the contour-ordered Green’s function from another type
of Green’s function. Editor: The reader should nevertheless be cautious, because the
convention may not be carried through everywhere.

aI have attached the subscript (W ) to the density operator to emphasize the difference to that for non-interacting
electrons, which will be used later.

7.5 Contour-ordered Green’s function of non-interacting parti-
cles

We will frequently use the Green’s function for non-interacting particles: Firstly, the non-interacting
system is the reference for a perturbation expansion in the interaction. Secondly, the non-interacting
system is used to explore the underlying physics for a particularly simple system.

Let me consider a non-interacting, time-dependent Hamiltonian ĥ(t). The time argument is
considered as complex-valued, but the Hamiltonian ĥ(t) depends only on the real-part of the time
argument. We can use Eq. K.1 and Eq. K.2 from p. 562, which are derived in the appendix.

ĉ+I,α(t)
Eq. K.1
=

∑
β

ĉ†S,β⟨χβ |Û(0, t)|πα⟩ (7.18)

ĉI,α(t)
Eq. K.2
=

∑
β

〈
πα
∣∣Û(t, 0)∣∣χβ〉ĉS,β (7.19)

The operators with subscript I are in the interaction picture, while the subscript S denotes the
common Schrödinger operators. For a non-interacting Hamiltonian considered here, the interaction
picture is identical to the Heisenberg picture. The propagator Û(t, t ′), Eqs. 4.31, 6.27, is the
propagator for the one-particle wave functions with the one-particle Hamiltonian ĥ(t).

The creation and annihilation operators refer to a one-particle basisset {|χα⟩}, which may be
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non-orthonormal. Each orbital has a projector function ⟨πα| =
∑

β S
−1
α,β⟨χβ |.

G
C,(0)
α,β (t, t

′)
Eq. 7.16
=

1

iℏ
Tr
{
ρ̂
(0)
T,µTC ĉH,α(t)ĉ

+
H,β(t

′)
}

Eqs. K.1, K.2
=

θC(t − t ′)
iℏ

Tr
{
ρ̂
(0)
T,µ

ĉH,α(t)︷ ︸︸ ︷∑
γ

〈
πα
∣∣Û(t, 0)∣∣χγ〉ĉS,γ

ĉ+H,β(t
′)︷ ︸︸ ︷∑

δ

ĉ†S,δ⟨χδ|Û(0, t
′)|πβ⟩

}

−
θC(t

′ − t)
iℏ

Tr
{
ρ̂
(0)
T,µ

ĉ+H,β(t
′)︷ ︸︸ ︷∑

δ

ĉ†S,δ⟨χδ|Û(0, t
′)|πβ⟩

ĉH,α(t)︷ ︸︸ ︷∑
γ

〈
πα
∣∣Û(t, 0)∣∣χγ〉ĉS,γ}

=
θC(t − t ′)

iℏ
∑
γ,δ

〈
πα
∣∣Û(t, 0)∣∣χγ〉Tr{ρ̂(0)T,µĉS,γ ĉ†S,δ}︸ ︷︷ ︸

δγ,δ−ρ(1)(0)γ,δ Eq. 3.56

⟨χδ|Û(0, t ′)|πβ⟩

−
θC(t

′ − t)
iℏ

∑
j,k

〈
πα
∣∣Û(t, 0)∣∣χγ〉Tr{ρ̂(0)T,µĉ†S,δ ĉS,γ}︸ ︷︷ ︸

ρ
(1)(0)
γ,δ Eq. 3.56

⟨χδ|Û(0, t ′)|πβ⟩

=
1

iℏ
〈
πα
∣∣Û(t, 0)(θC(t − t ′)(1̂− ρ̂(1),(0)T,µ

)
︸ ︷︷ ︸

empty

− θC(t ′ − t)ρ̂(1),(0)T,µ︸ ︷︷ ︸
filled

)
Û(0, t ′)|πβ⟩

(7.20)

The Green’s function is conveniently expressed as an operator in the one-particle Hilbert space as

ĜC,(0)(t, t ′) =
∑
α,β

|χα⟩GC,(0)α,β (t, t
′)⟨χβ |

=
1

iℏ
Û(t, 0)

(
θC(t − t ′)

(
1̂− ρ̂(1),(0)T,µ

)
︸ ︷︷ ︸

empty

− θC(t ′ − t)ρ̂(1),(0)T,µ︸ ︷︷ ︸
filled

)
Û(0, t ′) (7.21)

Unlike the von-Neumann density matrix ρ̂(0)T,µ, the one-particle-reduced density matrix ρ̂(1)(0)T,µ =∑
γ,δ |χγ⟩ργ,δ⟨χδ| is an operator in the one-particle Hilbert space. The subscripts T, µ for temperature

and chemical potential indicate that it is, like the von-Neumann density matrix ρ̂(0)T,µ, a thermal density
matrix in the grand canonical ensemble.

For the non-interacting system, the one-particle reduced density matrix can be expressed in terms
of the Fermi distribution fT,µ(ϵ)

def
= (1 + eβ(ϵ−µ))−1 as

ρ̂
(1),(0)
T,µ =

∑
n

|ϕn⟩fT,µ(ϵn)⟨ϕn| (7.22)

by the eigenvalues ϵn and eigenstates |ϕn⟩ of the one-particle Hamiltonian ĥ(0) at the time origin.
Let me consider now some common special cases

• If the creation and annihilation operators are formulated in terms of natural orbitals (the eigen-
states of the ρ̂(1)), i.e. ρ̂(1)|ϕn⟩ = |ϕn⟩fn, the Green’s function has the form

ĜC,(0)(t, t ′) =
1

iℏ
∑
n

Û(t, 0)|ϕn⟩︸ ︷︷ ︸
|ϕn(t)⟩

(
θC(t − t ′)(1− fn)− θC(t ′ − t)fn

)
⟨ϕn|Û(0, t ′)︸ ︷︷ ︸∑

j O
−1
n,j ⟨ϕj (t ′)|

(7.23)

Here I also introduced the time-dependent orbitals |ϕn(t)⟩ = Û(t, 0)|ϕn⟩.
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• For a time-independent Hamiltonian ĥ, the contour propagator for the one-particle states is
given by Eq. 6.30

Û(t, t ′) = e−
i
ℏ ĥ(t−t

′) (7.24)

so that

ĜC,(0)m,n (t, t
′) =

1

iℏ
∑
n

|ϕn⟩
(
θC(t − t ′)(1− fn)− θC(t ′ − t)fn

)
e−

i
ℏ ϵn(t−t

′)⟨ϕn| (7.25)

where ĥ|ϕn⟩ = |ϕn⟩ϵn and where the occupations are given by the Fermi-distribution fn =
(1 + e−β(ϵn−µ))−1.

• The bare contour Green’s function for a time-independent and translation-invariant system,
speak, of the homogeneous electron gas is the topic of the exercise 7.7.2 on p. 250. The
result is provided in Eq. 7.53 below.

Green’s function as function of energy

For a time-independent Hamiltonian, we can also evaluate the Fourier transform of the Green’s
function in terms of the time difference t − t ′. Note that we consider here only the branch of the
contour running along the real time axis in the positive direction.

ĜC,(0)m,n (ϵ)
def
= lim

η→0+

∫ ∞
−∞

dτ ĜC,(0)m,n (t + τ, t)e
i
ℏ ϵτ−η|τ |

=
1

iℏ
∑
n

|ϕn⟩
∫ ∞
−∞

dτ
(
θ(τ)(1− fn)− θC(−τ)fn

)
e−

1
iℏ

[
(ϵ−ϵn)τ+iℏη|τ |

]
⟨ϕn|

=
1

iℏ
∑
n

|ϕn⟩
( 1− fn
1
iℏ (ϵ− ϵn + iη)

+
fn

1
iℏ (ϵ− ϵn − iη)

)
⟨ϕn|

=
∑
n

|ϕn⟩
( 1− fn
ϵ− ϵn + iη

+
fn

ϵ− ϵn − iη

)
⟨ϕn| (7.26)

The infinitesimal parameter η has been introduced to make the Fourier transform of the Green’s
function defined. This is a kind of regularization. The limes η → 0+ has been made explicit
only in the first appearance, which is common practice. If η is sufficiently small, it does not affect
the emerging physical picture. The parameter mimics a physical effect that is not part of the
mathematical formulation, namely the environment: An environment introduces a finite coherence
time and, consequently, a finite lifetime broadening of the spectral features. Introducing the small
parameter η is analogous to my trick of considering a “finite Universe” to avoid continuous spectra
by limiting the wave functions to a very large, albeit finite region.

The poles of the Green’s function of the empty states lie in below the real energy axis, while the
poles of the filled states lie in above the real energy axis. Editor: Interesting are partially
filled states, for which there are two poles, one on each side of the real energy
axis.

Let me summarize this result in an orbital representation:
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NON-INTERACTING GREEN’S FUNCTIONS FOR COMPLEX TIME ARGUMENTS

The contour-ordered Green’s function for a non-interacting many-particle system which initially, at
time t = 0, is in thermal equilibrium with a heat bath and a particle reservoir is

ĜC,(0)(t, t ′) =
1

iℏ
Û(t, 0)

{
θC(t − t ′)

(
1̂− ρ̂(1),(0)T,µ

)︸ ︷︷ ︸
electrons

− θC(t ′ − t)ρ̂(1)T,µ︸ ︷︷ ︸
holes

}
Û(0, t ′)

=
1

iℏ
∑
n

Û(t, 0)
∣∣ϕn〉︸ ︷︷ ︸

|ϕn(t)⟩

{
θC(t − t ′)(1− fn)︸ ︷︷ ︸

electrons

− θC(t ′ − t)fn︸ ︷︷ ︸
holes

} 〈
ϕn
∣∣Û(0, t ′)︸ ︷︷ ︸∑

j O
−1
n,j (t

′)⟨ϕj (t ′)|

(7.27)

where ρ̂(1)T,µ is the one-particle-reduced density matrix, which is in thermal equilibrium with the initial
Hamiltonian ĥ(0). Û(t, t ′) is the propagator in the one-particle Hilbert space. The backward propa-
gator Û(0, t) = Û−1(t, 0) is the inverse of the forward propagator, but not necessarily its hermitian
conjugate.a

|ϕn⟩ are the natural orbitals and the fn = fT,µ(ϵn) are the occupations of the initial state. The energies
ϵn are the eigenvalues of the initial Hamiltonian ĥ(0). |ϕn(t)⟩ = Û(t, 0)|ϕn⟩ are the natural orbitals
propagated in time. Om,n(t) = ⟨ϕm(t)|ϕn(t)⟩ are the overlap matrix elements of the time-dependent
orbitals.
For a time-independent Hamiltonian with eigenstates |ϕn⟩ and eigenvalues ϵn, the Green’s function
is

ĜC,(0)(t, t ′)
Eq. 7.27
=

1

iℏ
∑
n

|ϕn⟩
{

θC(t − t ′)
1 + e−β(ϵn−µ)︸ ︷︷ ︸
empty, ∼ (1− fn)

−
θC(t

′ − t)
1 + e+β(ϵn−µ)︸ ︷︷ ︸

filled, ∼ fn

}
e−

i
ℏ ϵn(t−t

′)⟨ϕn|

(7.28)

The energy-dependent Green’s function for a time-independent non-interacting Hamiltonian is ob-
tained as Fourier transform of the retardation t − t ′.

ĜC,(0)(ϵ)
def
=

∫ ∞
−∞

dτ ĜC,(0)(t + τ, t)e
i
ℏ ϵτ−η|τ |

=
∑
n

|ϕn⟩
( 1− fn
ϵ− ϵn + iη

+
fn

ϵ− ϵn − iη

)
⟨ϕn| (7.29)

For the position of the poles, see also figure 9.1 on p. 267. In that figure ℏω translates into ϵ.
The matrix elements of the Green’s function for (potentially non-orthonormal) orbitals |χα⟩ with
projector functions ⟨πα|, respectively the Green’s for the real-space-and-spin basis are

G
C,(0)
α,β (t, t

′) = ⟨πα|ĜC,(0)(t, t ′)|πβ⟩

GC,(0)(x⃗ , t, x⃗ ′, t ′) = ⟨x⃗ |ĜC,(0)(t, t ′)|x⃗ ′⟩ (7.30)

aThe difference is because we allow for complex-valued time arguments, so that the propagator is no more strictly
unitary.

Û(t, 0) =
∑
m,n

∣∣ϕn(t)〉O−1m,n(0)︸ ︷︷ ︸
δm,n

〈
ϕn(0)

∣∣
Û(0, t) = Û−1(t, 0) =

∑
m,n

∣∣ϕn(0)〉O−1m,n(t)〈ϕn(t)∣∣ while Û†(t, 0) =
∑
n

∣∣ϕn(0)〉〈ϕn(t)∣∣

If the reader gets confused by the complex time arguments, he may simply follow the arguments
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in the first run having a time contour on the real axis in mind. In a second reading, she may verify
that the arguments also hold for complex time arguments.

7.6 Generality of the problem

7.6.1 Initial state:

The Green’s functions, and thus all quantities derived from it, are thermal expectation values in a
grand canonical ensemble. Many of the relations derived in the following apply to thermal (equilib-
rium) ensembles rather than arbitrary ensembles specified by many-particle states and their probabil-
ities. I was wondering, whether this is a severe restriction of the theory, and whether the theory can
be generalized to arbitrary non-equilibrium ensembles. Here, I show, that the generalization should
be possible, because for any ensemble, there is a specific Hamiltonian, for which this ensemble is
a thermal ensemble. Unfortunately, this Hamiltonian is much more complicated that the physical
Hamiltonians we are used to.

Here, I will show that the form of a grand canonical ensemble can be used to describe an arbitrary
ensemble without any reference to thermal equilibrium.[64]

Let us start with an arbitrary ensemble, which is characterized by its many-particle density matrix
ρ̂. Our goal is to construct a many-particle Hamiltonian Ĥini which produces this, specified, state
operator ρ̂ in thermal equilibrium.

ρ̂
!
=
1

Z iniT,µ
e−β(Ĥ

ini−µN̂) with Z iniT,µ = Tr
[
e−β(Ĥ

ini−µN̂)
]

(7.31)

Firstly, let us first determine the eigenvalues and eigenstates of the density operator.

ρ̂|Φq⟩ = |Φq⟩Pq (7.32)

Because the density matrix ρ̂ is hermitian, the eigenstates |Φq⟩ are orthonormal and the eigenvalues
Pq are real. The condition Tr[ρ̂] = 1 reflects in

∑
q Pq = 1.

By taking the logarithm of Eq. 7.31

−kBT ln(ρ̂) = Ĥini − µN̂ + kBT ln(ZT,µ)
⇔ Ĥini = −kBT ln(ρ̂) + µN̂ −kBT ln(ZT,µ)︸ ︷︷ ︸

ΩT,µ

= µN̂ +
∑
q

|Φq⟩
(
−kBT ln(Pq)

)
⟨Φq |+ΩT,µ1̂ (7.33)

The last term, the grand potential, is a global energy shift, which does not have physical consequences:
When the probabilities are calculated from the Boltzmann factors, they are normalized with the help
of the partition function.

The density matrix, specified initially, can thus be written in the form of a grand canonical ensemble
for a Hamiltonian

Ĥini ,
′︸ ︷︷ ︸

Ĥini−ΩT,µ1̂

= µN̂ +
∑
q

|Φq⟩
(
−kBT ln(Pq)

)
⟨Φq | (7.34)

The Hamiltonian Hini used here is not necessarily related to a physical Hamiltonian of the system.
It merely describes the initial ensemble.
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7.7 Home study and practice

7.7.1 Non-interacting contour Green’s function for the non-interacting hy-
drogen molecule

Calculate the contour-ordered Green’s function for the non-interacting hydrogen molecule.

We use the expression Eq. 7.27 for the Green’s function of a non-interacting electron system.

G
C,(0)
α,β (t, t

′)
Eq. 7.27
=

1

iℏ
∑
n

⟨πα|ψn⟩
{
θC(t − t ′)(1− fn)︸ ︷︷ ︸

electrons

− θC(t ′ − t)fn︸ ︷︷ ︸
holes

}
e−

i
ℏ ϵn(t−t

′)⟨ψn|πβ⟩(7.35)

First, we determine the eigenvalues and eigenstates of the one-particle Hamiltonian. The non-
interacting Hamiltonian in second quantization is

ĥ =
∑

j∈{1,2}

∑
σ∈{↑,↓}

ϵ̄ĉ†j,σ ĉj,σ − t̄
∑

σ∈{↑,↓}

(
ĉ†1,σ ĉ2,σ + ĉ

†
2,σ ĉ1,σ

)
(7.36)

This Hamilton operator is translated in one-particle quantum mechanics Editor: Is it clear
how this is done?

ĥ =
∑

j∈{1,2}

∑
σ∈{↑,↓}

|πj,σ⟩ϵ̄⟨πj,σ| −
∑

σ∈{↑,↓}

(
|π1,σ⟩t̄⟨π2,σ|+ |π2,σ⟩t̄⟨π1,σ|

)
(7.37)

The eigenstates are (see section 1.5.1 on p. 26)

|ϕ±,σ⟩ =
1√
2

(
|χ1,σ⟩ ∓ |χ2,σ⟩

)
(7.38)

with energies

ϵ±,σ = ϵ̄± t̄ (7.39)

We had made the assumption that the orbitals |χα⟩ are orthonormal.
In insert the eigenstates and eigenvalues. I use ⟨πα|χβ⟩ = δα,β.

G
C,(0)
j,σ;j ′,σ′(t, t

′) =
1

iℏ
∑

n∈{+,−}

∑
σ′′∈{↑,↓}

⟨πj,σ|ϕn,σ′′⟩︸ ︷︷ ︸
=δσ,σ′′

1√
2

(
δj,1∓δj,2

)
for n = ±

× ⟨ϕn,σ′′ |πj ′,σ′⟩︸ ︷︷ ︸
=δσ′′ ,σ′

1√
2

(
δj ′ ,1∓δj ′ ,2

)
for n = ±

×
{
θC(t − t ′)

(
1−

1

1 + eβ(ϵn,σ′′−µ)

)
︸ ︷︷ ︸

1

1+e
−β(ϵ

n,σ′′ −µ)

−θC(t ′ − t)
1

1 + eβ(ϵn,σ′′−µ)

}
e−

i
ℏ ϵn,σ(t−t

′)

=
1

iℏ
δσ,σ′

{
1

2

(
δj,1 + δj,2

)(
δj ′,1 + δj ′,2

)[ θC(t − t ′)
1 + e−β(ϵ̄−t̄−µ)

−
θC(t

′ − t)
1 + e+β(ϵ̄−t̄−µ)

]
e−

i
ℏ (ϵ̄−t̄)(t−t

′)

+
1

2

(
δj,1 − δj,2

)(
δj ′,1 − δj ′,2

)[ θC(t − t ′)
1 + e−β(ϵ̄+t̄−µ)

−
θC(t

′ − t)
1 + e+β(ϵ̄+t̄−µ)

]
e−

i
ℏ (ϵ̄+t̄)(t−t

′)

}
=
1

iℏ
δσ,σ′e

− i
ℏ ϵ̄(t−t

′)

×
{
1

2

(
δj,1 + δj,2

)(
δj ′,1 + δj ′,2

)[θC(t − t ′)e+ i
ℏ t̄(t−t

′)

1 + e−β(ϵ̄−t̄−µ)
−
θC(t

′ − t)e+ i
ℏ t̄(t−t

′)

1 + e+β(ϵ̄−t̄−µ)

]
+
1

2

(
δj,1 − δj,2

)(
δj ′,1 − δj ′,2

)[θC(t − t ′)e− i
ℏ t̄(t−t

′)

1 + e−β(ϵ̄+t̄−µ)
−
θC(t

′ − t)e− i
ℏ t̄(t−t

′)

1 + e+β(ϵ̄+t̄−µ)

]}
(7.40)
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(
G
C,(0)
1,σ;1,σ′ G

C,(0)
1,σ;2,σ′

G
C,(0)
2,σ;1,σ′ G

C,(0)
2,σ;2,σ′

)
=
1

2iℏ
δσ,σ′e

− i
ℏ ϵ̄(t−t

′)

×

{(
+1 +1

+1 +1

)[
θC(t − t ′)e+

i
ℏ t̄(t−t

′)

1 + e−β(ϵ̄−t̄−µ)
−
θC(t

′ − t)e+ i
ℏ t̄(t−t

′)

1 + e+β(ϵ̄−t̄−µ)

]

+

(
+1 −1
−1 +1

)[
θC(t − t ′)e−

i
ℏ t̄(t−t

′)

1 + e−β(ϵ̄+t̄−µ)
−
θC(t

′ − t)e− i
ℏ t̄(t−t

′)

1 + e+β(ϵ̄+t̄−µ)

]}
(7.41)

This is the desired result.
Let me consider some limiting cases

• In the high-temperature limit β → 0 the Fermi function contributes a factor 1/2.

(
G
C,(0)
1,σ;1,σ′ G

C,(0)
1,σ;2,σ′

G
C,(0)
2,σ;1,σ′ G

C,(0)
2,σ;2,σ′

)
=
1

iℏ
δσ,σ′e

− i
ℏ ϵ̄(t−t

′)
(
θC(t − t ′)− θC(t ′ − t)

)
︸ ︷︷ ︸

sgn(t−t ′)

×

(
cos
(
1
ℏ t̄(t − t

′)
)
i sin

(
1
ℏ t̄(t − t

′)
)

i sin
(
1
ℏ t̄(t − t

′)
)
cos
(
1
ℏ t̄(t − t

′)
) ) (7.42)

One sees that the Green’s function is not hermitian.

• For µ = ϵ̄, we obtain the system with two particles. In the low-temperature limit, β →∞ only
the bonding states contribute for t < t ′ and the antibonding states contribute for t > t ′.

(
G
C,(0)
1,σ;1,σ′ G

C,(0)
1,σ;2,σ′

G
C,(0)
2,σ;1,σ′ G

C,(0)
2,σ;2,σ′

)
=
1

2iℏ
δσ,σ′e

− i
ℏ ϵ̄(t−t

′)

×

{(
+1 +1

+1 +1

)[
−θC(t ′ − t)e+

i
ℏ t̄(t−t

′)

]
+

(
+1 −1
−1 +1

)[
θC(t − t ′)e−

i
ℏ t̄(t−t

′)

]}
(7.43)

7.7.2 Bare contour Green’s function of the homogeneous electron gas

Introduction

The homogeneous electron gas is a common model system. Therefore, the it is corresponding Green’s
function will be handy in many occasions.

The current exercise is special because (1) it determines the contour Green’s function for arbitrary
complex-valued time arguments, (2) it allows for arbitrary dispersion relations ϵk⃗ ,σ, (3) it works with
a one particle basisset with periodic boundary conditions in a finite unit cell.

The use of an arbitrary dispersion relation provides access also to band-structures which experience
a self-energy shift from the interaction, such as the Hartree-Fock approximation or the screened
Hartree-Fock approximation. Furthermore it is possible to introduce band gaps into the band structure
and study insulators. This aspect may be of interest to investigate the implications of Fermi-liquid
theory on insulators.
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Problem

Consider a non-interacting system, which is translation invariant in space an time, with a Hamiltonian

ĥ =
∑
k⃗

∑
σ∈{↑,↓}

|k⃗ , σ⟩ϵk⃗ ,σ⟨k⃗ , σ| (7.44)

The band structure ϵk⃗ ,σ is not determined any further.

1 determine the bare Green’s function for the above-mentioned system. Use Eq. 7.27.

Discussion

1 determine the bare Green’s function for the above-mentioned system. Use Eq. 7.27.

We start out from the expression Eq. 7.27 from p. 247 for the non-interacting Greens’ function.

ĜC,(0)(t, t ′) =
1

iℏ
Û(t, 0)

{
θC(t − t ′)

(
1̂− ρ̂(1),(0)T,µ

)︸ ︷︷ ︸
electrons

− θC(t ′ − t)ρ̂(1)T,µ︸ ︷︷ ︸
holes

}
Û(0, t ′)

=
1

iℏ
∑
n

Û(t, 0)
∣∣ϕn〉︸ ︷︷ ︸

|ϕn(t)⟩

{
θC(t − t ′)(1− fn)︸ ︷︷ ︸

electrons

− θC(t ′ − t)fn︸ ︷︷ ︸
holes

} 〈
ϕn
∣∣Û(0, t ′)︸ ︷︷ ︸∑

j O
−1
n,j (t

′)⟨ϕj (t ′)|

(7.45)

Let me use a plane wave basisset as the orbital set.

⟨r⃗ , σ′|k⃗ , σ⟩ = δσ,σ′
1√
L3
ei k⃗ r⃗ (7.46)

I use periodic boundary conditions in a cubic box of side-length L, which ultimately shall approach
infinity.

kjL = 2πj ⇒ kj =
2π

L
j

(∆k)3︸ ︷︷ ︸
⇒d3k

=
(2π)3

L3
(7.47)

The orbitals are normalized within the corresponding box:∫
L3
d3r

∑
σ′′

∣∣⟨k⃗ , σ|r⃗ , σ′′⟩∣∣2 = 1 (7.48)

The wave functions |ϕk⃗ ,σ(t)⟩, which satisfy the time-dependent Schrödinger equation(
iℏ∂t −

∑
k⃗ ′,σ′

|k⃗ ′, σ′⟩ϵk⃗ ′,σ′⟨k⃗ ′, σ
′|
)
|ϕk⃗ ,σ(t)⟩ = 0 (7.49)

along the time contour are

|ϕk⃗ ,σ(t)⟩ = |k⃗ , σ⟩e
− i
ℏ ϵk⃗ ,σt (7.50)

The wave functions are orthonormal on the real time axis, but not away from it in the complex
time plane. The time-dependent overlap matrix is.

Ok⃗ ,σ,k⃗ ′,σ′(t) = ⟨ϕk⃗ ,σ(t)|ϕk⃗ ′,σ′(t)⟩ = δk⃗ ,k⃗ ′δσ,σ′e
+ i
ℏ ϵ
(
t∗−t
)
= δk⃗ ,k⃗ ′δσ,σ′e

+ 2ℏ ϵk⃗ ,σ Im[t] (7.51)
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The Green’s function in the complex-time plane is

G
C,(0)
k⃗ ,σ,k⃗ ′,σ′

(t, t ′) = ⟨k⃗ , σ|ĜC,(0)(t, t ′)|k⃗ ′, σ′⟩

=
1

iℏ
∑
k⃗ ′′,σ′′

⟨k⃗ , σ|ϕk⃗ ′′,σ′′(t)⟩︸ ︷︷ ︸
δ
k⃗ ,k⃗ ′′δσ,σ′′e

− i
ℏ ϵk⃗,σ t

{
θC(t − t ′)

1 + e−β(ϵk⃗ ′′ ,σ′′−µ)
−

θC(t
′ − t)

1 + e+β(ϵk⃗ ′′ ,σ′′−µ)

}

× e−
2
ℏ ϵk⃗ ′′ ,σ′′ Im[t

′]︸ ︷︷ ︸
O−1(t ′)⇝

⟨ϕk⃗ ′′,σ′′(t
′)|k⃗ ′, σ′⟩︸ ︷︷ ︸

δ
k⃗ ′ ,k⃗ ′′δσ′ ,σ′′e

+ i
ℏ ϵk⃗ ′ ,σ′

(t′)∗

=
1

iℏ
δk⃗ ,k⃗ ′δσ,σ′e

− i
ℏ ϵk⃗ ,σt

{
θC(t − t ′)
1 + e−β(ϵk⃗ ,σ−µ)

−
θC(t

′ − t)
1 + e+β(ϵk⃗ ,σ−µ)

}
e+

i
ℏ ϵk⃗ ,σ(t

′−(t ′)∗)︸ ︷︷ ︸
O−1(t ′)⇝

e
i
ℏ ϵk⃗ ,σ(t

′)∗

=
1

iℏ
δk⃗ ,k⃗ ′δσ,σ′

{
θC(t − t ′)
1 + e−β(ϵk⃗ ,σ−µ)

−
θC(t

′ − t)
1 + e+β(ϵk⃗ ,σ−µ)

}
e−

i
ℏ ϵk⃗ ,σ(t−t

′)

=
1

iℏ
δk⃗ ,k⃗ ′δσ,σ′

{
θC(t − t ′)

(
1− fT,µ(ϵk⃗ ,σ)

)
− θC(t ′ − t)fT,µ(ϵk⃗ ,σ)

}
e−

1
ℏ ϵk⃗ ,σ(t−t

′) (7.52)

where fT,µ(ϵ) is the Fermi function.

BARE CONTOUR GREEN’S FUNCTION OF THE HOMOGENEOUS ELECTRON GAS

The bare contour Green’s function of a homogeneous electron gas with a dispersion relation ϵk⃗ ,σ is

ĜC,(0)(t, t ′)
Eq. 7.52
=

1

iℏ
∑
k⃗

∑
σ∈{↑,↓}

|k⃗ , σ⟩
{
θC(t − t ′)

(
1− fT,µ(ϵk⃗ ,σ)

)
− θC(t ′ − t)fT,µ(ϵk⃗ ,σ)

}
×e−

i
ℏ ϵk⃗ ,σ(t−t

′)⟨k⃗ , σ| (7.53)

where fT,µ(ϵ) =
(
1+ eβ(ϵ−µ)

)−1
is the Fermi function. The one-particle basis states are plane waves

⟨r⃗ , σ|k⃗ , σ′⟩ = δσ,σ′ 1√L3 e
i k⃗ r⃗ with periodic boundary conditions in simple cubic unit cell with side length

L, which also determines the normalization volume. That is k⃗i ,j,k = 2π
L (i , j, k) with integer i , j, k .



Chapter 8

Exact properties of the many-particle
Green’s function

The typical approach towards many-body Green’s functions is many-body perturbation theory (MBPT),
which expands the Green’s function about that of a (quasi) non-interacting case. Many-body per-
turbation theory is widely known through its elegant formulation in terms of Feynman diagrams.
However, MBPT is also plagued by the often limited convergence radius of the perturbation expan-
sion. Therefore, I find it important to know the few exact statements about Green’s functions of
many-particle systems.

In this chapter, I will introduce the equation of motion for the Green’s function and the self
energy as the second most important quantity. The self energy acts like a potential acting on the
electrons, which however is non-local in time. It is retarded like an echo, as the electron influences
its surrounding electron gas and, at a later, this perturbation of the electron gas acts back on the
dynamics of the traveling electron. Here the self energy will be expressed in terms of a well-defined
expectation value of the many-electron wave functions.

The Green’s function contains all information on the dynamics of single electrons in contact with
an electron gas. Thus, it is no surprise that the Green’s function provides the one-particle-reduced
density matrix. As the only two-particle expectation value, the interaction energy can be extracted
from the Green’s function. Thus, we obtain access to the total energy of the system.

8.1 Equation of motion for the many-particle Green’s function

The Green’s function of a many-particle system is not a Green’s function in the mathematical sense.
In mathematics, a Green’s function is the inverse of a differential operator. This applies only to
the Green function of one-particle systems. In solid state physics, only the physical meaning of the
Green’s function has been kept, namely as probability amplitude between two events.

When we try to set up a differential equation analogous to the one-particle case, we are lead to
higher Green’s functions involving more and more particles. Nevertheless, we can define a retarded
one-particle potential that replaces the action of the many-particle system. This potential is the self
energy. If the self-energy is included, the Green’s function obeys a differential equation as in the
one-particle case.

In the following, I derive a differential equation for the interacting many-body Green’s function.
The first step is to find a differential equation for a Heisenberg operator ĉH,ζ(t), because the time

derivative will act on this operator within the expression for the Green’s function

iℏ∂t ĉH,ζ(t) = Û(0, t)
[
ĉS,ζ, Ĥ(t)

]
−
Û(t, 0) (8.1)

253
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In the remainder of the derivation, I will drop the time argument of the Hamiltonian, while I
consider the Hamilton matrix elements to depend on the current time.

In order to continue, we need the commutator of the annihilation operator in the Schrödinger
picture with the Hamiltonian. For the sake of simplicity, we drop the explicit subscript S denoting
the Schrodinger picture. It is implicitly assumed.

Ĥ(t) =
∑
α,β

hα,β(t)ĉ
†
αĉβ +

1

2

∑
α,β,γ,δ

Wα,β,δ,γ(t)ĉ
†
αĉ
†
β ĉγ ĉδ (8.2)

We begin with the one-particle operator[
ĉζ,
∑
α,β

hα,β ĉ
†
αĉβ

]
−
=
∑
α,β

hα,β

(
ĉζ ĉ

†
α︸︷︷︸

δζ,α−ĉ†αĉζ

ĉβ − ĉ†α ĉβ ĉζ︸︷︷︸
−ĉζ ĉβ

)
=
∑
α,β

hα,βδζ,αĉβ =
∑
β

hζ,β ĉβ (8.3)

and continue with the interaction[
ĉζ,
1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β ĉγ ĉδ

]
−
=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ

(
ĉζ ĉ

†
αĉ
†
β ĉγ ĉδ − ĉ

†
αĉ
†
β ĉγ ĉδ ĉζ︸ ︷︷ ︸
ĉζ ĉγ ĉδ

)

=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ

(
ĉζ ĉ

†
α︸︷︷︸

δζ,α−ĉ†αĉζ

ĉ†β − ĉ
†
α ĉ†β ĉζ︸︷︷︸
δβ,ζ−ĉζ ĉ†β

)
ĉγ ĉδ

=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ

(
δζ,αĉ

†
β − ĉ

†
αδβ,ζ

)
ĉγ ĉδ

=
1

2

∑
β,γ,δ

Wζ,β,δ,γ ĉ
†
β ĉγ ĉδ −

1

2

∑
α,γ,δ

Wα,ζ,δ,γ︸ ︷︷ ︸
Wζ,α,γ,δ

ĉ†α ĉγ ĉδ︸︷︷︸
−ĉδ ĉγ

=
1

2

∑
β,γ,δ

Wζ,β,δ,γ ĉ
†
β ĉγ ĉδ +

1

2

∑
β,γ,δ

Wζ,β,γ,δ ĉ
†
β ĉδ ĉγ

=
1

2

∑
β,γ,δ

Wζ,β,δ,γ ĉ
†
β ĉγ ĉδ +

γ↔δ︷ ︸︸ ︷
1

2

∑
β,γ,δ

Wζ,β,δ,γ ĉ
†
β ĉγ ĉδ

=
∑
β,γ,δ

Wζ,β,δ,γ ĉ
†
β ĉγ ĉδ (8.4)

We exploited that a simultaneous interchange of the first two and, at the same time, the last two
arguments leaves the value of the interaction matrix elements unchanged, i.e. Wα,β,γ,δ = Wβ,α,δ,γ .
This symmetry follows from the form of the interaction matrix elements defined in Eq. 3.51 on
p. 135. Editor: This argument refers to the Coulomb interaction. What about the
most general definition as W (t) = Ĥ(t)− ĥ?

With the results Eqs. 8.3,8.4, we can return to Eq. 8.1 and evaluate the time derivative of the
annihilator in the Heisenberg picture as

iℏ∂t ĉH,ζ(t) = Û(0, t)
[
ĉS,ζ, Ĥ

]
−
Û(t, 0)

Eqs. 8.3,8.4
= Û(0, t)

(∑
β

hζ,β ĉS,β +
∑
γ,δ,ρ

Wζ,β,δ,γ ĉ
†
S,β ĉS,γ ĉS,δ

)
Û(t, 0)

=
∑
β

hζ,β ĉH,β(t) +
∑
β,γ,δ

Wζ,β,δ,γ ĉ
+
H,β(t)ĉH,γ(t)ĉH,δ(t) (8.5)

Now, we can evaluate the time derivative of the Green’s function Eq. 7.16. We use the short-hand
notation

〈
. . .
〉
T,µ

def
= Tr

{
ρ̂
(W )
T,µ . . .

}
. Note below that the time derivative acts only on t, but not on
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the second time argument t ′.

iℏ∂tGCα,β(t, t ′)

Eq. 7.16
= iℏ∂t

[
θ(t − t ′)

iℏ

〈
ĉH,α(t)ĉ

+
H,β(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)ĉH,α(t)
〉
T,µ

]
= δ(t − t ′)

〈
ĉH,α(t)ĉ

+
H,β(t

′)
〉
T,µ
+ δ(t ′ − t)

〈
ĉ+H,β(t

′)ĉH,α(t)
〉
T,µ

+
θ(t − t ′)

iℏ

〈(
iℏ∂t ĉH,α(t)

)
ĉ+H,β(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)
(
iℏ∂t ĉH,α(t)

)〉
T,µ

Eq. 8.5
= δ(t − t ′)

〈[
ĉH,α(t), ĉ

+
H,β(t

′)
]
+

〉
T,µ

+
θ(t − t ′)

iℏ

〈(∑
b

hα,bĉH,b(t) +
∑
b,c,d

Wα,b,d,c ĉ
+
H,b(t)ĉH,c(t)ĉH,d(t)

)
ĉ+H,β(t

′)
〉
T,µ

−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)

(∑
b

hα,bĉH,b(t) +
∑
b,c,d

Wα,b,d,c ĉ
+
H,b(t)ĉH,c(t)ĉH,d(t)

)〉
T,µ

= δ(t − t ′)
〈[
ĉH,α(t), ĉ

+
H,β(t

′)
]
+

〉
T,µ

+
∑
b

hα,b

(
θ(t − t ′)

iℏ

〈
ĉH,b(t)ĉ

+
H,β(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)ĉH,b(t)
〉
T,µ

)
+

∑
b,c,d

Wα,b,d,c

(
θ(t − t ′)

iℏ

〈
ĉ+H,b(t)ĉH,c(t)ĉH,d(t)ĉ

+
H,β(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)ĉ+H,b(t)ĉH,c(t)ĉH,d(t)
〉
T,µ

)
Eq. 8.7
= δ(t − t ′)δα,β +

∑
b

hα,bGb,β(t, t
′)

+
∑
b,c,d

Wα,b,d,c

(
θ(t − t ′)

iℏ

〈 A︷ ︸︸ ︷
ĉ+H,b(t)ĉH,c(t)ĉH,d(t) ĉ

+
H,β(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)

A︷ ︸︸ ︷
ĉ+H,b(t)ĉH,c(t)ĉH,d(t)

〉
T,µ

)
︸ ︷︷ ︸

1
iℏ

〈
TC ĉ+H,b(t)ĉH,c (t)ĉH,d (t)ĉ

+
H,β(t

′)

〉
T,µ

(8.6)

The anticommutator relations for the Schrödinger operators do not hold for Heisenberg operators.
Nevertheless, we have made use of the fact that the anticommutator is only required for equal times

[
ĉ+H,β(t), ĉH,α(t)

]
+
= Û(0, t)

[
ĉ†S,β, ĉS,α

]
+
Û(t, 0) = Û(0, t)δα,β Û(t, 0) = δα,β (8.7)

Eq. 8.6 can be brought into a form similar to the defining equation Eq. 4.13 of the Green’s
function for non-interacting systems.
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EQUATION OF MOTION FOR THE INTERACTING GREEN’S FUNCTION

∑
γ

(
δα,γ iℏ∂t − hα,γ(t)

)
GCγ,β(t, t

′) =

= δC(t − t ′)δα,β +
∑
γ

∑
b,c

Wα,b,γ,c(t)

G
(2)
c,γ,b,β(t,t,t

+,t ′) Eq. 8.14︷ ︸︸ ︷
1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉ

+
H,b(t)ĉH,c(t)︸ ︷︷ ︸
∼density operator

ĉH,γ(t)ĉ
+
H,β(t

′)

}
(8.8)

= δC(t − t ′)δα,β +
∑
γ

1

iℏ
Tr

{
ρ̂
(W )
T,µ TC

(∑
b,c

Wα,b,γ,c(t) ĉ
+
H,b(t)ĉH,c(t)︸ ︷︷ ︸
∼density operator

)
︸ ︷︷ ︸

V̂ee(t)

ĉH,γ(t)ĉ
+
H,β(t

′)

}
(8.9)

V̂ee is the operator describing the Coulomb potential from the (other) electrons . The two versions
on the right-hand side are identical, but emphasize certain groupings of the terms.a

aEq. 8.8 is analogous to Eq. 10.11 in the book of Abrikosov, Gorkov, Dzyaloshinski[65].

Physical meaning of the interaction term: To get closer to the physical meaning interaction term
of Eq. 8.8, let me do a rather crude approximation, which is equivalent to the Hartree approximation.12

1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉ

+
H,b(t)ĉH,c(t)ĉH,γ(t)ĉ

+
H,β(t

′)

}
≈ Tr

{
ρ̂
(W )
T,µ TC ĉ

+
H,b(t)ĉH,c(t)

}
︸ ︷︷ ︸

ρ
(1)
c,b(t) from Eq. 3.56

1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉH,γ(t)ĉ

+
H,β(t

′)

}
︸ ︷︷ ︸

GCγ,β(t,t
′) from Eq. 7.16

= ρ
(1)
c,b(t)G

C
γ,β(t, t

′) (8.10)

In this approximation, the interaction simply replaces the interaction term in Eq. 8.8 by the Hartree
potential

∆ĥα,β(t) =
∑
b,c

Wα,b,β,cρ
(1)
c,b(t) (8.11)

which is added to ĥ.

Interaction term and two-particle Green’s function: Eq. 8.8 allows a recipe to determine the
Green’s function, however, only if the interaction term on the right-hand side is known. The evaluation
of this term is even more complicated than the direct calculation of the Green’s function. It requires
the knowledge of the two-particle Green’s function

G(2)(x⃗1, t1, x⃗2, t2; x⃗ ′1, t
′
1, x⃗

′
2, t
′
2)

def
=
1

iℏ
Tr

{
ρ̂
(W )
T,µ TCψ̂H(x⃗1, t1)ψ̂H(x⃗2, t2)ψ̂

+
H(x⃗

′
1, t
′
1)ψ̂

+
H(x⃗

′
2, t
′
2)

}
(8.12)

respectively, in an orbital representation,

G
(2)
α,β;γ,δ(t1, , t2; t

′
1, t
′
2)

def
=
1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉH,α(t1)ĉH,β(t2)ĉ

+
H,γ(t

′
1)ĉ

+
H,δ(t

′
2)

}
(8.13)

1Note that Tr[ρ̂T,µ · · · ] = ⟨. . .⟩T,µ is the thermal expectation value.
2we replace the product of the two operators marked in blue by their thermal expectation value
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The interaction term in the equation of motion, Eq. 8.8, can be expressed in terms of the two-
particle Green’s function as∑

γ

∑
b,c

Wα,b,γ,c
1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉ

+
H,b(t

+)ĉH,c(t)︸ ︷︷ ︸
∼density operator

ĉH,γ(t)ĉ
+
H,β(t

′)

}

=
∑
γ

∑
b,c

Wα,b,γ,cG
(2)
c,γ,b,β(t, t, t

+, t ′) (8.14)

Thus, the equation of motion for the one-particle Green’s function GC has an additional inhomo-
geneity, which depends on the two-particle Green’s function.

One could proceed to determine an equation of motion for the two-particle Green’s function,
which however would introduce a term containing a three particle Green’s function. In order to
determine the latter we obtain a differential equation, where even higher-order Green’s functions
enter. We end up with an infinite sequence of increasingly more complicated differential equations,
the so-called Martin-Schwinger hierarchy[66](see also [67]). One can hope that the terms will
become smaller with each step in the hierarchy, so that it can be truncated.

8.2 Self energy

Eq. 8.8 shows that the Green’s function of an interacting systems does not obey the same differential
equation as the Green’s function of non-interacting electrons.

DEFINITION OF THE SELF ENERGY

In order to recover a form more closely related to the defining equation of a Green’s function we
define a self energy Σα,β(t, t ′) via

∑
γ

∫
C
dt ′′ Σα,γ(t, t

′′)Gγ,β(t
′′, t ′) =

∑
b,c,d

Wα,b,d,c
1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉ

+
H,b(t)ĉH,c(t)ĉH,d(t)ĉ

+
H,β(t

′)

}
(8.15)

so that the equation of motion Eq. 8.8 assumes the form∑
γ

∫
dt ′′
[
δ(t − t ′′)

(
δα,γ iℏ∂t ′′ − hα,γ

)
−Σα,γ(t, t ′′)

]
Gγ,β(t

′′, t ′) = δ(t − t ′)δα,β (8.16)

The self energy captures the Coulomb potential of the other electrons in the form of a retarded
potential. Eq. 8.16 is analogous to Eq. 5.50 on p. 190 for a Green’s function, which describes a
one-particle system that experiences a retarded potential due to coupling to a bath.
Editor: Shall I mention that the self energy is also non-local in space?

Eqs. 8.15 and 8.16 have exactly the same information content as Eq. 8.8. They merely introduce
the self energy as a quantity with an accessible physical interpretation. Furthermore, they introduce
an equation of motion for the many-particle Green’s function that is analogous to that in one-particle
quantum mechanics.

Relation to the Hartree-Fock method: The self energy of the Hartree-Fock approximation is the
sum of Hartree and exchange potential

Σα,β(t, t
′) = ⟨χα|V̂H + V̂X |χβ⟩δ(t, t ′) (8.17)

With this choice, the equation of motion turns into the Schrödinger equation with the Fock operator
ĥ + V̂H + V̂X (times δ(t − t ′)) in place of ĥ + Σ̂.
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Dyson’s equation: Editor: This is not suitable for the lecture. Introduce the concept
of the inverse in the {α, t} space properly and make the section optional. Can Dyson’s
equation also be obtained conventionally?

Editor: Generalized multiplication and inverse

⟨(A ◦B⟩)(α,t),(β,t ′) =
∑
γ

∫
dt ′′A(α,t),(γ,t ′′)B(γ,t ′′),(β,t ′)

⟨(A◦,−1 ◦ A⟩)(α,t),(β,t ′) = δα,βδ(t − t ′) (8.18)

Eq. 8.16 is a Dyson equation, which has the form (G−10 − Σ)G = 1. In order to make the
connection evident, let me introduce the non-interacting Green’s function G(0)γ,β(t, t

′), which obeys∑
γ

(
δα,γ iℏ∂t − hα,γ

)
G
(0)
γ,β(t, t

′) = δα,βδ(t − t ′) (8.19)

We define a new inverse of the non-interacting Green’s function with respect to matrix elements
and time arguments as∑

γ

∫
dt ′′ G(0),◦,−1α,γ (t, t ′′)G

(0)
γ,β(t

′′, t ′) = δ(t − t ′)δα,β (8.20)

Note, that this is not the simple matrix inversion. Rather it is a generalized matrix inversion that
considers the time arguments on the same level as the orbital indices.

Comparison of Eq. 8.20 with Eq. 8.19, provides us with the identification

G
(0),◦,−1
α,β (t, t ′) = δ(t − t ′)

(
δα,γ iℏ∂t ′ − hα,γ

)
(8.21)

With this definition, we can use Eq. 8.21 to rewrite Eq. 8.16 in the form of a Dyson’s equation∑
γ

∫
dt ′′

[
G(0)α,γ , ◦,−1(t, t ′′)−Σα,γ(t, t ′′)

]
Gγ,β(t

′′, t ′) = δ(t − t ′)δα,β (8.22)

or after multiplication of a non-interacting Green’s function from the left and after moving the
self-energy term to the right-hand side, we obtain the better known form of the Dyson’s equation.

DYSON’S EQUATION

Gα,β(t, t
′) = G

(0)
α,β(t, t

′) +
∑
γ,δ

∫
dt ′′

∫
dt ′′′ G(0)α,γ(t, t

′′)Σγ,δ(t
′′, t ′′′)Gδ,β(t

′′′, t ′) . (8.23)

It can be represented by the following diagram

Σ
.

where a double arrow represents the full Green’s function G, a single arrow represents a non-interacting
(bare) Green’s function G(0) and the circle represents the self energy ΣΣΣ.
Dyson’s equation is the equation of motion Eq. 8.8 for the Green’s function expressed in terms of
the self energy Eq. 8.15.

Editor: Check the following and make it more precise! It is a bit puzzling that the
inverse of a matrix function is a differential operator, but this is a consequence to using the gen-
eralized inversion which includes the time argument. Most of the time, one will work in an energy
representation with respect to the relative argument t−t ′ instead of a time representation. The time
convolution will turn into a simple product in the energy representation. As a result this generalized
inversion will turn into a simple matrix inversion.
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8.3 Expectation value of one-particle operators

Consider a one-particle operator, which can always be expressed as

ÂS(t) =
∑
α,β

Aα,β(t)ĉ
†
S,αĉS,β =

∫
d4x

∫
d4x ′ A(x⃗ , x⃗ ′, t)ψ̂†S(x)ψ̂S(x⃗

′) (8.24)

To keep things general, I allow for a time dependence of the operator ÂS(t).
For most practical purposes, one would like to obtain the stationary expectation value. We can,

however, easily deal with a more complex problem. Consider a thermal ensemble of many-particle
states at time3 t = 0. The Hamiltonian may, however, be time dependent and the wave functions
|Φn(t)⟩ will change in time. As a consequence one obtains a time-dependent expectation value
⟨A(t)⟩T,µ, even if the operator ÂS itself does not depend on time.

The thermal expectation value at time t is obtained from the ensemble at time t = 0 and the
propagator from t = 0 to the time of the “measurement”.〈

A(t)

〉
T,µ

def
= Tr

{
ρ̂T,µ Û(0, t)ÂS(t) Û(t, 0)

}
= Tr

{
ρ̂T,µÂH(t)

}
=

∑
α,β

Aα,β(t)Tr
{
ρ̂T,µ Û(0, t)ĉ†S,α Û(t, 0) Û(0, t)︸ ︷︷ ︸

1̂

ĉS,β Û(t, 0)
}

=
∑
α,β

Aα,β(t)(−1) lim
t ′→t+

Tr
{
ρ̂T,µTC ĉH,β(t)ĉ+H,α(t

′)

}
(8.25)

Eq. 7.16
= −iℏ lim

t ′→t+

∑
α,β

Aα,β(t)Gβ,α(t, t
′) (8.26)

EXPECTATION VALUES OF ONE-PARTICLE OPERATORS FROM GREEN’S FUNCTIONS

The thermal expectation value at time t of an operator ÂS(t) =
∑

α,β Aα,β(t)ĉ
†
αĉβ is〈

A(t)
〉
T,µ
= −iℏ lim

t ′→t+

∑
α,β

Aα,β(t)Gβ,α(t, t
′) (8.27)

One-particle expectation values can be expressed by the one-particle reduced density matrix ρ(1)

as Tr{ρ(1)A}. Thus, we indirectly obtain the one-particle-reduced density matrix of the many-
particle system as

ONE-PARTICLE-REDUCED DENSITY MATRIX FROM GREEN’S FUNCTION

ρ
(1)
α,β(t) = −iℏ lim

t ′→t+
Gα,β(t, t

′) (8.28)

8.4 Migdal-Galitskii-Koltun (MGK) sum rule and total energy

The equation of motion for the Green’s function, Eq. 8.8, leads to the Migdal-Galitskii-Koltun sum
rule[68], which gives the total energy in terms of the Green function.

3This is not a restriction because the zero of the time axis can be placed arbitrarily.
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In the previous section, we learned how to evaluate the thermal expectation value of a one-particle
operator. The expectation value of two-particle operators, however, cannot be extracted from a one-
particle Green’s function. There is one exception, namely the interaction energy. The reason is
that the equation of motion links an expectation value of the two-particle Green’s function to the
one-particle Green’s function.

The interaction energy is〈
Ŵ (t)

〉
T,µ
=
1

2

∑
α,b,c,d

Wα,b,d,c

〈
Û(0, t)ĉ†S,αĉ

†
S,bĉS,c ĉS,d Û(t, 0)

〉
T,µ

=
1

2

∑
α,b,c,d

Wα,b,d,c

〈
ĉ+H,α(t)ĉ

+
H,b(t)ĉH,c(t)ĉH,d(t)

〉
T,µ

(8.29)

The time dependence is understood as in the previous section. The interaction operator is time
independent. At time t = 0, the system is prepared in a thermal ensemble. The dynamics may
however, drive the system away from equilibrium, resulting in a time-dependent expectation value of
the interaction energy.

The right-hand side of the equation of motion Eq. 8.8 for the Green’s function is

Yα,β(t, t
′)

def
= δα,βδ(t − t ′) +

∑
b,c,d

Wα,b,d,c
1

iℏ

〈
TC ĉ+H,b(t)ĉH,c(t)ĉH,d(t)ĉ

+
H,β(t

′)

〉
T,µ

(8.30)

In order to get the second creation operator to the front as in the interaction energy Eq. 8.29,
we choose the time argument t ′ infinitesimally later than t. Then, the time-ordering operator places
ĉ+H,β(t

′) to the very left, while switching the sign for any permutation of two fermionic operators.
Shifting the time argument forward along the contour by an infinitesimal amount will be required

frequently, so that a symbol4 t+ has been introduced. It denotes t+ def
= t(s + δ), where δ is an

infinitesimally small, positive number. t(s) is the mapping onto the time contour. An example is

F (t, t+) = lim
s ′→s+

F (t, t(s ′)) = lim
δ→0+

F (t, t(s + δ)) (8.31)

Any time argument can be displaced in this manner. It would be OK to write “2+ seconds”. The
notation t+ under the limes has a similar but still different meaning than using t+ as argument. It
specifies that the limes is taken from the positive side. In contrast, using t+ as argument implies
implicitly that a limes is to be taken.

With this notation, we obtain

Yα,β(t, t
+) = −

∑
b,c,d

Wα,b,d,c
1

iℏ

〈
ĉ+H,β(t

+)ĉ+H,b(t)ĉH,c(t)ĉH,d(t)

〉
T,µ

(8.32)

Comparison with Eq. 8.29 shows〈
Ŵ (t)

〉
T,µ
= −

iℏ
2

∑
α

Yα,α(t, t
+) (8.33)

Y (t, t ′) is the right-hand side of the equation of motion Eq. 8.8 for the Green’s function, which
can be replaced by the left-hand side of the equation of Eq. 8.8.〈

Ŵ (t)
〉
T,µ

Eq. 8.8
= −

iℏ
2

∑
α

∑
γ

(
δα,γ iℏ∂t − hα,γ

)
Gγ,α(t, t

+)︸ ︷︷ ︸
Yα,α(t,t+)

=
1

2

∑
α,γ

(
δα,γ iℏ∂t − hα,γ

)(
−iℏGγ,α(t, t+)

)
(8.34)

4see e.g. Fetter and Walecka[3] p.66 Eq.7.8
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Thus, we obtain an expression for the interaction energy. This is probably the only two-particle
expectation value that can be obtained directly from the one-particle Green’s function.

We may now add the expectation value of the non-interacting Hamiltonian to obtain the expec-
tation value of the total energy.〈

ĥ(t)
〉
T,µ

Eq. 8.27
= −iℏ lim

t ′→t+

∑
α,β

hα,β(t)Gβ,α(t, t
′) (8.35)

Because of the factor one-half in Eq. 8.34, adding the non-interacting Hamiltonian only changes the
sign of the corresponding term.

MIGDAL-GALITSKII-KOLTUN SUM RULE

The thermal expectation value of ĥ + Ŵ , the total energy at time t is

〈
Etot(t)

〉
T,µ
=
1

2
lim
t ′→t+

∑
α,β

(
δα,β iℏ∂t

!︷︸︸︷
+ hα,β(t)

)(
−iℏGβ,α(t, t ′)

)
(8.36)

The positive sign in front of hα,β is correct! (see above). The time derivative acts only on the first
argument of the Green’s function.

The equation Eq. 8.36 for the total energy differs only by the sign in front of the non-interacting
Hamilton matrix elements hα,γ from that of the interaction energy Eq. 8.34. Remember, that Migdal-
Galtskii sum rule relies on that the interaction term is a two-particle interaction such as the Coulomb
interaction. A generalization may be possible, but needs to be done.

Energy is not grand potential: The total energy given by Eq. 8.36 is the thermal expectation value
of non-interacting Hamiltonian and the interaction energy. Except for zero temperature, the quantity
obtained is not a thermodynamic potential, from which the complete thermodynamic information
can be extracted. In order to obtain the grand potential, which is the thermodynamic potential for a
system in contact with a heat bath and a particle reservoir, i.e. a (T, µ)-ensemble, we would need
to add the entropy. The entropy, however, cannot be extracted from the Green’s function alone.
At zero temperature T = 0 the entropy vanishes, so that the expectation value of the total energy
becomes identical with the internal energy.

A consequence of this is that there is no minimum principle for the total energy at finite temper-
ature.

Use the self energy to obtain the total energy: The Migdal-Galitsky sum rule can be used to
obtain the total energy, if the self energy is known. For this purpose, we use Dyson’s equation
Eq. 8.16 to replace the time derivative in Eq. 8.36. This yields

〈
Etot(t)

〉
T,µ

Eq. 8.36
=

1

2
lim
t ′→t+

∑
α,β

(
δα,β iℏ∂t + hα,β(t)

)(
−iℏGβ,α(t, t ′)

)

= −iℏ
{∑
α,β

hα,βGβ,α(t, t
+) +

1

2

∫
dt ′′

∑
α,β

Σα,β(t, t
′′)Gβ,α(t

′′, t+)

}
(8.37)

In this expression the division into non-interacting Hamiltonian and interaction is again intact. The
term containing the self energy is the expectation value of the interaction.
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8.5 Home study and practice

8.5.1 Self-energy and contour Green’s function of the Hubbard atom

Editor: needs to be done
Editor: See [69] on the Hubbard atom
The Hamiltonian for the Hubbard atom is

Ĥ =
∑

σ∈{↑,↓}

ϵ̄ĉ†S,σ ĉS,σ︸ ︷︷ ︸
ĥ

+
1

2

∑
σ,σ′∈{↑,↓}

Uĉ†S,σ ĉ
†
S,σ′ ĉS,σ′ ĉS,σ︸ ︷︷ ︸

Ŵ

=
∑

σ∈{↑,↓}

ϵ̄ĉ†S,σ ĉS,σ + Uĉ
†
S,↑ĉS,↑ĉ

†
S,↓ĉS,↓ (8.38)

The eigenstates of the many-particle Hamiltonian are

|Φ0⟩ = |O⟩
|Φ↑⟩ = ĉ†S,↑|O⟩

|Φ↓⟩ = ĉ†S,↓|O⟩

|Φ↑,↓⟩ = ĉ†S,↑ĉ
†
S,↓|O⟩ (8.39)

and the corresponding energies are

E0 = 0

E↑ = ϵ̄

E↓ = ϵ̄

E↑,↓ = 2ϵ̄+ U (8.40)
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The contour Green’s function is defined as

GCσ,σ′(t, t
′)

Eq. 7.16
=

1

iℏ

Tr
{
e−β(Ĥ−µN̂)TC ĉHσ(t)ĉ+Hσ(t ′)

}
Tr
{
e−β(Ĥ−µN̂)

}
=

1

iℏ
1

1 + 2e−β(ϵ̄−µ) + e−β(2ϵ̄+U−2µ)︸ ︷︷ ︸
1/ZT,µ

{
1⟨O|θ(t − t ′)ĉHσ(t)ĉ+Hσ′(t

′)|O⟩

+
∑

σ̄∈{↑,↓}

e−β(ϵ̄−µ)⟨O|ĉS,σ̄
(
θ(t − t ′)ĉHσ(t)ĉ+Hσ′(t

′)− θ(t ′ − t)ĉ+Hσ′(t
′)ĉHσ(t)

)
ĉS,σ̄|O⟩

+ e−β(2ϵ̄+U−2µ)⟨O|ĉS,↓ĉS,↑
(
−θ(t ′ − t)ĉ+Hσ′(t

′)ĉHσ(t)

)
ĉ+S,↑ĉ

+
S,↓|O⟩

}
=

1

iℏ
1

1 + 2e−β(ϵ̄−µ + e−β(2(ϵ̄−µ)+U)

{
δσ,σ′θ(t − t ′)e−

i
ℏ ϵ̄(t−t

′)

+
∑

σ̄∈{↑,↓}

δσ,σ′e
−β(ϵ̄−µ)

(
θ(t − t ′)δσ̄,−σe−

i
ℏ (ϵ̄+U)(t−t

′) − θ(t ′ − t)δσ̄,σe−
i
ℏ (−ϵ̄)(t

′−t)
)

+ e−β(2ϵ̄+U−2µ)δσ,σ′

(
−θ(t ′ − t)e−

i
ℏ (−ϵ̄−U+µ)(t

′−t)
)}

=
1

iℏ
δσ,σ′

1 + 2e−β(ϵ̄−µ) + e−β(2(ϵ̄−µ)+U)

{
θ(t − t ′)

(
e−

i
ℏ ϵ̄(t−t

′) + e−β(ϵ̄−µ)e−
i
ℏ (ϵ̄+U)(t−t

′)

)
− θ(t ′ − t)

(
e−β(ϵ̄−µ)e+

i
ℏ ϵ̄(t

′−t) + e−β(2ϵ̄+U−2µ)e+
i
ℏ (ϵ̄+U)(t

′−t)
)}

=
δσ,σ′

iℏ

{
θ(t − t ′)

e−
i
ℏ ϵ̄(t−t

′)

(
1 + e−β(ϵ̄−µ)e−

i
ℏU(t−t

′)

)
1 + 2e−β(ϵ̄−µ) + e−β(2(ϵ̄−µ)+U)

−θ(t ′ − t)
e−β(ϵ̄−µ)e+

i
ℏ ϵ̄(t

′−t)
(
1 + e−β(ϵ̄−µ+U)e+

i
ℏU(t

′−t)
)

1 + 2e−β(ϵ̄−µ) + e−β(2(ϵ̄−µ)+U)

}
(8.41)

Special cases:

• µ≪ ϵ̄

GCσ,σ′(t, t
′) =

δσ,σ′

iℏ
θ(t − t ′)e−

i
ℏ ϵ̄(t−t

′) (8.42)

This Green’s function describes the propagation of a single electron in an empty Hubbard atom.

• µ≫ ϵ̄+ U

GCσ,σ′(t, t
′) = −

δσ,σ′

iℏ
θ(t ′ − t)e+

i
ℏ (ϵ̄+U)(t

′−t) (8.43)

This Green’s function describes the propagation of a hole in a doubly occupied Hubbard atom.

• µ = ϵ̄+ 12U

GCσ,σ′(t, t
′) =

δσ,σ′

iℏ

{
θ(t − t ′)

e−
i
ℏ ϵ̄(t−t

′)

(
1 + e

1
2
βUe−

i
ℏU(t−t

′)

)
2 + 2e

1
2
βU

−θ(t ′ − t)
e+

i
ℏ ϵ̄(t

′−t)
(
1 + e−

1
2
βUe+

i
ℏU(t

′−t)
)

2 + 2e−
1
2
βU

}
(8.44)
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– For the non-interacting limit, i.e. βU = 0, I obtain

GCσ,σ′(t, t
′) =

δσ,σ′

iℏ
θ(t − t ′)− θ(t ′ − t)

2
e−

i
ℏ ϵ̄(t−t

′) (8.45)

The non-interacting limit is identical to the high-temperature limit.

– for strongly interacting limit, i.e. βU ≫ 1, I obtain

GCσ,σ′(t, t
′) =

δσ,σ′

iℏ
θ(t − t ′)− θ(t ′ − t)

2
e−

i
ℏ (ϵ̄+U)(t−t

′) (8.46)

The strongly interacting limit is identical to the low-temperature limit, unless U vanishes
precisely.

– in the intermediate regime, I obtain a superposition of two oscillations, one with ϵ̄ and the
other with ϵ̄+ U.

Fig. 8.1: Green’s function G(t, t ′) of the H+ Hubbard ion, of the H− Hubbard ion (middle), and of
a half-filled Hubbard atom H0 at finite temperature as function of the relative time argument t − t ′.
Real parts are shown in blue and imaginary parts are shown in red. Greens functions are displaced
vertically for better visibility. The parameters are e

1
2
βU = 1/4 and U = ϵ̄.



Chapter 9

Spectral properties

The spectral function describes one-particle excitations such as electron addition or electron removal
in a general many-particle system. Thus, it provides the link to measured spectra from photo-emission
or inverse photo-emission experiments.

There is a one-to-one correspondence between the spectral function and the Green’s function. On
the one side, this is useful, because one can develop a physical understanding the spectral function,
which is more difficult for the more abstract Green’s function. On the other side, there is a more
fundamental role in determining the regime of “physical” Green’s functions: The regime of physical
spectral functions is more easily specified. The regime of physical Green’s functions follows from that
of the physical spectral functions. The regime of the physical Green’s function is relevant for Green’s
function functional theories, which may provide the Green’s function via a variational principle.

Spectral functions have been discussed earlier in section 2.5 in the context of the Hartree-Fock
approximation. The reader my revisit that chapter.

The following chapter is mostly limited to time-independent Hamiltonians.

9.1 Lehmann representation

Starting from the assumption of a time-independent Hamiltonian, I can use the eigenvalue equation for
the many-particle eigenstates |Φn⟩ and many-particle eigenvalues En of the interacting Hamiltonian.

Ĥ|Φn⟩ = |Φn⟩En and N̂|Φn⟩ = |Φn⟩Nn (9.1)

• In this representation, the state operator ρ̂(W )T,µ has the form

ρ̂
(W )
T,µ =

∑
n

|Φn⟩Pn⟨Φn| (9.2)

where the probabilities Pn = 1

Z
(W )
T,µ

e−β(En−µNn) are given by the Boltzmann factor and the parti-

tion function Z(W )T,µ =
∑

n e
−β(En−µNn).

• We resolve the Heisenberg operators using the eigenvalue equations and the corresponding
Schrödinger operators. This step is responsible for the limitation to time-independent Hamil-
tonians.

⟨Φm|ĉH,α(t)|Φn⟩ = ⟨Φm|ĉS,α|Φn⟩e−
i
ℏ (En−Em)t

⟨Φm|ĉ+H,β(t
′)|Φn⟩ = ⟨Φm|ĉ†S,β |Φn⟩e

− i
ℏ (En−Em)t

′
(9.3)

265
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After rewriting the Green’s function accordingly, a unit operator 1̂ =
∑

m |Φm⟩⟨Φm| is inserted
between the two field operators.

GCα,β(t, t
′)

Eq. 7.16
=

1

iℏ
Tr
{
ρ̂
(W )
T,µ TC ĉH,α(t)ĉ

+
H,β(t

′)
}

=
1

iℏ
Tr
{∑

n

|Φn⟩Pn⟨Φn|︸ ︷︷ ︸
ρ̂T,µ

(
θ(t − t ′)ĉH,α(t)ĉ+H,β(t

′)− θ(t ′ − t)ĉ+H,β(t
′)ĉH,α(t)

)}

cycl.perm.
=

1

iℏ
∑
n

Pn

(
⟨Φn|ĉH,α(t)

∑
m

|Φm⟩⟨Φm|︸ ︷︷ ︸
=1̂

ĉ+H,β(t
′)|Φn⟩θ(t − t ′)

−⟨Φn|ĉ+H,β(t
′)
∑
m

|Φm⟩⟨Φm|︸ ︷︷ ︸
=1̂

ĉH,α(t)|Φn⟩θ(t ′ − t)
)

=
1

iℏ
∑
n,m

Pn

{
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩θ(t − t

′)e+
i
ℏ (En−Em)(t−t

′)

−⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩θ(t
′ − t)e−

i
ℏ (En−Em)(t−t

′)
}

(9.4)

GREEN’S FUNCTION IN LEHMANN REPRESENTATION

The contour Green’s function in Lehmann representation has the form

GCα,β(t, t
′) =

1

iℏ
∑
n,m

Pn

{
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩θ(t − t

′)e+
i
ℏ (En−Em)(t−t

′)︸ ︷︷ ︸
electrons added to empty states

−⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩θ(t
′ − t)e−

i
ℏ (En−Em)(t−t

′)︸ ︷︷ ︸
holes added to filled states

}
(9.5)

The thermal probability is Pn = 1
ZT,µ
e−β(En−µNn).

The inner sum over many-particle states |Φm⟩ contributes nonzero contributions from only those wave
functions that either have one particle more or one particle less than the state |Φn⟩.

Energy representation In order to transform this expression into the energy representation we use
the relations Eq. A.10 derived in Appendix A.2.2 (p. 386)

∫ ∞
−∞

dt θ(t)e
i
ℏ (ϵ+iη)t =

iℏ
ϵ+ iη

and
∫ ∞
−∞

dt θ(−t)e
i
ℏ (ϵ−iη)t =

−iℏ
ϵ− iη (9.6)

The time integration is a contour integration along the entire real time axis in the positive direction.
This yields the
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LEHMANN REPRESENTATION OF THE GREEN’S FUNCTION

Gα,β(ℏω)
def
=

∫ ∞
−∞

dt e
i
ℏ (ℏωt+iη|t|)Gα,β(t, 0) (9.7)

=
∑
n,m

Pn

[
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩
ℏω − (Em − En) + iη︸ ︷︷ ︸

electron like

+
⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩
ℏω + (Em − En)− iη︸ ︷︷ ︸

hole like

]
(9.8)

The time integration proceeds along the real-time axis in the positive direction. η is an infinitesimally
small, positive number.

This expression makes the structure of the Green’s function evident. It is shown in Fig.9.1 The
Green’s functions has poles at the one-particle excitation energies. For the electron excitations,
i.e. above the Fermi level, the poles are infinitesimally below the real frequency axis and for hole
excitation, i.e. below the Fermi level they lie above the real axis. For infinitely large systems, the
excitations may form a continuous spectrum. As a result, the discrete poles usually merge into a
branch cut.

µωIm[   ]
Re[   ]ω

hole−like excitations electron−like excitations

Fig. 9.1: Position of the poles of the Green’s function for non-interacting electrons. The poles are
located in the complex ω plane at the positions given by the excitation energy (real part) and ±η
(imaginary part). For an interacting system the excitations may move a finite distance away from
the real axis, which corresponds to a finite life time of the corresponding quasi particles.

9.2 Quasi-particle wave functions

The concept of quasi-particle wave functions1 extends the concept of one-particle states from
one-particle quantum mechanics, non-interacting electrons and Hartree-Fock Slater determinants.

The quasi-particle wave functions are also called Lehmann amplitudes or Dyson orbitals. 2 3

1Editor: Check the following reference, whether it refers to quasi-particle wave functions. I
am not sure it is appropriate.“A proper way of calculating quasiparticle energies is provided by
the Green function theory.[70, 71]” . Citation taken from Aryasetiawan[72] (p.2)in Anisimov’s Book
“Strong Coulomb correlations in electronic-structue calculations”.

2For the definition of Dyson orbitals see e.g. the perspective article by Ortiz[73] or the Book of Fulde[5] (Fulde-
Eq. 9.2.61 and 9.2.62)

3See Introduction to many-body Green-function theory, J. Toulouse, 2015 https://www.lct.jussieu.fr/
pagesperso/toulouse/enseignement/introduction_green.pdf retrieved June 3, 2020. Editor: Here the Dyson
orbitals are defined as eigenstates of the Dyson equation [ĥ+Σ̂(ϵ)− ϵ]|ψ⟩ = 0 evaluated at the pole of
the Green’s function.

https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_green.pdf
https://www.lct.jussieu.fr/pagesperso/toulouse/enseignement/introduction_green.pdf
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The quasi-particle wave functions ψ(qp)m,n (x⃗) are defined by 4 5

ψ(qp)m,n (x⃗) = ⟨Φm|ψ̂S(x⃗)|Φn⟩ and
(
ψ(qp)m,n (x⃗)

)∗
= ⟨Φn|ψ̂†S(x⃗)|Φm⟩ (9.11)

where |Φm⟩ are eigenstates of the many-electron Hamiltonian and ψ̂(x⃗) is the field operator that
annihilates an electron with coordinate x⃗ . In other words, the quasi-particle wave functions are the
matrix elements of the annihilation operator for two many-particle states. The quasi-particle wave
functions are non-zero only, when they connect N-particle states |Φn⟩ with (N − 1)-particle states
|Φm⟩.

The energies of the quasi-particle wave functions6 are

ϵn,m =
En − Em
Nn − Nm

(9.12)

this energy can be attributed to the energy of an additional electron. Because the change in the
particle number is ±1, the denominator Nn − Nm is usually suppressed.

In order to make contact with wave functions we can express the quasi-particle wave function in
terms of N-electron wave functions.

ψ(qp)m,n (x⃗) = ⟨Φm|ψ̂(x⃗)|Φn⟩

=
√
Nn︸ ︷︷ ︸

Nn/
√
Nn

∫
d4x2 · · · d4xN Φ(N−1),∗m (x⃗2, . . . , x⃗Nn)︸ ︷︷ ︸

N − 1 particles

Φ(N)(x⃗ , x⃗2, . . . , x⃗Nn)︸ ︷︷ ︸
N particles

(9.13)

Editor: check the factor
√
N.

fj = ⟨Φn|
∑
j

â†j âj |Φn⟩ (9.14)

Rather than in the real-space representation, the quasi-particle wave functions can also be repre-
sented in terms of any other basisset {|χα⟩} with annihilators ĉα, be it orthonormal or not7. It rests

on the identity ψ̂(x⃗)
Eq. 3.61
=

∑
j ⟨x⃗ |ϕj⟩âj

Eq. B.6
=

∑
α⟨x⃗ |χα⟩ĉα, where the orbitals |ϕj⟩ are orthonormal,

while the |χα⟩ may be non-orthonormal.∣∣ψ(qp)m,n

〉
=

∫
d4x |x⃗⟩⟨Φm|ψ̂(x⃗)|Φn⟩ =

∫
d4x |x⃗⟩⟨Φm|

∑
α

χα(x⃗)ĉα︸ ︷︷ ︸
ψ̂(x⃗)

|Φn⟩

Eq. B.6
=

∑
α

|χα⟩ ⟨Φm|ĉα|Φn⟩︸ ︷︷ ︸
⟨πα|ψ(qp)m,n ⟩

(9.15)

4Compare Stefanucci and van Leeuwen[2] Stefanucci-Eq. 6.84.
5The definition to quasi-particle wave functions can easily be generalized to time-dependent problems by including

the time dependence of the many-particle wave functions, which start as eigenstates of an initial Hamiltonian and which
are propagated using the time-dependent Schrödinger equation.

ψ
(qp,td)
m,n (x⃗ , t)

def
= ⟨Φm(t)|ψ̂S(x⃗)|Φn(t)⟩ (9.9)

For time-independent Hamiltonians, the time dependence can be described by

ψ
(qp,td)
m,n (x⃗ , t) = ⟨Φm|ψ̂S(x⃗)|Φn⟩e−

i
ℏ (En−Em)t = ψ(qp)m,n (x⃗)e

− i
ℏ ϵn,mt (9.10)

with ϵn,m = En − Em.
6There is a close connection to the expression of the one-particle energy ϵj = ∂E

∂fj
in a mean-field-like theory as

derivative of the energy with respect to the occupation fj . This relation is the essence of Janak’s theorem.[74].
7For non-orthonormal one-particle orbitals, we refer to Eq. B.6. The analogous equation, restricted to orthonormal

one-particle states, is provided in Eq. 3.61.
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so that

N−1︷ ︸︸ ︷〈
Φm
∣∣ ĉα N︷︸︸︷∣∣Φn〉 = 〈πα∣∣ψ(qp)m,n

〉
〈
Φm
∣∣︸ ︷︷ ︸

N

ĉ†α
∣∣Φn〉︸︷︷︸
N−1

=
〈
ψ(qp)n,m

∣∣πα〉 = (〈πα∣∣ψ(qp)n,m

〉)∗
(9.16)

Notice the order of the indices of the many-particle states on the right-hand side. One way to
memorize it is: “Because the quasi-particle wave function is the matrix element of the annihilator,
the particle number decreases from the wave function of the right index to that of the left index.”

To become familiar with the concept of the quasi-particle wave functions, let me consider two
special cases

• In the special case that the many-particle wave function is itself a one-particle state, i.e. |Φn⟩ =
|ϕ⟩, there is only one other state which produces a finite quasi-particle wave function, namely
the vacuum state |Φm⟩ = |O⟩. The corresponding quasi-particle wave function is the wave
function itself.

ψ(qp)m,n (x⃗) = ϕ(x⃗) (9.17)

• In the special case that |Φn⟩ = |Φσ⃗⟩ and |Φm⟩ = |Φσ⃗′⟩ are Slater determinants in a basis of the
(ortho-normal) one-particle states |ϕj⟩, the quasi-particle wave functions are the one-particle
wave functions from which the Slater determinants are made. These one-particle states are
retrieved by

ϕj(x⃗) =

ψ
(qp)

σ⃗′,σ⃗
(x⃗) if σ′j = σj − 1(

ψ
(qp)

σ⃗,σ⃗′
(x⃗)
)∗

if σ′j = σj + 1
(9.18)

while all other occupation numbers ̸= j are identical between σ⃗ and σ⃗.

Let me now turn towards the general case with an interacting many-electron Hamiltonian. Note
that each many-particle Hamiltonian defines a set of quasi-particle wave functions and their energies.
In contrast to nearly independent electrons, the quasi-particle wave functions are not orthonormal.
The number of quasi-particle wave functions is substantially larger than the one-particle basisset.
Consider a finite one-particle basis with M orbitals. The number of Slater determinants with this
basis is 2M because each one-particle orbital can be occupied or not. This is also the size of the
corresponding Fock space. Each state in Fock space is, in principle, able to contribute a quasi-particle
wave function. Even if we consider only the states with N + 1 and N − 1 electrons, we arrive at a
huge number given that the number of N-particle Slater-determinants in a one-particle basis of M
orbitals is M!

(M−N)!N! .
8 In a solid, the quasi-particle states may also form a continuum rather than a

discrete set.
There is a sum-rule for the quasi-particle wave functions. The unit operator in the one-particle

8For a one-particle basisset with M = 100 one-particle states and N = 10 electrons there are more than 1014 states
with N + 1 and with N − 1 electrons.
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Hilbert space can be expressed in terms of quasi-particle wave functions.

1̂ =

∫
dx

∫
dx ′ |x⃗⟩δ(x⃗ − x⃗ ′)⟨x⃗ ′| =

∫
dx

∫
dx ′ |x⃗⟩

[
ψ̂†(x⃗), ψ̂(x⃗ ′)

]
+
⟨x⃗ ′|

=

∫
dx

∫
dx ′ |x⃗⟩

∑
n

Pn
〈
Φn
∣∣[ψ̂†(x⃗), ψ̂(x⃗ ′)]

+

∣∣Φn〉⟨x⃗ ′|
=

∫
dx

∫
dx ′ |x⃗⟩

∑
n

Pn

(
⟨Φn|ψ̂†(x⃗)

∑
m

|Φm⟩⟨Φm|︸ ︷︷ ︸
=1̂

ψ̂(x⃗ ′)|Φn⟩+ ⟨Φn|ψ̂(x⃗ ′)
∑
m

|Φm⟩⟨Φm|︸ ︷︷ ︸
=1̂

ψ̂†(x⃗)|Φn⟩
)
⟨x⃗ ′|

=

∫
dx

∫
dx ′ |x⃗⟩

∑
n,m

Pn

(
⟨Φn|ψ̂†(x⃗)|Φm⟩⟨Φm|ψ̂(x⃗ ′)|Φn⟩+ ⟨Φn|ψ̂(x⃗ ′)|Φm⟩⟨Φm|ψ̂†(x⃗)|Φn⟩

)
⟨x⃗ ′|

=

∫
dx

∫
dx ′ |x⃗⟩

∑
m,n

Pn

(
ψ(qp)∗m,n (x⃗)ψ

(qp)
m,n (x⃗

′) + ψ(qp)∗n,m (x⃗)ψ
(qp)
n,m (x⃗

′)

)
⟨x⃗ ′|

=
∑
m,n

Pn

(
|ψ(qp)m,n ⟩⟨ψ(qp)m,n |︸ ︷︷ ︸

filled

+ |ψ(qp)n,m ⟩⟨ψ(qp)n,m |︸ ︷︷ ︸
empty

)
(9.19)

This identity is valid for any many-particle ensemble {Pn, |Φn⟩}.
The first term can be identified with the one-particle-reduced density matrix of state |Φn⟩, while

the second term describes the unoccupied states.∑
n

Pn
∑
m

ψ(qp),∗m,n (x⃗)ψ
(qp)
m,n (x⃗

′) =
∑
n,m

Pn⟨Φn|ψ̂†(x⃗)|Φm⟩⟨Φm|ψ̂(x⃗ ′)|Φn⟩

=
∑
n

Pn⟨Φn|ψ̂†(x⃗)ψ̂(x⃗ ′)|Φn⟩ = ρ(1)(x⃗ , x⃗ ′)

⇒ ρ̂(1) =
∑
m,n

Pn
∣∣ψ(qp)m,n

〉〈
ψ(qp)m,n

∣∣ (9.20)

The density matrix is that of an ensemble of many-electron wave functions |Φn⟩ with probabilities Pn.
The sum over m extends over a the complete set of eigenstates of the many-particle Hamiltonian,
which span the complete Fock space. However, only those with ±1 electrons contribute a non-zero
quasi-particle wave function. Similarly we obtain∑
m,n

Pnψ
(qm),∗
n,m (x⃗)ψ(qp)n,m (x⃗) =

∑
m,n

Pn⟨Φn|ψ̂(x⃗ ′)|Φm⟩⟨Φm|ψ̂†(x⃗)|Φn⟩

=
∑
n

Pn⟨Φn|ψ̂(x⃗ ′)ψ̂†(x⃗)|Φn⟩ =
∑
n

Pn⟨Φn|δ(x⃗ − x⃗ ′)− ψ̂†(x⃗)ψ̂(x⃗ ′)|Φn⟩

= δ(x⃗ − x⃗ ′)− ρ̂(1)(x⃗ , x⃗ ′)
⇒ 1̂− ρ̂(1) =

∑
m,n

Pn
∣∣ψ(qp)n,m

〉〈
ψ(qp)n,m

∣∣ (9.21)

The two equations allow a spectral decomposition of filled and empty states. Let me define the
spectral function

Â(ϵ) def
=
∑
m,n

Pn

(
|ψ(qp)m,n ⟩δ(ϵ− (En − Em))⟨ψ(qp)m,n |+ |ψ(qp)n,m ⟩δ(ϵ− (Em − En))⟨ψ(qp)n,m |

)
=
∑
m,n

δ(ϵ− ϵn,m)Pn
(
|ψ(qp)m,n ⟩⟨ψ(qp)m,n |︸ ︷︷ ︸

filled

+ |ψ(qp)n,m ⟩⟨ψ(qp)n,m |︸ ︷︷ ︸
empty

)

=
∑
m,n

∣∣ψ(qp)m,n

〉
δ(ϵ− ϵn,m)

(
Pn + Pm

)〈
ψ(qp)m,n

∣∣ (9.22)
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with the quasiparticle energies defined in Eq. 9.12.
With the quasi-particle amplitudes and energies, the Green’s function from Eq. 9.5 has the form.

GCα,β(t, t
′)

Eq. 9.5
=

1

iℏ
∑
n,m

Pn

{ ⟨πα|ψ(qp)n,m ⟩︷ ︸︸ ︷
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩θ(t − t

′)e+
i
ℏ (En−Em)(t−t

′)

−⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩θ(t
′ − t)e−

i
ℏ (En−Em)(t−t

′)
}

Eq. 9.16
=

1

iℏ
∑
n

Pn
∑
m

⟨πα|ψ(qp)n,m ⟩⟨ψ(qp)n,m |πβ⟩θ(t − t ′)e−
i
ℏ (Em−En)(t−t

′)

︸ ︷︷ ︸
electrons added to empty orbitals

−
1

iℏ
∑
n

Pn
∑
m

⟨πα|ψ(qp)m,n ⟩⟨ψ(qp)m,n |πβ⟩θ(t ′ − t)e−
i
ℏ (En−Em)(t−t

′)

︸ ︷︷ ︸
hole added to filled orbitals

(9.23)

To make the expression more transparent, consider a system in a pure state, that is Pn = δn,0,
where |Φ0⟩ is the electronic ground state. In this case, one obtains one quasi-particle amplitude for
each one-particle excitation, that is the one-electron addition energy or the electron removal energy.

9.3 Spectral function

The spectral function is a central quantity in Green’s-function formalism. Firstly, the spectral function
forms the link between different types of Green’s function and can be used for their conversion into
each other. For time-independent Hamiltonians, it contains the complete physical information of
the Green’s function. Secondly, the spectral function is a quantity that is directly accessible by
spectroscopy experiments as discussed in section 2.5.

In section F.7.2, we discussed the spectral function for an ensemble of Slater determinants. Here
we extend this definition to ensembles of general many-particle states. An early review on the spectral
function of interacting electrons can be found by Hedin et al.[75]

The total spectral function represents the electron addition and removal energies.

• The electron-addition energies are ϵ = EN+1 − EN and electron-removal energies are ϵ =
EN − EN−1, so that we can interprete the energies as those of the electron that is added or
removed.

• Of all eigenstates of the many-particle Hamiltonian considered, only the states are considered,
that have either one electron more or one electron less than the initial state.

• We consider the spectrum of an ensemble of eigenstates of the Hamiltonian {|Φn⟩, Pn}, i.e.
[ĥ + Ŵ ]|Φn⟩ = |Φn⟩En

In order to arrive at a general definition of the spectral function, let me work out the following
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decomposition of the one-particle reduced density matrix in terms of one-electron energies.

ρ̂(1)
Eq. 3.57
=

∑
α,β

|χα⟩
(∑

n

Pn⟨Φn|ĉ†S,β ĉS,α|Φn⟩
)
⟨χβ |

=
∑
α,β

|χα⟩
∑
n

Pn⟨Φn|ĉ†S,β
∑
m

|Φm⟩

=1︷ ︸︸ ︷∫ ∞
−∞

dϵ δ
(
ϵ− (En − Em)

)
⟨Φm|︸ ︷︷ ︸

=1̂

ĉS,α|Φn⟩⟨χβ |

=

∫ ∞
−∞

dϵ
∑
α,β

|χα⟩
{∑
n,m

Pn ⟨Φn|ĉ†S,β |Φm⟩︸ ︷︷ ︸
=0 for Nn ̸= Nm + 1

δ
(
ϵ− (En − Em)︸ ︷︷ ︸

Nn=Nm+1

)
⟨Φm|ĉS,α|Φn⟩︸ ︷︷ ︸
=0 for Nm ̸= Nn − 1

}
︸ ︷︷ ︸

A(h)α,β(ϵ)

⟨χβ |

=

∫ ∞
−∞

dϵ
∑
α,β

|χα⟩A(h)α,β(ϵ)⟨χβ | (9.24)

where

A(h)α,β(ϵ)
def
=
∑
m,n

Pn⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩δ
(
ϵ− (En − Em)

)
(9.25)

is the spectral function for hole addition. Editor: The naming is inconvenient, because
one thinks of the electrons that are present, before it is removed. Therefore the
name “electron spectral function” would be better that “spectral function for hole
addition”. The naming electron or hole spectral function, is confusing, because the
electron spectral function probes the empty states and the hole spectral function
probes the filled states, i.e. the electrons. The names make sense because they
reflect the quasi-particle, electron or hole, which is that is added to the system.

Only states |Φm⟩ contribute to the spectral function for hole addition Eq. 9.25, that have one
electron less than the state |Φn⟩ in the ensemble, i.e. Nm = Nn−1. The spectral function has peaks
at the energies of electrons that can be removed from the system, that is at ϵ = En − Em with
Nn = Nm + 1. The removal of an electron can also be described as the addition of a hole, which
explains the name “hole-addition spectral function” . The name is confusing because it also describes
an electron, which is present in the system, before it is removed.

We arrived at a spectral decomposition of the one-particle-reduced density matrix. This gives
us access only to the occupied part of the spectrum. Let us now consider the empty part of the
spectrum by decomposing 1̂ − ρ̂. The derivation is analogous to the one for the filled states. I use
the identity

1̂ =
∑
α,β

|χα⟩⟨πα|πβ⟩⟨χβ |
Eq. B.16
=

∑
α,β

|χα⟩[ĉ†α, ĉβ]+⟨χβ |

=
∑
α,β

|χα⟩
∑
n

Pn⟨Φn|[ĉ†α, ĉβ]+|Φn⟩⟨χβ | (9.26)

which is obvious for an orthonormal basisset. For a non-orthonormal basisset, the anticommutator
is more complicated, and is given by the overlap of the projector function, [ĉ†α, ĉβ]+

Eq. B.16
= ⟨πα|πβ⟩,

respectively in the inverse overlap of the orbitals |χα⟩.
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The one-particle-reduced density matrix of the empty states is

1̂− ρ̂(1) Eq. 3.57
=

∑
α,β

|χα⟩
(∑

n

Pn⟨Φn|
(
[ĉS,α, ĉS,β]+ − ĉ†S,β ĉS,α

)
|Φn⟩

)
⟨χβ |

=
∑
α,β

|χα⟩
(∑

n

Pn⟨Φn|ĉS,αĉ†S,β |Φn⟩⟨χβ |

=
∑
α,β

|χα⟩
∑
n

Pn⟨Φn|ĉS,α
∑
m

|Φm⟩

=1︷ ︸︸ ︷∫ ∞
−∞

dϵ δ
(
ϵ− (Em − En)

)
⟨Φm|︸ ︷︷ ︸

=1̂

ĉ†S,β |Φn⟩⟨χβ |

=

∫ ∞
−∞

dϵ
∑
α,β

|χα⟩
{∑
n,m

Pn⟨Φn|ĉS,α|Φm⟩δ
(
ϵ− (Em − En)︸ ︷︷ ︸

Nm=Nn+1

)
⟨Φm|ĉ†S,β |Φn⟩

}
︸ ︷︷ ︸

A(e)α,β(ϵ)

⟨χβ |

=

∫ ∞
−∞

dϵ
∑
α,β

|χα⟩A(e)α,β(ϵ)⟨χβ | (9.27)

where

A(e)α,β(ϵ)
def
=
∑
m,n

Pn⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩δ
(
ϵ− (Em − En)

)
(9.28)

is the spectral functions for electron addition. The energies were chosen such that they refer to
energies of electrons.

After interchanging the indices m and n in the hole spectral function, the electron and hole
spectral function can be combined into the total spectral function

Atot
α,β(ϵ)

def
= A(e)α,β(ϵ) +A

(h)
α,β(ϵ)

=
∑
m,n

(Pn + Pm)⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩δ
(
ϵ− (Em − En)

)
(9.29)

Thermal ensembles: The expressions for the spectral function given above are very general and
hold for arbitrary ensembles. For a thermal ensemble, such as the grand canonical ensemble, the
relations can be simplified:

Electron and hole spectral functions can be recovered from the total spectral function with the
help of the Fermi distribution function. The probabilities in the grand ensemble are

Pn = e
−β(En−µNn−ΩT,µ) (9.30)

where grand potential ΩT,µ = −kBT ln(ZT,µ) accounts for the normalization of the probability dis-
tribution. The electron and hole spectral functions can be recovered from the total spectral function
by including a factor of the following kind:

Pn
Pn + Pm

=
1

1 + eβ(En,m−µNn,m)
= fT,µ(En,m) (9.31)

where En,m = En − Em and Nn,m = Nn − Nm. Because this factor depends only on the excitation
energies, it can be taken out of the sum over many-particle states in Eq. 9.29. This allows one to
obtain the electron and hole spectral functions from the total spectral function by multiplication with
the Fermi function fT,µ(ϵ) or 1− fT,µ(ϵ). It is surprising that the Fermi distribution function, which
has been obtained as equilibrium occupation of the non-interacting electron gas, also selects the filled
states out of a spectral function of an interacting system.
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Thus, we obtain

SPECTRAL FUNCTIONS

The spectral function is

Atot
α,β(ϵ)

Eq. 9.29
=

∑
m,n

(Pn + Pm)⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩δ
(
ϵ− (Em − En)

)
(9.32)

The terms proportional to Pn are the electron addition energies. while the terms proportional to Pm
are the hole addition energies.
Specifically, for thermal ensembles (grand ensemble), the electron and hole contributions can be
obtained with the help of the Fermi-distribution function.

A(e)α,β(ϵ) = A
tot
α,β(ϵ)

(
1− fT,µ(ϵ)

)
(9.33)

A(h)α,β(ϵ) = A
tot
α,β(ϵ)fT,µ(ϵ) (9.34)

The hole contribution describes the filled states and the electron distribution describes the empty
part of the spectrum.

Properties: Let me summarize some properties of the spectral functions.

• the spectral function Â(ϵ) is an operator in the one-particle Hilbert space. One can also
construct spectral functions for two-particle excitations, which would be operators in the two-
particle Hilbert space. However, these spectral functions differ from the spectral functions for
one-particle excitations discussed here.

• The spectral functions are hermitian, which is seen from the defining equations Eq. 9.28 and
9.25.

• The integral of the hole spectral function Â(h) is the one-particle-reduced density matrix.∫
dϵ fT,µ(ϵ)A(tot)α,β (ϵ)

Eq. 9.34
=

∫
dϵ A(h)α,β(ϵ)

Eq. 9.25
=

∑
n

Pn⟨Φn|ĉ†S,β ĉS,α|Φn⟩
Eq. 3.56
= ρ

(1)
α,β

(9.35)

• The total spectral function Â(tot)(ϵ) obeys the sum rule∫
dϵ A(tot)α,β (ϵ) = [ĉ

†
S,β, ĉS,α]+ (9.36)

For an orthonormal one-particle basisset, the anticommutator has the usual form [ĉ†α, ĉβ]+ =

δα,β. For a non-orthonormal basisset, the relation is more complex, i.e. [ĉ†S,β, ĉS,α]+
Eq. B.16
=

⟨πβ |πα⟩.

• The peak positions of the spectral function are determined by the Hamiltonian ĥ + Ŵ , re-
spectively the differences Em − En of its eigenvalues. They do not depend on temperature
or chemical potential. The quantities, that change with the thermodynamic state, are the
intensities of the spectral peaks. The intensities are governed by the probabilities {Pn}.
This is analogous to the spectrum in the average-phase approximation and it differs from the
mean-field approximation on the Hartree-Fock level. As discussed in section F.7.2 on p. 515, the
peak positions shift in the mean-field approximation, due to the change of the Fock operator,
while the intensities of the bands remain unchanged. However, see also Fig. F.5 on p. 516,
which shows how the true spectral function can produce an apparent behavior of the mean-field
spectral function.
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9.3.1 Green’s function from spectral function

We have introduced the spectral function without any reference to the Green’s functions. I will show
in the following, how one can obtain the Green’s function from the spectral function.

I start with the Green’s function in the Lehmann representation Eq. 9.5

GCα,β(t, t
′)

Eq. 9.5
=

1

iℏ
∑
n,m

Pn

{
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩θ(t − t

′)e+
i
ℏ (En−Em)(t−t

′)︸ ︷︷ ︸
electrons added to empty states

−⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩θ(t
′ − t)e−

i
ℏ (En−Em)(t−t

′)︸ ︷︷ ︸
holes added to filled states

}

=
1

iℏ

∫
dϵ

[∑
n,m

Pn

{
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩δ(ϵ− (Em − En))

]
︸ ︷︷ ︸

A(e)α,β(ϵ)=A
(tot)
α,β (ϵ)(1−fT,µ(ϵ))

θ(t − t ′)e−
i
ℏ ϵ(t−t

′)

−
1

iℏ

∫
dϵ

[∑
n,m

Pn⟨Φn|ĉ†S,β |Φm⟩⟨Φm|ĉS,α|Φn⟩δ(ϵ+ (Em − En))
]

︸ ︷︷ ︸
A(h)α,β(ϵ)=A

(tot)
α,β (ϵ)fT,µ(ϵ)

θ(t ′ − t)e−
i
ℏ ϵ(t−t

′)
}

(9.37)

which leads to the following expression for the Green’s function

CONTOUR GREEN’S FUNCTION FROM SPECTRAL FUNCTION

The Green’s function for a time-independent Hamiltonian can be expressed by the spectral function
as

GCα,β(t, t
′) =

1

iℏ

∫ ∞
−∞

dϵ A(tot)α,β (ϵ)
(
[1− fT,µ(ϵ)]θ(t − t ′)− fT,µ(ϵ)θ(t ′ − t)

)
e−

i
ℏ ϵ(t−t

′)

(9.38)

and in the energy representation

GCα,β(ℏω)
def
= lim

η→0+

∫ ∞
−∞

dt e
i
ℏ (ℏωt+iη|t|)GCα,β(t, 0) for ℏω ∈ R

= lim
η→0+

∫ ∞
−∞

dϵ A(tot)α,β (ϵ)

[
1− fT,µ(ϵ)
ℏω − ϵ+ iη +

fT,µ(ϵ)

ℏω − ϵ− iη

]
(9.39)

The time integration proceeds along the real-time axis in the positive direction.

The expression above is valid for arbitrarily strong interaction. Nevertheless, it looks like the expres-
sion for the non-interacting Green’s function. All the many-particle effects relevant for the Green’s
function are encapsulated in the spectral function.

The Green’s function is a unique functional of the spectral function, which forms the basis of the
spectral-density functional approach (SDFT)[76].

While the spectral functions have been motivated by a Fourier transform of the Green’s function
along the real axis only, the Green’s function can be expressed by the spectral functions for the entire
contour.

Electron spectral function from Green’s function: Eqs. 9.39 allows us to extract the spectral
function from the Green’s function. Below, I will use that the spectral function is hermitian. Editor:
Check, whether that is true for the entire contour or only along the real axis. In
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contrast, the energy-dependent Green’s function is not hermitian.

GCα,β(ℏω)− GC,∗β,α(ℏω)
Eq. 9.39
= lim

η→0+

∫ ∞
−∞

dϵ A(tot)α,β (ϵ)︸ ︷︷ ︸
=A(tot),∗β,α (ϵ)

×
[
1− fT,µ(ϵ)
ℏω − ϵ+ iη +

fT,µ(ϵ)

ℏω − ϵ− iη −
1− fT,µ(ϵ)
ℏω − ϵ− iη −

fT,µ(ϵ)

ℏω − ϵ+ iη

]
= lim

η→0+

∫ ∞
−∞

dϵ A(tot)α,β (ϵ)︸ ︷︷ ︸
=A(tot),∗β,α (ϵ)

[
1− 2fT,µ(ϵ)
ℏω − ϵ+ iη −

1− 2fT,µ(ϵ)
ℏω − ϵ− iη

]

=

∫ ∞
−∞

dϵ A(tot)α,β (ϵ)
(
1− 2fT,µ(ϵ)

)
lim
η→0+

−2iη
(ℏω − ϵ)2 + η2︸ ︷︷ ︸
−2iπδ(ℏω−ϵ)

= −2iπ
(
1− 2fT,µ(ℏω)

)
A(tot)α,β (ℏω)

⇒ A(tot)α,β (ℏω) =
−1
2πi

1

1− 2fT,µ(ℏω)

(
GCα,β(ℏω)− GC,∗β,α(ℏω)

)
(9.40)

We exploited

lim
η→0

1

π

η

x2 + η2
= δ(x) (9.41)

Thus, we obtain the following relation between Green’s function and spectral function.

SPECTRAL FUNCTION AND CAUSAL GREEN’S FUNCTION

For a grand canonical ensemble of fermions, the total spectral function Â(tot) is obtained from

Â(tot)(ℏω) =
1

1− 2fT,µ(ℏω)

(
−
1

2πi

[
ĜC(ℏω)− ĜC,†(ℏω)

])
(9.42)

Spectral function for non-interacting electrons and holes: In order to develop some understand-
ing for the spectral functions it is helpful to determine the spectral function for a non-interacting
system. For a non-interacting system the eigenstates |σ⃗⟩ of the Hamiltonian can be build up by the
one-particle eigenstates |ϕn⟩ of the Hamiltonian and the corresponding creation operators â†S,n.

A(tot)α,β (ϵ)
Eq. 9.32
=

∑
m,n

⟨πα|ϕm⟩
∑
σ⃗,σ⃗′

(
Pσ⃗ + Pσ⃗′

)
⟨σ⃗|âS,m|σ⃗′⟩⟨σ⃗′|â†S,n|σ⃗⟩

×δ
(
ϵ− (Eσ⃗′ − Eσ⃗)

)
⟨ϕn|πβ⟩ (9.43)

For each state |σ⃗⟩, only one state |σ′⟩ contributes, namely |σ′⟩ = â†n|σ⃗⟩. With this selection, the
matrix elements are

⟨σ⃗′|â†n|σ⃗⟩
|σ⃗′⟩=â†n |σ⃗⟩
= (1− σn)

⟨σ⃗|âm|σ⃗′⟩
|σ⃗′⟩=â†n |σ⃗⟩
= (1− σm)δm,n (9.44)

The energy difference is

Eσ⃗′
|σ⃗′⟩=â†n |σ⃗⟩
= Eσ⃗ + ϵn (9.45)
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and the probability of this state is

Pσ⃗′
|σ⃗′⟩=â†n |σ⃗⟩
= Pσ⃗e

−β(ϵn−µ) (9.46)

This yields9

A(tot)α,β (ϵ)
Eq. 9.32
=

∑
m,n

⟨πα|ϕm⟩
∑
σ⃗

Pσ⃗

(
1 + e−β(ϵn−µ)

)
(1− σm)δm,n(1− σn)

×δ
(
ϵ− ϵn

)
⟨ϕn|πβ⟩

=
∑
n

⟨πα|ϕn⟩
(∑

σ⃗

Pσ⃗(1− σn)
)

︸ ︷︷ ︸
1−fT,µ(ϵn)

(
1 + e−β(ϵn−µ)

)
︸ ︷︷ ︸
1/[1−fT,µ(ϵn)]

×δ
(
ϵ− ϵn

)
⟨ϕn|πβ⟩

=
∑
n

⟨πα|ϕn⟩δ
(
ϵ− ϵn

)
⟨ϕn|πβ⟩

= Dα,β(ϵ) (9.48)

Thus, we obtain the one-particle density of states Dα,β =
∑

n⟨πα|ϕn⟩δ(ϵ− ϵn)⟨ϕn|πβ⟩.

SPECTRAL FUNCTION FOR NON-INTERACTING PARTICLES

For non-interacting electrons the spectral function is identical to the one-particle density of states.

Atot
α,β(ϵ)

Eq. 9.48
= Dα,β(ϵ) (9.49)

9.4 Physical content of the spectral function

Editor: Discuss here the spectral function. The relation to the band structure,
such as self energy shift and life time broadening. The double (triple) peak structure
(donor and acceptor energies). Discuss the spectral function for a system undergoing
period doubling, such as antiferromagnetism.( Band structure in the original basis).

Sketch of the complete spectral function Tr[A(ϵ)] for electrons and Tr[B(ϵ)] for holes for a free-
electron gas. The shaded regions show the spectral functions, which are equal to the density of
states multiplied with 1 − fT,µ(ϵ) for the electron spectral function and with fT,µ(ϵ) for the hole
spectral function.

9

1− f = 1−
1

1 + eβ(ϵ−µ)
=

eβ(ϵ−µ)

1 + eβ(ϵ−µ)
=

1

1 + e−β(ϵ−µ)
⇒ 1 + e−β(ϵ−µ) =

1

1− f
(9.47)
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9.5 Attempt to generalize the spectral function to the time do-
main

Editor: This section is under construction and not meant for reading!
Consider an ensemble of time-dependent many-particle wave functions |Φn(t)⟩ and time-independent

probabilities Pn. The many-particle wave functions satisfy the time-dependent Schrödinger equation
and they are chosen wrog orthonormal at time t = 0 i.e. ⟨Φm(0)|Φn(0)⟩ = δm,n. Because the time
evolution is unitary, the orthonormality is valid for all (real-valued) times.

With a subscript S, I indicate Schrödinger operators, while Heisenberg operators are indicated by
a subscript H. The indices α, β refer to one-particle states.

Let me define the two-time spectral function

Atotα,β(t, t ′)
?
=
∑
m,n

(Pm + Pn)⟨Φn(t)|ĉS,α|Φm(t)⟩⟨Φm(t ′)|ĉ†S,β |Φn(t
′)⟩

=
∑
m

Pm

(
⟨Φn(t)|ĉS,α|Φm(t)⟩⟨Φm(t ′)|ĉ†S,β |Φn(t

′)⟩+ ⟨Φn(t ′)|ĉ†S,β |Φm(t
′)⟩⟨Φm(t)|ĉS,α|Φn(t)⟩

)
= Tr

[
ρ̂W
(
ĉH,α(t)ĉ

†
H,β(t

′) + ĉ†H,β(t
′)ĉH,α(t)

)]
= Tr

(
ρ̂W
[
ĉH,α(t), ĉ

†
H,β(t

′)
]
+

)
(9.50)

An ensemble {Pn, |Φn(0)⟩} is defined at a specific time, which we choose at time zero. The von-
Neumann density matrix is

ρ̂W =
∑
n

|Φn(0)⟩Pn⟨Φn(0)| (9.51)

The time-dependent Schrödinger equation is used to determine the full time dependence of the
many-particle wave functions |Φn(t)⟩.

The equation is (hopefully) valid for fermions. For bosons, the anti-commutator is replaced by
the commutator.

The spectral function can be written as operator in the one-particle Hilbert space as

Â(t, t ′) =
∑
α,β

|χα⟩Aα,β(t, t ′)⟨χβ | (9.52)

GCα,β(t, t
′)

Eq. 7.16
=

1

iℏ
Tr
{
ρ̂
(W )
T,µ TC ĉH,α(t)ĉ

+
H,β(t

′)
}

=
1

iℏ
Tr

{
ρ̂
(W )
T,µ

(
θ(t − t ′)ĉH,α(t)ĉ+H,β(t

′)− θ(t ′ − t)︸ ︷︷ ︸
1−θ(t−t ′)

ĉ+H,β(t
′)ĉH,α(t)

)}

GCβ,α(t
′, t) =

1

iℏ
Tr

{
ρ̂
(W )
T,µ

(
θ(t ′ − t)ĉH,β(t ′)ĉ+H,α(t)− θ(t − t

′)ĉ+H,α(t)ĉH,β(t
′)
)}

(
GCβ,α(t

′, t)
)∗ t∈R

=
−1
iℏ
Tr

{
ρ̂
(W )
T,µ

(
θ(t ′ − t)ĉH,α(t)ĉ+H,β(t

′)− θ(t − t ′)ĉ+H,β(t
′)ĉH,α(t)

)}
GCα,β(t, t

′)−
(
GCβ,α(t

′, t)
)∗

=
1

iℏ
Tr

{
ρ̂
(W )
T,µ

(
ĉH,α(t)ĉ

+
H,β(t

′)− ĉ+H,β(t
′)ĉH,α(t)

)}
GCα,β(t, t

′) +
(
GCβ,α(t

′, t)
)∗

= sgn(t − t ′)
1

iℏ
Tr

{
ρ̂
(W )
T,µ

(
ĉH,α(t)ĉ

+
H,β(t

′) + ĉ+H,β(t
′)ĉH,α(t)

)}
(9.53)
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(
GCα,β(t, t

′) +
(
GCβ,α(t

′, t)
)∗)
sgn(t − t ′) =

1

iℏ
Tr

{
ρ̂
(W )
T,µ

[
ĉH,α(t), ĉ

+
H,β(t

′)
]
+

}
+++ = −

1

iℏ
Tr

{
ρ̂
(W )
T,µ ĉ

+
H,β(t

′)ĉH,α(t)

}
+ θ(t − t ′)

1

iℏ
Tr

{
ρ̂
(W )
T,µ

[
ĉH,α(t), ĉ

+
H,β(t

′)
]
+

}
(9.54)

Identity with previous definitions for time-invariant problems

Firstly, I need to verify that for the time-translational invariant case, one obtains the definition of the
energy-dependent spectral function. I use |Φn(t)⟩ = |Φn(0)⟩e−

i
ℏEnt .

Atotα,β(ϵ)
?
=

∫ ∞
−∞

dt ′

2πℏ
Atotα,β(t ′, t)e

i
ℏ ϵ(t

′−t)− η
ℏ |t
′−t|

=
∑
m,n

(Pm + Pn)⟨Φn(0)|ĉS,α|Φm(0)⟩⟨Φm(0)|ĉ†S,β |Φn(0)⟩

×
∫ ∞
−∞

dt ′

2πℏ
e
− i
ℏ

[
(Em−En−ϵ)(t ′−t)−iη|t ′−t|

]
︸ ︷︷ ︸

1

i
ℏ

[
Em−En−ϵ−iη

]− 1

i
ℏ

[
Em−En−ϵ+iη|

]
=
∑
m,n

(Pm + Pn)⟨Φn(0)|ĉS,α|Φm(0)⟩⟨Φm(0)|ĉ†S,β |Φn(0)⟩

×
1

2πℏ

(
−iℏ

)( (Em − En − ϵ) + iη
(Em − En − ϵ)2 + η2

−
Em − En − ϵ− iη
(Em − En − ϵ) + η2

)
=
∑
m,n

(Pm + Pn)⟨Φn(0)|ĉS,α|Φm(0)⟩⟨Φm(0)|ĉ†S,β |Φn(0)⟩
1

2πℏ
2ℏη

(Em − En − ϵ)2 + η2︸ ︷︷ ︸
→2πℏδ

(
ϵ−(En−Em)

)
=
∑
m,n

(Pm + Pn)⟨Φn(0)|ĉS,α|Φm(0)⟩⟨Φm(0)|ĉ†S,β |Φn(0)⟩δ
(
ϵ− (En − Em)

)
(9.55)

This expression is identical to Eq. 9.32 on p. 274, what had to be shown.

Spectral functions and Green’s functions

The energy-dependent spectral function has the convenient property that all Green’s functions can be
expressed as convolutions of the spectral function. Is this true also for time-dependent Hamiltonians,
and time-dependent spectral functions?

The contour ordered Green’s function GCα,β(t, t
′), Eq. 7.16, is obtained from the spectral function

on the contour ...

9.6 Home-study and practice

9.6.1 Satellites in the spectral function

Introduction

In addition to the features in the spectral function that can be compared to the density of states of
non-interacting electrons, one often observes so-called satellites, namely small peaks of the spectral
function, which lie several eV below or above the main features. These satellites are due to the
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combination of a one-particle excitation, such as electron addition or electron removal, with a particle-
number-conserving excitation. Such a particle-number-conserving excitation could be the creation of
an electron-hole pair, a plasmon, spin waves, phonons or something else.

Editor: Include a figure with an experimental spectrum exhibiting a satellite.
A theory such as the Hartree-Fock approximation, that describes the ground state by a single Slater

determinant, can not describe satellites. When the ground state or the final state of the excitation is
a superposition of several Slater determinants, the “transition” to or from these Slater determinants
contributes additional features in the spectral function. The reason for the admixture is the interaction
Ŵ . The transition can take these Slater determinants to eigenstates of the Hamiltonian that have not
been accessible before. These eigenstates can be described in terms of particle-conserving excitations
of those eigenstates contributing in the absence of the admixture. This excitation adds to the energy
of the original transition. If the excitation energies are small, they lead to the life-time broadening
of the quasi-particle peaks. If they are large, they produce separate replica of the quasi-particle peaks,
which are then called satellites.

In this exercise, we will study a minimal model for a one-particle level that couples to a particle-
number-conserving excitation.

The model consists of a one-particle state |a⟩, to which we will add and remove a particle, and an
electron-hole excitation from state |b⟩ to |c⟩. The one particle level has energy ϵ̄a. The excitation
raises an electron from the energy level ϵ̄b to level ϵ̄c . Let me consider the case ϵ̄b ≪ µ and µ≪ ϵ̄c .

The non-interacting Hamiltonian has the form

ĥ = ϵ̄aâ
†â + ϵ̄bb̂

†b̂ + ϵ̄c ĉ
†ĉ (9.56)

where â, â†, b̂, b̂†, ĉ , ĉ† are the annihilation and creation operators for the three one-particle orbitals.
The spectral function of this non-interacting model

Â(ϵ) = |a⟩δ
(
ϵ− ϵ̄a

)
⟨a|+ |b⟩δ

(
ϵ− ϵ̄b

)
⟨b|+ |c⟩δ

(
ϵ− ϵ̄c

)
⟨c | (9.57)

has delta-peaks at the one-particle levels ϵ̄a, ϵ̄b, ϵ̄c . The spectral function projected on orbital |a⟩
has only one delta function at ϵ̄a

Let me now add the interaction. I will consider specifically one contribution, that allows me to
demonstrate satellites without adding other complications.

ĥ = ϵ̄aâ
†â + ϵ̄bb̂

†b̂ + ϵ̄c ĉ
†ĉ + V â†â

(
b̂†ĉ + ĉ†b̂

)
(9.58)

The interaction term describes the Coulomb interaction of an electron in |a⟩ with the charge
density of the electron-hole pair. When the electron is present in a, the many-particle eigenstates
have an admixture of the electron-hole pair. In other words the wave functions are superpositions of
|1, 1, 0⟩ and |1, 0, 1⟩, so that both can be accessed by adding an electron to |0, 1, 0⟩ in orbital |a⟩.

Let me now simplify the Hamiltonian, while maintaining the features, which are required to
describe the physical effect of interest, the satellites: I introduce the symbol ∆ def

= ϵ̄c − ϵ̄b for the
excitation energy of the electron-hole excitation. The Hamiltonian above preserves the number nb+nv
of electrons in the orbitals |b⟩ and |c⟩. For our purpose, only the case nB+nC = 1 with one electron
in the orbitals |b⟩ and |c⟩ is of interest. The energy nb ϵ̄b+nc ϵ̄c is a constant in the relevant subspace.
Therefore, I simplify the Hamiltonian by setting ϵ̄B + ϵ̄C = −∆2 . Finally, I drop the subscript from ϵ̄a.

The resulting, simplified model Hamiltonian is

Ĥ = ϵ̄â†â + ∆ĉ†ĉ + V â†â
(
b̂†ĉ + ĉ†b̂

)
(9.59)

For our purposes we can exclude states with zero or two particles in |b⟩ and |c⟩. The relevant
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Fock space is spanned by four Slater determinants

|0, ↓⟩ def
= |0, 1, 0⟩

|0, ↑⟩ def
= |0, 0, 1⟩

|1, ↓⟩ def
= |1, 1, 0⟩

|1, ↑⟩ def
= |1, 0, 1⟩ (9.60)

I have introduced a notation which makes explicit that one two states are allowed for the excitation.
Either the electron is in the lower level ↓⟩ or it is in the upper level | ↑⟩.

Problem

Consider the model with a Hamiltonian

Ĥ = ϵ̄â†â + ∆ĉ†ĉ + V
(
b̂†â†âĉ + ĉ†â†âb̂

)
(9.61)

with three one particle levels |a⟩, |b⟩ and |c⟩. The model describes an electron acceptor |a⟩, which
is coupled to an excitation of an electron from state |b⟩ to state |c⟩.

1 Determine the many-particle eigenvalues and the eigenstates of the model with nb + nc = 1.

2 Construct the spectral function for the electron accepting orbital for particle numbers ranging
from one to two.

Solution

1 Determine the many-particle eigenvalues and the eigenstates of the model with nb + nc = 1.

The Hamiltonian is

Ĥ =


|0, ↓⟩
|0, ↑⟩
|1, ↓⟩
|1, ↑⟩



0 0 0 0

0 ∆ 0 0

0 0 ϵ̄ V

0 0 V ϵ̄+ ∆



⟨0, ↓ |
⟨0, ↑ |
⟨1, ↓ |
⟨1, ↑ |

 (9.62)

where the notation of Eq. 9.60 has been used for the basisstates. States with nb+ nc ̸= 1 have been
excluded.

The energy eigenvalues are

E0,↓ = 0 with |Ψ0,↓⟩ = |0, ↓⟩
E0,↑ = ∆ with |Ψ0,↑⟩ = |0, ↑⟩

E1,± = ϵ̄+
∆

2
±

√(
∆

2

)2
+ V 2 = ϵ̄+

∆

2

[
1±

√
1 +

(
2V

∆

)2
︸ ︷︷ ︸
=:1+2q/∆

]
≈

{
ϵ̄− V 2

∆

ϵ̄+ ∆+ V 2

∆

(9.63)

The eigenstates are

|Ψ1,−⟩ = |1, ↓⟩ cos(γ) + |1, ↑⟩ sin(γ)
|Ψ1,+⟩ = |1, ↑⟩ cos(γ)− |1, ↓⟩ sin(γ) (9.64)

with the mixing angle γ defined by the eigenvalue equation of the Hamiltonian Eq. 9.62.
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{
ϵ̄− ϵ̄−

∆

2

(
1±

√
1 +

(
2V

∆

)2)}
cos(γ) + V sin(γ) = 0

{
1±

√
1 +

(
2V

∆

)2}
cos(γ)−

2V

∆
sin(γ) = 0

tan(γ) =
∆

2V

[
1±

√
1 +

(
2V

∆

)2]
(9.65)

cos(γ)
x=tan(γ)
= cos(arctan(x)) =

1√
1 + x2

=
1√

1 + tan2(γ)

=

1 +
 ∆
2V

1±
√
1 +

(
2V

∆

)22−
1
2

=
2V

∆

(2V
∆

)2
+

1±
√
1 +

(
2V

∆

)22−
1
2

=
2V

∆

(2V
∆

)2
+ 1± 2

√
1 +

(
2V

∆

)2
+ 1 +

(
2V

∆

)2− 12

=
2V

∆

1√
2

1 + (2V
∆

)2
±

√
1 +

(
2V

∆

)2− 12

≈


1
2
2V
∆ for |V | ≪ |∆| and ± = +
1√
2
sgn

(
2V
∆

)
for |V | ≫ |∆| and ± = +[

1− 12
(
V
∆

)2]
sgn

(
2V
∆

)
for |V | ≪ |∆| and ± = −

1√
2
sgn

(
2V
∆

)
for |V | ≫ |∆| and ± = −

(9.66)

The solution that is relevant for us is the one with V ≪ ∆ and ± = −, because this connects |1,−⟩
with |1, ↓⟩ in the absence of V .

The many-particle states and their energies are

j Ej |Ψj⟩
1 0 |0, ↓⟩
2 ∆ |0, ↑⟩
3 ϵ̄− q |1, ↓⟩ cos(γ) + |1, ↑⟩ sin(γ)
4 ϵ̄+ ∆+ q |1, ↑⟩ cos(γ)− |1, ↓⟩ sin(γ)

The parameter q has been defined in Eq. 9.63 as

q =
∆

2

√1 + (2V
∆

)2
− 1

 ≈ V 2

∆
for V ≪ ∆ (9.67)

2 Construct the spectral function projected on site a for T=0 of the system for particle numbers
ranging from one to two.

Let me consider the spectral function of the accepting orbital as function of the number of electrons.
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The electron acceptor can accept between zero and one electrons. This number is denoted by x .
The probabilities for the states are P1 = 1− x and P3 = x , while P2 = P4 = 0 at zero temperature.

The spectral function is

Atot
α,β(ϵ)

Eq. 9.32
=

∑
m,n

(Pn + Pm)⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩δ
(
ϵ− (Em − En)

)
Atot
a,a(ϵ) = |⟨Φ2|ĉ†S,a|Φ1⟩|

2︸ ︷︷ ︸
0

δ
(
ϵ− (E2 − E1)︸ ︷︷ ︸

∆

)
(1− x)︸ ︷︷ ︸
P1+P2

+ |⟨Φ3|ĉ†S,a|Φ1⟩|
2︸ ︷︷ ︸

cos2(γ)

δ
(
ϵ− (E3 − E1)︸ ︷︷ ︸

ϵ̄−q

)
1︸︷︷︸

P1+P3

+ |⟨Φ4|ĉ†S,a|Φ1⟩|
2︸ ︷︷ ︸

sin2(γ)

δ
(
ϵ− (E4 − E1)︸ ︷︷ ︸

ϵ̄+∆+q

)
1− x︸ ︷︷ ︸
P1+P4

+ |⟨Φ3|ĉ†S,a|Φ2⟩|
2︸ ︷︷ ︸

sin2(γ)

δ
(
ϵ− (E3 − E2)︸ ︷︷ ︸

ϵ̄−q−∆

)
x︸︷︷︸

P2+P3

=

Z︷ ︸︸ ︷
cos2(γ) δ

(
ϵ− (ϵ̄− q)

)
︸ ︷︷ ︸

quasi-particle peak

+

1−Z︷ ︸︸ ︷
sin2(γ)

[
(1− x)δ

(
ϵ− (ϵ̄+ ∆+ q)

)
+ xδ

(
ϵ− (ϵ̄− ∆− q)

)]
︸ ︷︷ ︸

satellites

(9.68)

The spectral function is sketched in figure 9.2.

εε−∆ ε+∆
0

1

N

+q−q−q

Fig. 9.2: Spectral function on the electron acceptor exhibiting satellites for different number of
electrons. In contrast to a mean-field spectrum, the energies do not shift with changing number of
electrons, but the intensity of the satellites changes. The green shaded region denotes the occupied
part of the spectral function, while the yellow shaded region denotes the unoccupied part.

Discussion

For the non-interacting system with V = 0, the spectral function has one spectral peak with energy
ϵ = ϵ̄. This feature is independent of the particle number on the electron acceptor level a.

When the interaction is taken into account, the main peak at ϵ̄ loses weight, and this weight is
transferred to two satellites, which occur in the spectrum. One satellite is located ∆ below the main
peak and the other is located ∆ above the main peak. If the acceptor level is empty, the satellite occurs
above the main peak. As the electron number is increased, the weight is transferred continuously from
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the upper to the lower satellite. Editor: Note that the spectral function integrates to
one, as required. Derive the charge sum rule for interacting many-particle systems.
So-far we derived it for non-interacting systems as intrinsic property of a matrix
diagonalization

The satellites describe that an excitation can occur in parallel with the electron addition or
removal. The one-electron excitation is coupled to the particle-number-conserving excitation by the
interaction.

µ

ε

k

A

F

quasi−particle band

lower satellite

upper satellite

k

Fig. 9.3: Spectral function A(ϵ, k) of the free-electron gas with a single particle-conserving excitation
with energy ∆ and zero momentum producing satellite bands. The green shaded region denotes the
occupied part of the spectral function, while the yellow shaded region denotes the unoccupied part.

The main peak at ≈ ϵ̄ is the so-called quasi-particle peak. Its weight is the quasi-particle
weight Z The quasi-particle weight is less than unity, because some of the weight is transferred to
the satellites. The total weight on the orbital a is one.

In the mean-field approximation, the energy levels shift with increasing electron number, because
the effective potential depends on the charge distribution. In the full calculation, the level positions
are fixed, but the weights rearrange with the particle number.

The one-particle excitation is shifted from ϵ̄ in the non-interacting case to ϵ̄−q in the presence of
the interaction. The parameter q defined in Eq. 9.67 is the quasi-particle shift. The quasi-particle
shift is due to screening. The Coulomb potential of the additional electron on the acceptor level
induces a dipole on the bond. This dipole produces a favorable Coulomb potential stabilizing on the
electron on the acceptor level. The formation of the induced electrostatic dipole is the origin of the
polarization known from electrostatics.

The model is closely related to two famous approximations in many-particle physics, the random-
phase approximation and, related, the GW method. In these methods the screening occurs through
plasmons, which are cooperative charge oscillations the electron gas in a material. Satellites due to
plasmon excitations have been calculated by Lundqvist[77? , 78] (see figure 2 of [78]). At that time
one attributed the satellite peak to a quasi-particle called plasmaron made from and electron and
a plasmon. The spectral function of the free-electron gas exhibiting the satellite structure has been
calculated by Caruso and Giustino[46]. For the satellite structure in the spectral function of sodium,
see [79].

9.6.2 Model for strongly retarded Green’s function

Introduction

In an earlier exercise, section 4.6.2 on p. 175, we learned that a Lorentzian peak in the density of
states, can be described by a Green’s function having a pole in the complex plane. At that time we
have still been studying one-particle systems.

The exercise at hand is related, but works the other way round. We show how a spectral function
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is obtained from the contour ordered Green’s function in real-valued time.

Problem

The non-interacting Green’s function is changed upon a weak interaction by a shift of the poles of
the Greens function into the complex plane. A minimal problem consists of only a single orbital with
the Green’s function having one orbital with a pole in the complex plane.

G(t2, t1) =
1

iℏ

[
(1− fT,µ)θ(t2 − t1)e−

i
ℏ (ϵ0−iΓ)(t2−t1) − fT,µθ(t1 − t2)e−

i
ℏ (ϵ0+iΓ)(t2−t1)

]
(9.69)

1. Determine the spectral function Atot(ϵ).

2. Determine the electron and hole Green’s function separately.

Discussion

1. Determine the spectral function Atot(ϵ).

The spectral function is obtained from Eq. 9.42. Because Γ is finite, the pole is already displaced
away from the real axis. Thus, we need not include the infinitesimal displacement η → 0 of the
energy away from the real axis

We begin with Eq. 9.42. Because we consider only one orbital, we can treat the Green’s function
as a matrix element, which is a complex-valued number10 rather than an operator. Therefore

A(ϵ) Eq. 9.42
=

1

1− 2fT,µ(ϵ)

(
−
1

2πi

[
GC(ϵ)− GC,∗(ϵ)

])
= −

1

π

Im[GC(ϵ)]

1− 2fT,µ(ϵ)
(9.70)

We need to transform the Green’s function into the energy representation, i.e. we need to Fourier
transform it in the relative argument t2 − t1. In this case, the integration proceeds only along the
real axis, not the contour C.

GC(ϵ) =

∫ ∞
−∞

dt GC(t, 0)e
i
ℏ ϵt

Eq. 9.69
=

1− f
iℏ

∫ ∞
0

dt e
i
ℏ (ϵ−ϵ0+iΓ)t −

f

iℏ

∫ 0
−∞

dt e
i
ℏ (ϵ−ϵ0−iΓ)t

=
1− f
iℏ

[
e
i
ℏ (ϵ−ϵ0+iΓ)t

i
ℏ (ϵ− ϵ0 + iΓ)

]∞
0

−
f

iℏ

[
e
i
ℏ (ϵ−ϵ0−iΓ)t

i
ℏ (ϵ− ϵ0 − iΓ)

]0
−∞

=
1− f
iℏ

−1
i
ℏ (ϵ− ϵ0 + iΓ)

−
f

iℏ
1

i
ℏ (ϵ− ϵ0 − iΓ)

=
(1− f )

ϵ− ϵ0 + iΓ
+

f

ϵ− ϵ0 − iΓ

=
(1− f )(ϵ− ϵ0 − iΓ) + f (ϵ− ϵ0 + iΓ)

(ϵ− ϵ0)2 + Γ2

=
ϵ− ϵ0

(ϵ− ϵ0)2 + Γ2
− i

(1− 2f )Γ
(ϵ− ϵ0)2 + Γ2

(9.71)

A(ϵ) = −
1

π

Im[GC(ϵ)]

1− 2fT,µ(ϵ)
= −

1

π

−Γ
(ϵ− ϵ0)2 + Γ2

=
1

π

Γ

(ϵ− ϵ0)2 + Γ2
(9.72)

10z = Re[z ] + i Im[z ]⇒ Im[z ] = z−z∗
2i
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Thus, we obtained a Lorentzian spectral function from this model Green’s function, which is the
desired result.

The model Green’s function can be generalized to the form

Gα,β(t2, t1) =
1

iℏ
∑
n

⟨πα|ϕn⟩
[
(1− fn)θ(t2 − t1)e−

i
ℏ (ϵ0,n−iΓn)(t2−t1)

−fnθ(t1 − t2)e−
i
ℏ (ϵ0,n+iΓn)(t2−t1)

]
⟨ϕn|πβ⟩ (9.73)

where the ϕn are a set of orthonormal one-particle functions. This model Green’s function is defined
by the parameters ⟨πα|ϕn⟩, ϵ0,n,Γn and fn.

The corresponding spectral function is

Aα,β(ϵ) =
1

π

∑
n

⟨πα|ϕn⟩
Γn

(ϵ− ϵ0,n)2 + Γ2n
⟨ϕn|πβ⟩ (9.74)

The value of Γ indicates that this Green’s function corresponds to a macroscopic system, which
has a continuous spectrum. The delta-function peak of the spectral function in a non-interacting
system is now smeared out into a Lorentzian peak. For a band structure, this implies that the bands
are no more sharp but that they are a little smeared out, due to the lifetime of the quasi-particle
described by |ϕn⟩.

A strongly correlated system would differ in that the single peak would split into several distinct
peaks or another a broad distribution. In that case the quasi-particles can no more considered as
almost independent particles, albeit with a finite life-time, but the correlations are a fundamental
property of the system.

1. Determine the electron and hole Green’s function separately.

AeT,µ(ϵ) = Atot(ϵ)(1− fT,µ(ϵ)) =
1

π

Γn
(ϵ− ϵ0,n)2 + Γ2n

1

1 + e−β(ϵ−µ)

AhT,µ(ϵ) = Atot(ϵ)fT,µ(ϵ) =
1

π

Γn
(ϵ− ϵ0,n)2 + Γ2n

1

1 + e+β(ϵ−µ)
(9.75)

In contrast to the total spectral function, the electron and hole contributions depend on temper-
ature and chemical ensemble.
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9.6.3 One-particle spectrum of the Hubbard dimer

Exercise: Let us evaluate the spectral function for an interacting electron system, the Hubbard
dimer. The Hubbard dimer, respectively the Hydrogen atom has been investigated previously in
section 1.5.1 and 3.11.1.
The Hamiltonian of the Hubbard dimer is

Ĥ =

2∑
j=1

∑
σ∈{↑,↓}

ϵ̄ĉ†j,σ ĉj,σ − |t|
∑

σ∈{↑,↓}

(
ĉ†1,σ ĉ2,σ + ĉ

†
2,σ ĉ1,σ

)
+ U

2∑
j=1

∑
σ,σ′∈{↑,↓}

ĉ†l ,σ ĉ
†
j,σ′ ĉj,σ′ ĉj,σ (9.76)

1. Rewrite the Hamiltonian in terms of occupation-number operators as much as possible to sim-
plify the Hamiltonian. As we start with a basisset of Slater determinants, which are eigenstates
of the occupation-number operator, this makes the calculation efficient.

2. Set up a complete basis of Slater determinants for the Hubbard dimer

3. Construct the joint eigenstates of N̂, Ŝz , Ŝ2 and P̂ , where P̂ is the point-inversion about the
bond center.

4. determine the eigenstates of the Hamiltonian and their energies

5. determine the peak positions of the spectral function

6. determine the quasi-particle wave functions

7. construct the spectral function as energy-dependent matrix

8. extract the projected density of states

Solution

The solution is given in the appendix D on p. 411. Section D.1 on p. 411 covers the general aspects,
while section D.2 covers the specifically the Hubbard dimer.

Hamiltonian in terms of occupation-number operators The Hamiltonian of the Hubbard dimer
is provided in Eq. D.15.

Complete basis of Slater determinants The Slater determinants that serve as basisset for our
limited Fock space is given in table D.1

Eigenstates of N̂, Ŝz , Ŝ2 and P̂ , where P̂ is the point-inversion about the bond center: The
symmetry-adapted states of the Hubbard dimer are given in table D.4.

Eigenstates and their energies Except for one 2× 2-block, all symmetry adapted states are also
eigenstates of the Hamiltonian. Their energy expectation values are are also their energy eigenvalues.

The 2× 2-block can be diagonalized and yields the ground state Eq. D.22 with energy Eq. D.23.

peak positions of the spectral function The spectral function consists of delta functions centered
at the energy differences of states, which differ by ∆N = ±1.
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ϵ̄− |t| ϵ̄+ |t| (0/1),(1/2) lower Hubbard band
ϵ̄+ U − |t| ϵ̄+ U + |t| (1/2),(3/4) upper Hubbard band
ϵ̄− |t| − ∆st ϵ̄+ |t| − ∆st (1/2)

ϵ̄+ U − |t|+ ∆st ϵ̄+ U + |t|+ ∆st (1/2)

quasi-particle wave functions

Spectral function

Projected density of states In Eq. 3.118, we obtained the ground state of the half-filled Hubbard
dimer as

|Ψ−⟩
Eq. 3.118
=

=

[
cos γ−√
2

(
ĉ†1↑ĉ

†
1↓ + ĉ

†
2↑ĉ
†
2↓

)
+
sin(γ−)√
2

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑

)]
|O⟩ (9.77)

with energy Eq. 3.119

E−
Eq. 3.119
= 2ϵ̄+

U + V

2
−

√(
U − V
2

)2
+ 4|t|2

= 2ϵ̄+ U − 2|t| tan(γ−) (9.78)

γ− changes from π/8 = 45◦ for the non-interacting system to π/4 = 90◦ in the strongly correlated
limit.

Solution: At temperature much smaller than the singlet-triplet splitting, we only need to consider
the singlet wave function.

We start from Eq. 9.42 for the spectral function

A(tot)α,β (ϵ)
Eq. 9.42
= −

1

π
lim
ζ→0
Im

{∫ ∞
−∞

dt GCα,β(t, 0)sgn(t)e
−ζ|t|e

i
ℏ ϵt

}
(9.79)

At zero temperature and the appropriate chemical potential for half-filling, the probability for the
state |Ψ−⟩ is one and the other probabilities vanish.

|Ψ⟩ Eq. 3.118
=

1√
2

(
ĉ†1,↑ĉ

†
2,↓ − ĉ

†
1,↓ĉ

†
2,↑

)
|O⟩ (9.80)

with energy

E
Eq. 3.132
= 2ϵ̄+ V + 2|t|

U − V
4|t| −

√
1 +

(
U − V
4|t|

)2 (9.81)

The triplet states Eq. 3.122, 3.124, and 3.125 have the energy

Ed
Eq. 3.133
=

(
2ϵ̄+ V

)
(9.82)

In order to obtain the spectral function with the Lehmann representation starting from the two-
particle channel, we need to evaluate the many-particle states in the one-particle channel and the
three-particle channel.
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one-particle states: The one-particle states are obtained from section 1.5.1 by translating the
bonding and antibonding orbitals into second quantization. We obtain four one-particle states

Ψ1pb,σ =
1√
2

(
ĉ†1,σ + ĉ

†
1,σ

)
|O⟩

Ψ1pa,σ =
1√
2

(
ĉ†1,σ − ĉ

†
1,σ

)
|O⟩ (9.83)

with energies

E1pb,σ = ϵ̄− 2|t|
E1pa,σ = ϵ̄+ 2|t| (9.84)

Obviously the interaction terms are not present in the case of a one-particle system.

three-particle states: The three-particle states can be obtained by exploiting particle-hole sym-
metryEditor: Demonstrate particle hole symmetry.

I construct the four-particle state and then create a hole. The bonding state has the hole in the
antibonding state, and vice versa.

Ψ3pb,σ =
1√
2

(
ĉ1,σ − ĉ1,σ

) ∏
R∈{1,2},σ′∈{↑,↓}

ĉ†R,σ′ |O⟩

Ψ3pa,σ =
1√
2

(
ĉ1,σ − ĉ1,σ

)
|O⟩

∏
R∈{1,2},σ′∈{↑,↓}

ĉ†R,σ′ (9.85)

The energies are Editor: Caution! this is guessed!

E3pb,σ = 3ϵ̄+ 3V + U − 2|t| (9.86)

Spectral function for one site and spin:

Aα,β(ϵ) = (9.87)

9.6.4 Anderson impurity model

Editor: To be done
The Anderson impurity model [59] is a standard model for strongly correlated systems. It models

on impurity having a strongly correlated orbital in contact with a bath of non-interacting conduction
electrons. The conduction electrons are modeled by a one-dimensional chain of hydrogen atoms,
which is characterized by a vanishing orbital energy and a nearest-neighbor hopping parameter. This
chain is described with periodic boundary conditions. The impurity is coupled to one of the atoms
in the chain with a hopping parameter V . The spatial Coulomb integral on the impurity defines the
U-parameter.

1. Set up the many-particle Hamiltonian for the isolated impurity and bring it into the form that
it can be expressed by the occupation-number operators. Once the Hamiltonian is obtained in
second quantization, express the many-particle Hamiltonian as matrix.

2. Evaluate the finite-temperature Green’s function of the isolated impurity in contact with a
particle reservoir.

3. Evaluate the Green’s function of the conduction electrons at finite temperature in contact with
a particle reservoir.
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4. determine the Green’s function of the Anderson impurity in contact with the conduction elec-
trons.

5. plot the spectral function using the equation for the density of states, which has been derived
for non-interacting electrons for different temperatures and chemical potentials.

6. calculate the particle number on the impurity as function of temperature and chemical potential.

7. Discuss the results in the light of the characteristic energy scales of the problem kBT , the
band width of the bath t, the position of the empty impurity orbital ϵA, the coupling between
impurity and bath V , and the Coulomb interaction U. Discuss the isolated limit, the strongly
correlated limit, the high-temperature limit.

8. Read the original paper of Anderson[59]

9.6.5 Spectral function and momentum density of a 1d chain

Editor: This exercise is not finished yet!

Introduction

One of the puzzling findings in the early days of studying the interacting free-electron gas was that the
momentum density does not resemble a step function as in the non-interacting free-electron gas.[78]
Rather, one finds tails that emerge from the step function, which are interpreted as electron-hole
pairs that screen the interaction.

The momentum density ρ(p⃗) of electrons is (See for example [80])

ρ(p⃗)
def
=
∑
n

fn|⟨p|ϕn⟩|2 = ⟨p⃗|ρ̂(1)|p⃗⟩ (9.88)

where |ϕn⟩ are the natural orbitals and fn are their occupations. |p⃗⟩ are the momentum eigenstates.
ρ̂(1) is the one-particle-reduced density matrix. The momentum density is thus related to the Fourier
transform of the natural orbitals.

The momentum distribution is easily mistaken by the Fermi distribution. This misunderstanding
is resolved by carefully distinguishing the expectation values of the momentum ⟨ϕn,k⃗ |p̂|ϕn,k⃗⟩ from the
crystal momentum ℏk⃗ .

Secondly, at the origin of the Fermi distribution are non-interacting electrons. However, it also
occurs rigorously in the division of the spectral function of an interacting system into the occupied and
the empty contribution. At first, this seems to contradict the result for the momentum distribution.

fT,µ(ϵn(k⃗)) ̸=
∑
n

∫
dϵ fT,µ(ϵn(k⃗))⟨p⃗|Â(ϵ)|p⃗⟩ (9.89)

In this exercise, an analogous effect will be investigated, but instead of the interaction we use a
lattice potential.

For the spectral function and the momentum distribution in the RPA, see Lundqvist[78] Editor:
Lundqvists work contains the explicit expressions, which shall be used to construct
the relevant graphs. For a measurement of the momentum density in Al see Metz et al.[80].

Editor: Add a remark regarding Compton profiles.
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Problem

1 Calculate the one-particle eigenstates |ϕn(k)⟩ and energies ϵ(k) for a one-dimensional linear
chain.

2 Calculate momentum density of the one-dimensional linear chain.

3 Introduce a cos-like potential, which doubles the lattice constant. Calculate the new eigenstates
and energies.

4 Calculate the momentum density of the perturbed system

Discussion

1 Calculate the one-particle eigenstates |ϕn(k)⟩ and energies ϵ(k) for a one-dimensional linear
chain.

The wave functions of the linear chain are

|ϕ(0)k ⟩ =
N∑
j=1

|χj⟩
1√
N
eikalatj (9.90)

ϵ(0)(k) = ϵ̄− 2t cos(kalat) (9.91)

The variable N is the supercell for the periodic boundary conditions, which determines the normal-
ization and the quantization of the wave vectors.

The quantization condition for the k-points is knalatN = 2πn, that is

kn =
2π

Nalat
n with −

N

2
< n ≤

N

2
and n ∈ I (9.92)

The orbitals |χj⟩ are related to each other by a translation

|χj⟩ =
∫
d3r ′ |r⃗ ′ + R⃗j⟩⟨r⃗ ′|︸ ︷︷ ︸
translation by R⃗j

|χ0⟩ ⇔ ⟨r⃗ |χj ⟩ = ⟨r⃗ − R⃗j |χ0⟩ (9.93)

2 Calculate momentum density of the one-dimensional linear chain.

Editor: The formulation of the integration region is probably not concise. Editor:
I am using vectors k⃗ , p⃗ and switch to scalars. This needs more attention.

⟨p⃗|ϕ(0)
k⃗
⟩ =

∫
0≤x<Nalat

d3r e−
i
ℏ p⃗r⃗ ⟨r⃗ |ϕ(0)k ⟩ with p⃗ ∈

{ 2πℏ
Nalat

j ; j ∈ I
}

Eq. 9.90
=

N−1∑
j=0

∫
d3r e−

i
ℏ p⃗r⃗ ⟨r⃗ |χj⟩

1√
N
eikalatj

Eq. 9.93
=

N−1∑
j=0

1√
N
eikalatj e−

i
ℏ p⃗R⃗j

∫
d3r e−

i
ℏ p⃗(r⃗−R⃗j )⟨r⃗ − R⃗j |χ0⟩︸ ︷︷ ︸
⟨p⃗|χ0⟩

R⃗j=e⃗xalatj
= ⟨p⃗|χ0⟩

1√
N

N−1∑
j=0

ei(k−
1
ℏ p)alatj

︸ ︷︷ ︸
=Nδℏk,p

= ⟨p⃗|χ0⟩
√
Nδℏk,p (9.94)
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I used that a the discrete average of a plane wave over an equi-spaced grid for a full period vanishes,
except when it is a constant.11 That is

ρ(p) =
∑
k

fT,µ(ϵk)
∣∣∣⟨p⃗|ϕ(0)k ⟩∣∣∣2

= |⟨p⃗|χ0⟩|2
∑
k

fT,µ(ϵk)Nδp,ℏk

= N |⟨p⃗|χ0⟩|2 fT,µ
(
ϵ

(
1

ℏ
p

))
(9.95)

I selected the momenta on the discrete grid of k-points p = 2π
Naalat

j with j ∈ I.
We notice that the momentum density reproduces the Fermi distribution function, with an ad-

ditional modulation from the shape of the local orbitals. This result holds for zero and for finite
temperatures.

3 Introduce a cos-like potential, which doubles the lattice constant. Calculate the new eigenstates
and energies.

• The potential, which doubles the unit cell is

V̂ =
∑
j

|πj⟩V̄ cos
( π

alat︸︷︷︸
q

· alatj︸︷︷︸
Rj

)
⟨πj | =

∑
j

|πj⟩V̄ (−1)j⟨πj | (9.96)

• For each k-point, the new wave functions are superpositions of the ones from k and k + q,
where q = π/alat. The Brillouin zone of the perturbed system is half as large as that of the
unperturbed one. The k-points for the perturbed system are from the interval

kn ∈]−
π

2alat
,
π

2alat
] (9.97)

|ϕVk ⟩ = |ϕ0k⟩c1,k + |ϕ0k+q⟩c2,k (9.98)

• The Hamiltonian for the perturbed Hamiltonian is

Ĥ =
∑
k

(
|ϕ(0)k ⟩
|ϕ(0)k+q⟩

)(
ϵ(0)(k) V̄

V̄ ϵ(0)(k + π
a )

)(
⟨ϕ(0)k |
⟨ϕ(0)k+q |

)

=
∑
k

(
|ϕ(0)k ⟩
|ϕ(0)k+q⟩

)(
ϵ̄− 2t cos(ka) V̄

V̄ ϵ̄+ 2t cos(ka)

)(
⟨ϕ(0)k |
⟨ϕ(0)k+q |

)
(9.99)

• The eigenvalues are (
ϵ̄− 2t cos(ka)− ϵ

)(
ϵ̄+ 2t cos(ka)− ϵ

)
− V̄ 2 = 0

ϵV±(k) = ϵ̄±
√
V 2 + 4t2 cos2(ka) (9.100)

• The eigenvectors obey c⃗±(k) = (cos(γ±(k), sin(γ±(k))) are(
−2t cos(ka)∓

√
V 2 + 4t2 cos2(ka)

)
cos(γ±(k)) + V sin(γ±(k)) = 0

γ±(k) = atan

(
1

V

(
2t cos(ka)±

√
V 2 + 4t2 cos2(ka)

))
(9.101)

11This can be worked out by considering the sum as finite geometric series.
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The wave functions are

|ϕV±(k)⟩ = |ϕ
(0)
k ⟩ cos(γ±(k)) + |ϕ

(0)
k+q⟩ sin±(k) (9.102)

The momentum matrix element is

⟨p|ϕV±,k⟩ = ⟨p|ϕ
(0)
k ⟩ cos(γ±(k)) + ⟨p|ϕ

(0)
k+q⟩ sin±(k)

= ⟨p⃗|χ0⟩
√
Nδℏk,p cos(γ±(k)) + ⟨p⃗|χ0⟩

√
Nδℏk,p+ℏq sin(γ±(k))

= ⟨p⃗|χ0⟩
√
N

(
δℏk,p cos(γ±(k)) + δℏk,p+ℏq sin(γ±(k))

)
(9.103)

In the half-filled case, the states are filled for Bloch vectors −π/(2a) < k < π/(2a) in the
extended zone scheme. Each filled state contributes, two plane waves. A large contribution
cos2(γ−(k)) to the momentum density has a smaller momentum |p| < ℏπ/(2a) while the
second plane wave contributes with sin2(γ−(k)) at a momentum ℏπ/(2a) < |p|ℏπ/a.

Editor: This is probably still incorrect!!!

4 Calculate the momentum density of the perturbed system

For zero temperature and a half-filled band, we obtain the momentum density

ρ(p⃗) =
∑

n∈{+,−}

∑
k∈
]
− π
2alat

, π
2alat

] fT,µ(ϵ±,k)
∣∣∣⟨p⃗|ϕ(V )n,k ⟩

∣∣∣2
T=0,µ=ϵ̄
=

∑
k∈
]
− π
2alat

, π
2alat

]
∣∣∣⟨p⃗|ϕ(V )−,k⟩∣∣∣2

=
∑

k∈
]
− π
2alat

, π
2alat

]
∣∣∣⟨p⃗|χ0⟩∣∣∣2N(δℏk,p cos(γ−(k)) + δℏk,p+ℏq sin(γ−(k)))2

=
∑

k∈
]
− π
2alat

, π
2alat

]
∣∣∣⟨p⃗|χ0⟩∣∣∣2N(δℏk,p cos2(γ−(k)) + δℏ(k−q),p sin2(γ−(k))) (9.104)

Grapher-image: Draw fat bands with 100∆ ∈ {−5,−1, . . . , 5}, V = 0.3, t = 1 as function of
x = ka/π.

y(x) =

{
−
√
V 2 + t2 cos2(xπ) + ∆ cos2(γ−(xπ))

+
√
V 2 + t2 cos2(xπ) + ∆ sin2(γ−(xπ))

γ−(ka) = atan

(
1

V

(
t cos(ka)−

√
V 2 + t2 cos2(ka)

))
(9.105)
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In the case of an external potential discussed here, we obtain a momentum distribution, which does
not stop abruptly at the Fermi momentum as anticipated for a free-electron gas or the unperturbed
linear chain. We can discuss this effect, in analogy with the RPA, as the formation of electron-hole
pairs by the external potential. The electron-hole pairs mentioned here are those of the unperturbed
system. Here, the electron-hole pairs are not created by the Coulomb interaction between the
electrons but by an external potential. The momentum density has a smooth transition despite the
presence of a band gap.

Editor: Idea: Plot the band structure in the extended zone scheme using

± = s(k) =

{
−1 for |k | < π/(2a)

+1 for π/(2a) < |ka| < π/a
(9.106)



Chapter 10

Diagrammatic expansion of the
Green’s function

So far, we defined the Green’s function and we have shown what it is good for. Here, we explore one
of the most common ways to evaluate the Green’s functions, namely the perturbation expansion in
orders of the interaction. This expansion rests on Wick’s theorem.

Several ways for this diagrammatic expansions are around. (1) Feynman’s zero-temperature for-
malism for time-dependent phenomena, (2) Matsubara’s finite temperature formalism for equilibrium
properties[81], (3) Keldysh’s non-equilibrium formalism. As shown by Wagner in 1991[64], all these
approaches can be merged in the (4) non-equilibrium formalism using contour integrations. The
paper of Wagner is very recommendable and can be used alongside these lecture notes.

10.1 Interacting Green’s function expressed by non-interacting
ground states

Let me state the problem discussed in this chapter: the goal is to determine the Green’s function

GC(x, t, x ′, t ′)
Eq. 7.16
=

1

iℏ
Tr
{
ρ̂
(W )
T,µ TC

(
ψ̂H(x⃗ , t)ψ̂

+
H(x⃗

′, t ′)
)}
; (10.1)

where the state operator ρ̂(W )T,µ of the grand canonical ensemble with Ĥ(W ) = ĥ + Ŵ is

ρ̂
(W )
T,µ

Eq. ??
=

1

ZT,µ
e−β(Ĥ

(W )−µN̂) (10.2)

and the partition function is

ZT,µ
Eq. ??
= Tr

{
e−β(Ĥ

(W )−µN̂)
}
. (10.3)

10.1.1 From Heisenberg to interaction picture:

Due to the presence of the Heisenberg operators in Eq. 10.1 and because of the statistical operator,
we need to deal with exponentials of the interacting Hamiltonian Ĥ(W ). For this problem, it is
convenient to switch from the Heisenberg picture to the interaction picture.

The interaction picture, which will be introduced below, limits the time-evolution of operators to
the non-interacting Hamiltonian ĥ. The interaction Ŵ is moved into the propagator for the states.
The diagrammatic expansion of this propagator will then express it in terms of non-interacting Green’s
functions and the interaction matrix elements.

295
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INTERACTION PICTURE

With the operators ÂI and the states |ψI⟩ in the interaction picture

ÂI(t) = Û (0)S (0, t)︸ ︷︷ ︸
TCe−

i
ℏ
∫ 0
t dt

′ ĥ(t′)

ÂS(t) Û
(0)

S (t, 0)︸ ︷︷ ︸
TCe−

i
ℏ
∫ t
0 dt

′ ĥ(t′)

(10.4)

|ΨI(t)⟩ = Û (0)S (0, t)︸ ︷︷ ︸
TCe−

i
ℏ
∫ t
0 dt

′ ĥ(t′)

|ΨS(t)⟩ (10.5)

the equations of motion are

iℏ∂t ÂI(t) =
[
ÂI(t), ĥI(t)

]
−
+ iℏ

(
∂t Â
)
I

iℏ∂t |ΨI(t)⟩ = ŴI(t)|ΨI(t)⟩ (10.6)

Û (0)S (t ′, t) propagates the wave function under the action of the non-interacting Hamiltonian ĥ(t),

i.e. |ΨS(t ′)⟩ = Û
(0)

S (t
′, t)|ΨS(t)⟩, when iℏ∂t |ΨS(t)⟩ = ĥ(t)|ΨS(t)⟩.

The Heisenberg picture has been introduced earlier in Eq. 6.40 on p. 236. It is shown here for
comparison

HEISENBERG PICTURE

With the operators ÂH and the states |ψH⟩ in the interaction picture

ÂH(t) = Û (W )S (0, t)︸ ︷︷ ︸
TCe−

i
ℏ
∫ 0
t dt

′ Ĥ(t′)

ÂS(t) Û
(W )

S (t, 0)︸ ︷︷ ︸
TCe−

i
ℏ
∫ t
0 dt

′ Ĥ(t′)

(10.7)

|ΨH(t)⟩ = |ΨS(0)⟩ (10.8)

the equations of motion are

iℏ∂t ÂH(t) =
[
ÂH(t), ĤS(t)

]
−
+ iℏ

(
∂t Â
)
H

iℏ∂t |ΨH(t)⟩ = 0 (10.9)

Û (W )S (t ′, t) propagates the wave function under the action of the interacting Hamiltonian Ĥ(t) =

ĥ(t) + Ŵ (t), i.e. |ΨS(t ′)⟩ = Û
(W )

S (t ′, t)|ΨS(t)⟩, when iℏ∂t |ΨS(t)⟩ = Ĥ(t)|ΨS(t)⟩.

Let me translate a general Heisenberg operator ÂH(t) into the interaction picture, where ÂS(t) is
the corresponding operator in the Schrödinger picture and ÂI(t) is the operator in the interaction
picture.

ÂH(t) = Û
(W )

S (0, t)ÂS(t) Û
(W )

S (t, 0)

=

1̂︷ ︸︸ ︷
Û (0)S (0, 0) Û

(W )

S (0, t) Û (0)S (t, 0)︸ ︷︷ ︸
Û (W )I (0,t)

Û (0)S (0, t)ÂS(t) Û
(0)

S (t, 0)︸ ︷︷ ︸
ÂI(t)

Û (0)S (0, t) Û
(W )

S (t, 0)

1̂︷ ︸︸ ︷
Û (0)S (0, 0)︸ ︷︷ ︸

Û (W )I (t,0)

= Û (W )I (0, t)ÂI(t) Û
(W )

I (t, 0) (10.10)

We have introduced the propagator in the interaction picture as

Û (W )I (t, t ′)
def
= Û (0)S (0, t) Û

(W )

S (t, t ′) Û (0)S (t ′, 0) (10.11)
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Fig. 10.1: Cartoon as memory hook for the interaction picture. A particle (here classical) propagates
while repeatedly scattering at scattering centers, which may be due to the interaction with other
particles. Each scattering event can be replaced by a change of the initial state by propagating the
scattered trajectory backward in time without scattering. Thus, at each time, the state is replaced
by the initial condition, which produces the same state without scattering.

10.1.2 S-matrix

Let me now rewrite the Green’s function in terms of operators in the interaction picture.

GC(x⃗ , t, x⃗ ′, t ′)
Eq. 10.1
=

1

iℏ
Tr
{
ρ̂
(W )
T,µ TC

(
ψ̂H(x⃗ , t)ψ̂

+
H(x⃗

′, t ′)
)}

Eq. 10.10
=

1

iℏ
Tr
{
ρ̂
(W )
T,µ TC Û

(W )

I (0, t)ψ̂I(x⃗ , t) Û (W )I (t, t ′)︸ ︷︷ ︸
Û (W )I (t,0) Û (W )I (0,t ′)

ψ̂+I (x⃗
′, t ′) Û (W )I (t ′, 0)

}

=
1

iℏ
Tr
{
ρ̂
(W )
T,µ TCŜI,Cψ̂I(x⃗ , t)ψ̂

+
I (x⃗

′, t ′)
}

(10.12)

In the last step, I combined the propagators in a single operator, the S-matrix ŜI,C, which I will define
below in more detail. The S-matrix1 is the propagator in the interaction picture along the chosen
contour C. As a result of the particle-number conservation, the Hamiltonian contains only terms
with an even number of fermionic operators. Therefore, sign-changes due to the interchanges of two
Hamilton operators need not be considered.

S-matrix: The propagator in the interaction picture along the entire contour is the S-matrix ŜI,C.
For a general time contour C, the S-matrix is

ŜI,C
def
= lim

N→∞

N∏
j=1

Û (W )I (tj , tj−1) with tj = τ
(
si +

sf − si
N

· j
)

(10.13)

where si and sf mark the initial and final values of the time contour and where τ(s) defines the time
contour.

The S-matrix can alternatively be expressed as time-ordered exponential

SI,C
def
= TC exp

(
−
i

ℏ

∫
C
dt ŴI(t)

)
(10.14)

1My notation differs somewhat from the common definitions. The S matrix is often used as propagator with explicit
time arguments.
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where the time integral proceeds along the time contour. This expression is analogous to Eq. 4.40
on p. 170.

With the help of the time-ordering operator, the exponential can be expanded as power-series
expansion in the interaction

SI,C
Eq. 10.14
= TC exp

(
−
i

ℏ

∫
C
dt ŴI(t)

)
= TC

∞∑
n=0

1

n!

(
−
i

ℏ

∫
C
dt ŴI(t)

)n
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
C
dt1 · · ·

∫
C
dtn TCŴI(t1) · · · ŴI(tn) (10.15)

The S-matrix should be considered as a sum of product of many creation and annihilation operators,
each having its own time argument. This is required so that the time-ordering operator can place
every operator into the correct position along the contour. It is a bit misleading that these time
arguments are implicit and do not show up in the expression of the S-matrix.

The S-matrix for the specific time contour C is

ŜI,C = Û
(W )

I (0,∞) Û (W )I (∞,−∞) Û (W )I (−∞, 0) (10.16)

The observant reader will notice that this S-matrix is just the unit operator. The S-matrix becomes
useful in the context of a time-ordered product with other operators. Then the S-matrix is split up
into individual propagators in between the other operators. In case of doubt one should always refer
to the definition Eq. 10.13, which divides the S-matrix into propagators along infinitesimally short
time steps.2

With the help of the time contour and the S-matrix defined on it, the Green’s function Eq. 10.12
obtains the simpler form of Eq. 10.17.

GREEN’S FUNCTION WITH TIME CONTOUR

GC(x⃗ , t, x⃗ ′, t ′)
Eq. 10.12
=

1

iℏ
Tr
{
ρ̂
(W )
T,µ TCŜI,Cψ̂I(x⃗ , t)ψ̂

+
I (x⃗

′, t ′)
}

(10.17)

where the time contour C in the complex-time plane proceeds along the points

0→ −∞→ min(t, t ′)→ max(t, t ′)→∞→ 0 (10.18)

−

Re(t)

Im(t)

tt’

00

The drawing does not imply that the time is displaced from the real time axis into the complex plane.

2This is one of the origins of the path-integral formulation of quantum physics.
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Uniqueness of initial time: The ensemble is defined such that it is in thermal equilibrium at time
t = 0. The Hamiltonian usually drives the system out of thermal equilibrium as it propagates along
the time contour. Choosing the time, at which the ensemble is in equilibrium, at time t = 0 is not
a restriction, because a global time translation can shift it to any other time without changing the
physical processes.

10.1.3 Interacting from non-interacting ensemble: complex-time contour

The Green’s function in the form of Eq. 10.12 requires not only the propagator ŜI,C of the interacting
system but also the state operator ρ̂(W )T,µ for the interacting system. Below, I will show how the

interaction contained in the state operator ρ̂(W )T,µ can be incorporated into the S-matrix by adjusting
the time contour. The resulting contour will leave the real-time axis and extend into the complex
plane. This justifies, why I introduced the propagator for arbitrary contours in the complex-time
plane.

I exploit 3 the similarity between the statistical operator ρ̂(W )T,µ =
1

Z
(W )
T,µ

e−β(Ĥ
(W )−µN̂) in the grand

ensemble with the propagator Û(t, t ′) = e 1iℏ Ĥ(W )(t−t ′) for a time-independent Hamiltonian.

The von-Neumann density matrix ρ̂(W )T,µ of the interacting system is related to the exponential of

the Hamiltonian and the partition function Z(W )T,µ = Tr
(
exp[−β(Ĥ(W ) − µN̂)]

)
. With the help of the

propagator in imaginary time, it can be related to the density matrix ρ̂(0)T,µ of the non-interacting system

and its partition function Z(0)T,µ = Tr
(
exp[−β(ĥ − µN̂)]

)
. The following steps rely on particle-number

conservation, i.e. that the particle-number operator commutates with the Hamiltonian independent
of the interaction strength.

ρ̂
(W )
T,µ =

1

Z
(W )
T,µ

e−β(Ĥ
(W )−µN̂)

=
1

Z
(W )
T,µ

eβµN̂ e−
i
ℏ Ĥ
(W )(−iℏβ−0)

[Ĥ,N̂]−=0]
=

1

Z
(W )
T,µ

Z
(0)
T,µ

Z
(0)
T,µ︸ ︷︷ ︸
=1

e−β(ĥ−µN̂)e
i
ℏ ĥ(−iℏβ)︸ ︷︷ ︸

=eβµN̂

e−
i
ℏ Ĥ
(W )(−iℏβ−0) e−

i
ℏ ĥ(0)︸ ︷︷ ︸
=1̂

[ĥ,N̂]−=0]
=

Z
(0)
T,µ

Z
(W )
T,µ

1

Z
(0)
T,µ

e−β(ĥ−µN̂)︸ ︷︷ ︸
ρ̂
(0)
T,µ

e
i
ℏ ĥ(−iℏβ)e−

i
ℏ Ĥ
(W )(−iℏβ−0)e−

i
ℏ ĥ(0)︸ ︷︷ ︸

Û (W )I (−iℏβ,0) Eq. 10.11

=
Z
(0)
T,µ

Z
(W )
T,µ

ρ̂
(0)
T,µ Û

(W )

I (−iℏβ, 0) (10.19)

The interesting point is that the interaction can be absorbed in a propagator along the imaginary axis
of the complex-time plane.

The factor Z(0)T,µ/Z
(W )
T,µ can be rewritten using the normalization condition of the state operator

3Literature:

• Joseph Maciejko, An introduction to Nonequilibrium Many-Body Theory, Lecture notes (2007) (http://www.
physics.arizona.edu/~stafford/Courses/560A/nonequilibrium.pdf, retrieved July 2, 2016)

• Robert van Leeuwen and Nils Erik Dahlen, An Introduction to Nonequilibrium Green Functions (2005)
(http://theochem.chem.rug.nl/research/vanleeuwen/literature/NGF.pdf retrieved July,2 2016); Lecture
Notes Collection FreeScience.info ID1576 (https://archive.org/details/R_van_Leeuwen_and_N_E_Dahlen_
_An_Introduction_to_Nonequilibrium_Green_Functions)

http://www.physics.arizona.edu/~stafford/Courses/560A/nonequilibrium.pdf
http://www.physics.arizona.edu/~stafford/Courses/560A/nonequilibrium.pdf
http://theochem.chem.rug.nl/research/vanleeuwen/literature/NGF.pdf
https://archive.org/details/R_van_Leeuwen_and_N_E_Dahlen__An_Introduction_to_Nonequilibrium_Green_Functions
https://archive.org/details/R_van_Leeuwen_and_N_E_Dahlen__An_Introduction_to_Nonequilibrium_Green_Functions
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ρ̂
(W )
T,µ

1 = Tr
{
ρ̂
(W )
T,µ

}
Eq. 10.19
=

Z
(0)
T,µ

Z
(W )
T,µ

Tr
{
ρ̂
(0)
T,µ Û

(W )

I (−iℏβ, 0)
}

⇒
Z
(0)
T,µ

Z
(W )
T,µ

=
1

Tr
{
ρ̂
(0)
T,µ Û

(W )

I (−iℏβ, 0)
} = 1

Tr
{
ρ̂
(0)
T,µTCŜI,C

} (10.20)

The contour is now the one from t = 0 along the imaginary time axis towards −iℏβ. Furthermore, I
extended the propagator by a closed contour around the real axis. This closed circle is a unit operator
and thus does not change the result.

Remember, that the S-matrix should be considered as a product of short-time propagators between
infinitesimally spaced points along the time contour, so that the time-ordering operator can divide
it into the proper pieces and insert it between any other operators that occur in the time-ordered
product.

Insertion of Eq. 10.20 into Eq. 10.19 for the density matrix of the interacting system yields

ρ̂
(W )
T,µ =

ρ̂
(0)
T,µ Û

(W )

I (−iℏβ, 0)

Tr
{
ρ̂
(0)
T,µTCŜI,C

} (10.21)

where the S-matrix is evaluated for the new contour 0→ −∞→ +∞→ 0→ −iℏβ.
Insertion of this density matrix for the grand potential into the Green’s function Eq. 10.17 yields

our result, which provides the Green’s function as an expectation value of the density operator of the
non-interacting system. The interaction appears only in one object, the S-matrix.
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GREEN’S FUNCTION AS EXPECTATION VALUE OF THE NON-INTERACTING SYSTEM

GC(x⃗ , t, x⃗ ′, t ′)
Eq. 10.17
=

1

iℏ

Tr
{
ρ̂
(0)
T,µTCŜI,Cψ̂I(x⃗ , t)ψ̂

+
I (x⃗

′, t ′)
}

Tr
{
ρ̂
(0)
T,µTCŜI,C

}
⇔ GCα,β(t, t

′)
Eq. 10.17
=

1

iℏ

Tr
{
ρ̂
(0)
T,µTCŜI,C ĉI,α(t)ĉ

+
I,β(t

′)
}

Tr
{
ρ̂
(0)
T,µTCŜI,C

} (10.22)

where the time contour C in the complex-time plane proceeds along the points

0→ −∞→ min(t, t ′)→ max(t, t ′)→∞→ 0→ −iℏβ (10.23)

and the S-matrix

ŜI,C = TC exp
(
−
i

ℏ

∫
C
dt ŴI(t)

)
(10.24)

is the propagator along the same contour in the interaction picture.

t

−

t’ Re(t)

Im(t)

0

−i hβ

In practice, other contours are in use, which may be obtained by deforming the one given here.

The big advantage is that we work now with the density operator of the non-interacting system,
which is converted into that of the interacting system by a propagation along the imaginary-time
axis towards the real-time axis. Inspection of the expression for the Green’s function shows that the
interaction is now entirely contained in the propagator. Wick’s theorem shows how the perturbation
expansion in terms of interaction strength can be accomplished.

Grand potential: The partition function will establish an important link to the grand potential,
namely

Ω
(W )
T,µ

Eq. ??
= −kBT ln

(
Z
(W )
T,µ

)
Eq. 10.20
= −kBT ln

(
Z
(0)
T,µ

)
︸ ︷︷ ︸

Ω
(0)
T,µ

−kBT ln
(
Tr
{
ρ̂
(0)
T,µTCŜI,C

})
(10.25)

This equation of the grand potential, respectively its interaction part, will be converted below,
Eq. 10.59 on p. 316, into a functional of the interaction matrix elements and the Green’s func-
tion. In this form, the grand potential will become the key quantity for the diagrammatic expansion
of the Green’s function.

The grand potential of a non-interacting electron gas in a Hamiltonian ĥ has been worked out
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earlier, in Eq. ??, as

Ω
(0)
T,µ = −kBT ln

(
Z
(0)
T,µ

)
Eq. ??
= −kBT Tr

{
ln
(
1 + e−β(ĥ−µ1̂)︸ ︷︷ ︸(
1̂−fT,µ(ĥ)

)−1
)}

(10.26)

which can be expressed4 in terms of the equilibrium one-particle-reduced density matrix ρ̂(1),0 =[
1 + eβ(ĥ−µ1̂)

]−1
of the non-interacting system, or in terms of the non-interacting Green’s function

as

Ω
(0)
T,µ = +kBTTr

[
ln
(
1̂− ρ̂(1),0

) ]
Eq. 8.28
= +kBTTr

[
ln

(
1̂ + iℏ lim

t ′→t+
Ĝ(0)(t, t ′)

)]
(10.28)

Editor: See also section K.4.7 on p. 582 and Eq. 10.70 on p. 319. There is probably
some material duplicated.

10.2 Wick’s theorem

We can obtain the Green’s function using Eq. 10.22 as the ratio of two expectation values in the
ensemble of non-interacting states. The interaction is completely contained in the S-matrix. The
interaction is a product of creation and annihilation operators in the interaction picture. Thus, a
perturbation expansion of the S-matrix in terms of the interaction strength

Tr
{
ρ̂
(0)
T,µTCŜI,C ĉI,α(t)ĉ

+
I,β(t

′)
}

Eq. 10.14
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
dt1 · · · dtn

×Tr
{
ρ̂
(0)
T,µTCŴI(tn)ŴI(tn−1) · · · ŴI(t1)ĉI,α(t)ĉ

+
I,β(t

′)
}

(10.29)

will decompose the numerator and the denominator separately into a sum of expectation values of
products of creation and annihilation operators in the interaction picture.

Wick’s theorem shows how this expectation value of time-ordered products of creation and
annihilation operators can be expressed as sum over products of non-interacting Green’s functions.

While the original version of Wick’s theorem[57] has been developed in the 1950’s, we present
here what is also called the generalized Wick’s theorem. The generalized Wick’s theorem has been
proved by Matsubara[81]. The central part of Wick’s theorem for finite temperatures rests on the
so-called5 trace theorem proven by Gaudin[82].

The generalized Wick’s theorem has also been presented in the book Fetter and Walecka (Section
24).[3]

Before we arrive at the central points of Wick’s theorem, let me introduce a few notations, that
will simplify the derivation.

10.2.1 Notation: Incoming and outgoing indices

In the following, I will try to adhere to the convention to label an annihilation operator with an
index i , which stands for “incoming” . A creation operator will be labeled by o, which stands for
“outgoing” . This is inspired by the Feynman diagrams, that will be introduced later: A Green’s
function Gi ,o(ti , to) is represented by an arrow, which begins with an outgoing index and ends at an
incoming index. When there are several incoming (or outgoing indices, I will attach another index as
in Gi1,o1(ti1 , to1).

4

ρ̂(1) =
[
1 + eβ(ĥ−µ1̂)

]−1
⇒

1− ρ̂(1)

ρ̂(1)
= eβ(ĥ−µ1̂) ⇒ 1 + e−β(ĥ−µ1̂) = 1 +

ρ̂(1)

1− ρ̂(1)
=

1

1̂− ρ̂(1)
(10.27)

5Naming and reference from “Wick’s Theorem at Finite temperature”, T.S. Evans and D.A. Steer, arxiv:hep-
ph/9601268
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10.2.2 Time order inside the interaction

Special care is required when translating the interaction into the interaction picture, because the
interaction contains four operators with the same time argument. As a result, the time order of
these operators is ambiguous. This problem was not present, when we introduced the time ordering
in the context of one-particle quantum mechanics.

Each interaction operator is composed of creation and annihilation operators.

Ŵ =
1

2

∑
i1,o1,i2,o2

Wo1,o2,i1,i2 ĉ
†
S,o1

ĉ†S,o2 ĉS,i2 ĉS,i1 (10.30)

which are transformed into the interaction picture

ŴI(t) = Û
(0)
(0, t)ŴS(t) Û

(0)
(t, 0)

=
1

2

∑
i1,o1,i2,o2

Wo1,o2,i1,i2 Û
(0)
(0, t)ĉ†S,o1 ĉ

†
S,o2

ĉS,i2 ĉS,i1 Û
(0)
(t, 0)

=
1

2

∑
i1,o1,i2,o2

Wo1,o2,i1,i2

× ︸ ︷︷ ︸
ĉ+I,o1
(t+)

Û (0)(0, t)ĉ†S,o1

1̂︷ ︸︸ ︷
Û (0)(t, 0) Û (0)(0, t) ĉ†S,o2

1̂︷ ︸︸ ︷
Û (0)(t, 0) Û (0)(0, t) ĉS,i2

1̂︷ ︸︸ ︷
Û (0)(t, 0) Û (0)(0, t) ĉS,i1 Û

(0)
(t, 0)

=
1

2

∑
i1,o1,i2,o2

Wo1,o2,i1,i2TC
{
ĉ+I,o1(t

+)ĉ+I,o2(t
+)ĉI,i2(t)ĉI,i1(t)

}
(10.31)

In the last step, I introduced the contour time-ordering operator TC. The time argument for
the creation operators has been shifted forward by an infinitesimal amount6 δ to the new time
t+ = t(s + δ). This is required, because the time-ordered product would otherwise be undefined:
If creation and annihilation operators have the same time argument, the time-ordered product can
produce two different values, depending on which time argument is considered later than the other.

TC ĉ+α (t+)ĉβ(t) = ĉ+α (t+)ĉβ(t) = [ĉ+α (t+), ĉβ(t)]+ − ĉβ(t)ĉ+α (t+)
TC ĉ+α (t)ĉβ(t+) = −ĉβ(t+)ĉ+α (t) (10.32)

The two results differ by an anticommutator. This ambiguity does not exist for the product of either
two annihilation operators or of two creation operators, because their anticommutator vanishes. The
ambiguity is lifted by ensuring that the time arguments of creation and annihilation operators are
different, i.e. by distinguishing t and t+. By increasing the time of the creation operators they are
brought into the order they occur in the interaction.

This feature, namely the distinction of t and t+, has important consequences for the evaluation
of Feynman diagrams lateron.

10.2.3 Generalized Wick theorem

The perturbation expansion of the S-matrix used above in Eq. 10.29 shows that we need to work
out the expectation value of time-ordered products of creation and annihilation operators in the
interaction picture. For the denominator of the Green’s function Eq. 10.22, the products result
directly from the expansion of the S-matrix. The numerator of Eq. 10.22 has one additional pair of
creation and annihilation operators connected to the arguments of the Green’s function.

6For the notation see Eq. 8.31 on p. 260
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All these expectation values have the form

Y
def
= Tr

{
ρ̂
(0)
T,µÂ1(t1) · · · ÂM(tM)

}
with t1 ≥ t2 ≥ . . . ≥ tM (10.33)

The operators Âj(t) are creation or annihilation operators in the interaction picture with a time-
dependent, non-interacting Hamiltonian ĥ(t). The initial ensemble is defined by thermal equilibrium
with the initial, non-interacting Hamiltonian ĥ(0). The corresponding von-Neumann density matrix
is

ρ̂
(0)
T,µ =

1

Z
(0)
T,µ

e−β(ĥ(0)−µN̂) (10.34)

The gist of Wick’s theorem is to map Y in Eq. 10.33, a complicated trace in Fock space, onto
expectation values in the one-particle Hilbert space. The result will be a large sum of products of
non-interacting Green’s functions.

Rather than working out Wick’s theorem with all detail in the main text, I shifted the proof into
the appendix K on p. 561. Here, I will only sketch the main steps.

As shown by Eq. K.1 and Eq. K.2 on p. 562, the creation and annihilation operators in the
interaction picture are equal to the ones in the Schrödinger picture multiplied with the one-particle
propagator of the (non-interacting) electrons.

ĉ†I,α(t)
Eq. K.1
=

∑
β

ĉ†S,β ⟨χβ |Û(0, t)|πα⟩ (10.35)

ĉI,α(t)
Eq. K.2
=

∑
β

⟨πα|Û(t, 0)|χβ⟩ ĉS,β (10.36)

As a consequence, the anticommutators Eqs. K.51, K.52 and K.53 of creation and annihilation
operators in the interaction picture are not operators in Fock space but numbers: namely the matrix
elements of the one-particle propagator.[

ĉI,α(t2), ĉ
+
I,β(t1)

]
+

Eq. K.51
=

〈
πα

∣∣∣Û(t2, t1)∣∣∣πβ〉1̂ (10.37)

The 1̂ on the right-hand side is the unit operator in Fock space. The anticommutators between two
creation operators Eq. K.52, respectively between to annihilation operators K.53, vanish as in the
Schrödinger picture.

Furthermore, as shown in Eq. K.56 and Eq. K.57, the product of a creation or annihilation operator
with the density matrix can be interchanged while attaching an additional factor.

As shown in section K.4, each operator in Y can be permutated using the anticommutators in
a cycle until it stands again in the same position of the product. While interchanging the operator
with the density matrix, the one-particle reduced density matrix emerges. This term, together with
the anticommutator combines in a non-trivial manner, to the Green’s function of the non-interacting
system. The result of is a sum of terms, each containing one Green’s function and a trace of a
time-ordered product with two operators less.

The same procedure can be applied recursively on the result, until a large sum with M! terms
emerges. Each term contains a product of M Green’s function and a fully antisymmetric tensor,
keeping track of the sign changes.
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10.2.4 Generalized Wick’s theorem at finite temperature

Thus, we obtain the central message of Wick’s theorem

WICK’S THEOREM

Wick’s theorem maps the thermal expectation value of a time-ordered product of creation and an-
nihilation operators in the interaction picture Âj ∈ {ĉ+I,α(t), ĉI,α(t)}, onto a sum of products of
non-interacting contour-ordered Green’s functions. The ensemble is determined by thermal equilib-
rium with the initial (t = 0), non-interacting Hamiltonian ĥ(0). The corresponding von-Neumann
density matrix is ρ̂vN,(0)T,µ = 1

Z
(0)
T,µ

e−β(ĥ(0)−µN̂). TC is the time-ordering operator along the contour C in

the complex-time plane.

Tr
{
ρ̂
vN,(0)
T,µ TC

L∏
j=1

ĉI,ij (t
′
j )ĉ
+
I,oj
(tj)
}

Eq. K.100
=

∑
P⃗

ϵP1,...,PL(iℏ)L
L∏
j=1

G
C,(0)
iPj ,oj
(t ′Pj , tj) . (10.38)

ϵP1,...,PL is the fully antisymmetric tensor and the sum includes all integer vectors with elements
Pj ∈ {1, . . . , L}. The fully antisymmetric tensor ϵP1,P2,...,PM selects the permutation vectors with
Pj ̸= Pk .
The one-particle basisset {|χα⟩} defining the creation and annihilation operators may be non-
orthonormal. The overlap matrix is Sα,β = ⟨χα|χβ⟩. Each orbital |χα⟩ has a projector function
⟨πα| =

∑
β S
−1
α,β⟨χβ |. The anticommutator relation of annihilation and creation operators in the

Schrödinger picture is
[
ĉα, ĉ

†
β

]
+
= ⟨πα|πβ⟩.

The non-interacting contour-ordered Green’s function G
C(0)
i ,o (t

′, t) has been defined in Eq. 7.27
(p.247) as

G
C,(0)
i ,o (t

′, t)
Eq. 7.27
=

1

iℏ

〈
πi

∣∣∣Û(t ′, 0){θC(t − t ′)(1̂− ρ̂(1)(0)T,µ

)︸ ︷︷ ︸
electrons

− θC(t ′ − t)ρ̂(1)(0)T,µ︸ ︷︷ ︸
holes

}
Û(0, t)

∣∣∣πo〉

The time-ordering operator TC rearranges the product in increasing order along some directed contour
in the complex plane. The step function θC(t− t ′) refers to the time ordering along the time contour
consistent with the definition of the time-ordering operator.
Wick’s theorem can also be expressed by a determinant

Tr
{
ρ̂
(0)
T,µTC

L∏
j=1

ĉI,αj (tj)ĉ
+
I,βj
(t ′j )
}
= (iℏ)L det

∣∣∣∣∣∣∣∣∣∣∣∣∣

G
C,(0)
α1,β1
(t1, t

′
1) G

C,(0)
α1,β2
(t1, t

′
2) . . .

G
C,(0)
α2,β1
(t2, t

′
1) G

C,(0)
α2,β2
(t2, t

′
2) . . .

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
(10.39)
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10.3 Perturbation expansion of the Green’s function

Let us use Wick’s theorem to evaluate the Green’s function.

Gα,β(t, t
′)

Eq. 10.22
=

1

iℏ

Tr
{
ρ̂
(0)
T,µTCŜI,C ĉI,α(t)ĉ

+
I,β(t

′)
}

Tr
{
ρ̂(0)TCŜI,C

} (10.40)

10.3.1 Outline

In the following sections, we will go through several theorems to set up a diagrammatic expansion of
the Green’s function and to simplify this expansion.

The steps, we will go through are

1. Enumerate and evaluate diagrams in the denominator of Eq. 10.40: closed diagrams

2. Obtain diagrams of the numerator of Eq. 10.40 from those in the denominator.

3. Green’s function from “grand potential functional”

4. sign theorem (section 11.3)

5. linked-cluster theorem (section 11.4)

6. topologically inequivalent diagrams and symmetry factors (section 11.5)

When we are done, we arrived at an expression for the diagrammatic expansion of a grand potential
QT,µ[G(0)], which is a functional of the non-interacting Green’s function. Each diagram has a value,
Eq. 11.36, respectively Eq. 11.50, which itself is a functional of the non-interacting Green’s function.

The derivative of the grand potential with the Green’s function provides the reducible self energy,
from which the interacting Green’s function is obtained via Dyson’s equation Eq. 10.60. I will call
the reducible self energy also the total self energy.

10.3.2 Interaction with two time arguments

Editor: Unfinished!!!!
It will be convenient to introduce the interaction with two time arguments rather than one. The

reason is two-fold:

• it will simplify the expression for a Feynman diagram introduced later.

• Renormalization will later introduce a screened interaction, which will replace the bare Coulomb
interaction in some of the expressions. The screened interaction is retarded and has naturally
two time arguments.

Eq. K.95

ŴI(t) = (10.41)

10.3.3 Expansion of the S-matrix

The S-matrix can be expanded into a Taylor expansion
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ŜI,C
Eq. 10.14
= TC exp

(
−
i

ℏ

∫
C
dt ŴI(t)

)
Eq. 10.15
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
C
dt1 · · ·

∫
C
dtn TCŴI(t1) · · · ŴI(tn)

Eq. K.95
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
C
dt1 · · ·

∫
C
dtn

∑
o1,i1,...,o2n,i2n

[
1

2n

n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j (tj)

]

×TC
[
ĉI,i1(t1)ĉ

+
I,o1
(t+1 )ĉI,i2(t1)ĉ

+
I,o2
(t+1 )︸ ︷︷ ︸

from ŴI(t1)

· · · ĉI,i2n−1(tn)ĉ+I,o2n−1(t
+
n )ĉI,i2n(tn)ĉ

+
I,o2n
(t+n )︸ ︷︷ ︸

from ŴI(tn)

]

(10.42)

The creation and annihilation operators have been brought into the desired order according to Eq. ??
on p. ??, and the time argument of the creation operators in each interaction term has been shifted
according to Eq. K.95 on p. 581. The time dependence in the interaction matrix elements is present
for the adiabatic switching factor in the zero-temperature theory.

The matrix elements are

Wo1,o2,i1,i2
Eq. 3.51
=

∫
d4x

∫
d4x ′

e2χ∗o1(x⃗)χ
∗
o2(x⃗

′)χi1(x⃗)χi2(x⃗
′)

4πϵ0|r⃗ − r⃗ ′|
(10.43)

It will be convenient to double the number of time variables.

ŜI,C
Eq. 10.42
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
C
dt1 · · ·

∫
C
dt2n

∑
o1,i1,...,o2n,i2n

[
1

2n

n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j δC(t2j−1 − t2j)
]

×TC
[
ĉI,i1(t1)ĉ

+
I,o1
(t+1 )ĉI,i2(t2)ĉ

+
I,o2
(t+2 )︸ ︷︷ ︸

from ŴI(t1, t2)

· · · ĉI,i2n−1(t2n−1)ĉ+I,o2n−1(t
+
2n−1)ĉI,i2n(t2n)ĉ

+
I,o2n
(t+2n)︸ ︷︷ ︸

from ŴI(t2n−1, t2n)

]

(10.44)

While it appears at first as an unnecessary complication, this choice has a number of advantages

• it will simplify the expression for a Feynman diagram introduced later by treating time and
orbital arguments in an analogous manner.

• Renormalization will later introduce a screened interaction, which will replace the bare Coulomb
interaction in some of the expressions. The screened interaction is retarded and has naturally
two time arguments.

10.3.4 Expansion of the denominator of the Green’s function

The expansion Eq. 10.44 of the S-matrix is inserted into denominator and numerator of the Green’s
function Eq. 10.40.

Let me investigate the denominator first. Firstly, it is simpler. Secondly, the terms of the
numerator can be derived from those of the denominator. This will be shown below.

In the denominator of the Green’s function Eq. 10.40, we insert the expansion of the S-matrix
Eq. 10.44, which turns it into a large sum of operator products. The contour time-ordered operator
products in the sum are resolved via Wick’s theorem Eq. 10.38 on p. 305. This turns the denominator



308 10 DIAGRAMMATIC EXPANSION OF THE GREEN’S FUNCTION

of the Green’s function into a sum of products of the non-interacting Green’s function.

Tr
{
ρ̂
(0)
T,µTCŜI,C

}
Eq. 10.44
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
C
dt1 · · ·

∫
C
dt2n

∑
o1,i1,...,o2n,i2n

[
1

2n

n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j δC(t2j−1 − t2j)
]

×Tr
{
ρ̂
(0)
T,µTC

[
ĉI,i1(t1)ĉ

+
I,o1
(t+1 )ĉI,i2(t2)ĉ

+
I,o2
(t+2 )︸ ︷︷ ︸

from WI(t1, t2))

· · · ĉI,i2n−1(t2n−1)ĉ+I,o2n−1(t
+
2n−1)ĉI,i2n(t2n)ĉ

+
I,o2n
(t+2n)︸ ︷︷ ︸

from W (tn)

}
Eq. 10.38
=

∞∑
n=0

1

n!

(
1

iℏ

)n ∫
C
dt1 · · ·

∫
C
dt2n

∑
o1,i1,...,o2n,i2n

[
1

2n

n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j δC(t2j−1 − t2j)
]

× (iℏ)2n
∑
P⃗

ϵP1,...,P2nG
(0)
iP1 ,o1

(
tP1 , t

+
1

)
· · ·G(0)iP2n ,o2n

(
tPP2n , t

+
2n

)
(10.45)

=

∞∑
n=0

1

n!2n

∑
P⃗∈An

V (P⃗) (10.46)

The sum over the permutation vectors P⃗ ∈ An includes all 2n-dimensional vectors with values
Pj ∈ {1, 2, . . . , 2n}. The nonzero terms are related to permutation vectors P⃗ that are obtained as
permutation of the components of the vector (1, . . . , 2n). This selection is enforced by the fully
antisymmetric tensor ϵP1,...,P2n , which also includes the proper sign.

The time argument t+j of the creation operators is infinitesimally displaced forward in time relative
to tj .

Instantaneous interaction: The reason for this complicated mapping of the time arguments is that
the Coulomb interaction is treated as instantaneous. This is a consequence of the non-relativistic
description employed here. In a relativistic formulation the Coulomb interaction v(r⃗ , t, r⃗ ′, t ′) would
be retarded, so that each spatial coordinate of the interaction would also have in independent time
argument. Consequently, there would be twice as many time integrations in Eq. 10.45. In the non-
relativistic formulation the interaction is of the form v(r⃗ , t, r⃗ ′, t ′) = e2

4πϵ0|r⃗−r⃗ ′|
δ(t − t ′). The delta

function and half of the integrations cancel each other leading to the form of Eq. 10.45 above.

10.3.5 Diagrams of the denominator

It will be useful to represent the terms in the denominator as follows

SUM AND VALUES OF CLOSED DIAGRAMS

Tr
{
ρ̂
(0)
T,µTCŜI,C

}
Eq. 10.45
=

∞∑
n=0

∑
P⃗∈An

V (P⃗)
n!2n

(10.47)

where

V (P⃗) = ϵP1,...,P2n (iℏ)
n

∫
C
dt1 · · ·

∫
C
dt2n

∑
o1,i1,...,o2n,i2n

 n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j δC(t2j−1 − t2j)


×GC,(0)iP1 ,o1

(tP1 , t
+
1 ) · · ·G

C,(0)
iP2n ,o2n

(tP2n , t
+
2n) (10.48)

The value of zeroth order diagrams is defined to be equal to 1. The reason is that Tr
{
ρ̂
(0)
T,µ

}
= 1,

which is the normalization of the density operator.

When the interaction tensor W and the non-interacting Green’s function are known, each term is
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completely characterized by the permutation vector P⃗. The dimension of P⃗ determines the order n
of the diagram. For example, the permutation vector P⃗ in Eq. 10.48 has the dimension 2n.

The value V (P⃗) of each term is dimension-less.7

10.3.6 Feynman diagrams

Editor: include here two graphs: one of a single interaction line with two
vertices and at each vertex one incoming and one outgoing stump. The second
graph shall be a non-interacting Green’s function line with one outgoing and one
incoming index. Also show the vertex.

Fig. 10.2: Elementary ingredients of a Feynman diagram for electrons with a Coulomb interaction.
An arrow (a), called particle line, represents a bare (non-interacting) Green’s function. A wriggly
line, called an interaction line represents an interaction matrix element. The point where particle and
interaction lines meet, is called a vertex. The vertex connects an incoming and an outgoing particle
line with one end of an interaction line.

Each term V (P) can be represented by a graph, which is called a diagram. The basic elements
of a diagram are interaction lines, represented by wriggly lines, and particle lines, represented by
arrows. The particle lines correspond to non-interacting Green’s functions, while the interaction lines
correspond the interaction matrix elements. Interaction and particle lines are joined at so-called
vertices. A vertex is the junction of an interaction line, an incoming particle line and an outgoing
particle line. The outgoing particle line is connected to the vertex with the right index and the right
time argument, while the incoming index, the arrow, is connected to the vertex with the left index
and the left time argument.

The graphical representation of the diagram proceeds as follows:

• Draw n wriggly lines. Each wriggly line represents an interaction. The interaction has two ends,
which are called vertices. Each vertex has an incoming index i and an outgoing index o.

For the j-th interaction, one vertex has the outgoing index o2j−1 and the incoming index i2j−1.
the other vertex has the indices o2j and i2j

• Now draw 2n arrows representing Green’s functions. The k-th Green’s function (k ∈ {1, . . . , 2n})
starts at the k-th vertex and is connected to the outgoing index ok . It stops at vertex Pk and
is connected to the incoming index iPk .

Example: Let us draw the diagram for the specified permutation vector P⃗ = (3, 4, 1, 6, 2, 5).

• We draw three wriggly lines and number the vertices. (Each interaction has one vertex with an
odd number and one with the next higher even number.)

• We look up the permutation vector and form the ordered index pairs representing the Green’s
functions

(1→ 3︸︷︷︸
P1

); (2→ 4︸︷︷︸
P2

); (3→ 1︸︷︷︸
P3

); (4→ 6︸︷︷︸
P4

); (5→ 2︸︷︷︸
P5

); (6→ 5︸︷︷︸
P6

); (10.49)

7This is the reason for leaving the factor (iℏ)n with the diagram.
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Now we connect the vertices according to this mapping.

• finally we rearrange the graph so that all connections remain intact but such that it is not all
mixed up.

The result is shown in Fig. 10.3.

1 3 5

1

3

2

4 6

5

=

2 4 6

Fig. 10.3: Example for a Feynman diagram corresponding to the permutation vector P⃗ =
(3, 4, 1, 6, 2, 5). Normally the numbers are not drawn.

Example:

Let me work out the value of the diagram shown in Fig. 10.3 using Eq. 10.48.

Permutation vector: First we determine the permutation vector. For that purpose, we number
the vertices such that vertices (1, 2), (3, 4), etc are related to one interaction. There are many ways
of doing this, but each will give the same result. In the example shown in Fig. 10.3, the vertices are
already numbered.

Now we can read off the end point of the Green’s function starting at a given vertex. This gives
the following mapping

outgoing vertex 1 2 3 4 5 6
incoming vertex 3 4 1 6 2 5

The array of incoming indices is the permutation vector P⃗ = (3, 4, 1, 6, 2, 5).

Sign: The sign is obtained by enumerating the pair-wise permutations that bring the sequence
P into increasing order. We start out with a given permutation vector P⃗ = (3, 4, 1, 6, 2, 5) and
interchange its elements step by step as follows:

341625 +
314625 -
134625 +
134265 -
132465 +
123465 -
123456 +

Each permutation causes a sign change shown in the second column. Thus, ϵ3,4,1,6,2,5 = +1.
In section 11.3 below, we will learn how the sign can be determined in a simple manner using the

so-called sign theorem.
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All together: Let us put the result for the value of the diagram together

V (P⃗) Eq. 10.48
= +1︸︷︷︸

sign

(iℏ)3
∫
C
dt1

∫
C
dt2

∫
C
dt3

∑
o1,i1,o2,i2...,o6,i6

Wo1,o2,i1,i2(t1)Wo3,o4,i3,i4(t2)Wo5,o6,i5,i6(t3)

×G(0)i3,o1(t2, t
+
1 )G

(0)
i4,o2
(t2, t

+
1 )G

(0)
i1,o3
(t1, t

+
2 )G

(0)
i6,o4
(t3, t

+
2 )G

(0)
i2,o5
(t1, t

+
3 )G

(0)
i5,o6
(t3, t

+
3 )(10.50)

10.4 Diagrams of the numerator of the Green’s function

10.4.1 Numerator from Wick’s theorem

The decomposition Eq. 10.47 of the denominator of the Green’s function Eq. 10.40 into Feynman
diagrams helps us to determine the diagrammatic expansion of the numerator

Tr
{
ρ̂
(0)
T,µTCŜI,C ĉI,α(t)ĉ

+
I,β(t

′)
}

(10.51)

Using 2n+1 dimensional permutation vector: Following the recipe developed for Wick’s theorem,
Eq. 10.38, the diagrams in the numerator of the Green’s function Eq. 10.40 can be constructed
using permutation vectors. Compared to the diagrams of order n in the denominator, there is one
additional pair of operators in the numerator. The diagrams of order n can then be described by a
2n+1 dimensional permutation vector. The additional creation operator ĉ+I,β(t

′) is treated together
with the outgoing indices, that is (β, t ′) = o2n+1. The annihilation operator ĉI,α(t) with index α, is
treated together with the incoming indices, that is (α, t).

The two operators ĉ+I,β(t
′) and ĉI,α(t), , which are not connected to the interaction, are described

as external vertices. Unlike the vertices connected to the interaction, only one Green’s function is
connected to an external vertex. We may describe the external indices of the Green’s function also
half vertex in the sense that each half of a vertex is connected to one end of a Green’s function.

The table connecting outgoing and incoming indices is

oj 1 2 . . . 2n 2n + 1

ij P1 P2 . . . P2n P2n+1

Use the permutation vector of the denominator: Instead of constructing the 2n+1 dimensional
permutation vectors from scratch, they can be constructed from the 2n dimensional permutation
vectors used for the denominator.

We pick one diagram from the expansion of the denominator as parent diagram for a subset of
diagrams for the numerator. The parent diagram is identified by a 2n-dimensional permutation vector
P⃗parent. An example is given in figure 10.4.a for P = (1, 4, 2, 3).

• We begin with one diagram for the numerator, which consists of the parent diagram and a
non-interacting Green’s function line pointing directly from o2n+1 = (β, t

′) to i2n+1 = (α, t).
It is described by

oj 1 2 . . . 2n 2n + 1

ij P1 P2 . . . P2n 2n + 1

For our example with parent P = (1, 4, 2, 3), this diagram is sketched in figure 10.4.b.

• The remaining 2n diagrams derived from the selected parent diagram are obtained by removing
one Green’s function line from the parent diagram, as shown in figure 10.4.d. This leaves one
unconnected outgoing vertex oj and one unconnected incoming index iPj . Now, we attach one
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Fig. 10.4: Sketches to demonstrate the construction of diagrams in the numerator from those in the
denominator.

Green’s function line connecting the unconnected outgoing index oj with to the external vertex
α = in+1. Then, the we attach a further Green’s function line connecting the external index
β = on+1 to the unconnected incoming index iPj . This is sketched in figure 10.4.c and e.

Translated into the language of permutation vectors P⃗, the last incoming index i2n+1 is ex-
changed with any of the other incoming indices. For each j ∈ {1, . . . , 2n}, we obtain a
permutation vector of the type

oj 1 · · · j · · · 2n 2n + 1

ij P1 · · · 2n + 1 · · · P2n Pj

This procedure produces 2n+1 diagrams for the numerator out of each diagram in the denominator.
This is exactly the number of terms we obtain by increasing the dimension of the permutation vector
by 1, confirming that all diagrams are considered. For our example, the resulting diagrams are shown,
together with the corresponding parent diagram, in figure 10.5.

We need to ensure that (1) this procedure constructs all 2n+1 dimensional permutation vectors
from the 2n dimensional permutation vectors and that (2) no diagram is constructed twice.

• The proof that no diagram is constructed twice needs to show that none of the 2n+1 dimen-
sional permutation vectors is obtained from two different 2n dimensional permutation vectors.
This is shown by giving a recipe to reconstruct the corresponding parent permutation vector.
The recipe is to exchange the component with the highest value Pj = 2n + 1 with the value
P2n+1 in the last position. This unique procedure produces the parent permutation vector on
the first 2n components.

• The permutation vectors resulting from one parent diagram are distinguishable by the position
of the index j of the component with Pj = 2n + 1.

• given that no two diagrams are constructed twice, we can show that all diagrams are constructed
by counting the number (2n + 1) of additional diagrams.
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Example: Let me demonstrate the construction using one second-order diagram of the denominator
as example.

The permutation vector is P⃗ = (1, 4, 2, 3)

oj 1 2 3 4
ij 1 4 2 3

The first diagram derived from the diagram above is characterized by the permutation vector
P⃗ = (1, 4, 2, 3, 5). As described above the last entry connects the two external vertices. Thus,
this diagram simply adds a bare Green’s-function line 8 connecting the two external indices to the
diagram of the denominator.

The other 2n permutation vectors are obtained by exchanging any of the 2n outgoing indices with
the last one. In total, we obtain the permutation vectors

P⃗ = (5, 4, 2, 3, 1)
P⃗ = (1, 5, 2, 3, 4)
P⃗ = (1, 4, 5, 3, 2)
P⃗ = (1, 4, 2, 5, 3)
P⃗ = (1, 4, 2, 3, 5) (10.52)

The j-th permutation vector has the incoming vertex on the j-th position.

10.4.2 Numerator from functional derivative of denominator

Editor: Show first, how the procedure is related to the graphical construction. Then
show how the graphical construction translates step by step into the expression below.

The procedure just outlined can be related to an equation using functional derivatives of the
parent diagram.

• We begin from specific parent diagram from the denominator such as the one shown in the
upper left of Fig. 10.5. The diagram is specified by the permutation vector P⃗parent. For our
example, the permutation vector of the parent diagram is P⃗parent = (1, 4, 2, 3). The diagram
is considered as a functional of the bare (non-interacting) Green’s function.

• one of the derived diagrams is the parent diagram combined with a bare Green’s function
connecting the external vertices. The value of this diagram Eq. 10.489 There is no sign change,
because all permutation are those of the parent diagram, while the last Green’s function is simply
attached to the end of its permutation vector.

• the removal of bare Green’s functions G(0)α,β(t, t
′) from the parent diagram can be expressed by

a functional derivative of the value V (P⃗) of the parent diagram

dV [P⃗] =
∑
δ,γ

∫
C
dt ′
∫
C
dt ′′

δV (P⃗)
δG
(0)
δ,γ (t

′, t ′′)
dG
(0)
δ,γ (t

′, t ′′) (10.53)

For each parent diagram of order n, this expression leads to a sum of 2n diagrams. Each is
obtained by replacing one bare Green’s functions at a time by its variation dG(0).

• Connecting the external indices (α, t) and (β, t ′) implies to replace

dG
(0)
δ,γ (t

′, t ′′) by G(0)α,γ(t2, t
′′)G

(0)
δ,β (t

′, t1) (10.54)
8A non-interacting Green’s function is also called a bare Green’s function.
9We use the same expression Eq. 10.48 for value of closed diagrams also for the open diagrams10 This choice is

consistent with Eq. 10.38.
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Fig. 10.5: Example for the construction of the diagrams in the numerator of the Green’s function
from those in the denominator. The diagram in the upper left shows a second-order diagram of the
denominator, which is described by the permutation vector P⃗ = (1, 4, 2, 3). The other diagrams
are obtained by connecting one of the internal indices with the outgoing external index and by
connecting the incoming external index to the no open vertex position. In the last diagram the two
external vertices are directly connected.

• Combining all 2n + 1 diagrams derived from the same parent diagram V (P⃗) yields

V (P⃗)︸ ︷︷ ︸
parent

⇝ iℏG(0)α,β(t2, t1)V (P⃗)︸ ︷︷ ︸
“first term”

−iℏ
∑
γ,δ

∫
dt ′
∫
dt ′′ G(0)α,γ(t2, t

′′)
δV (P⃗)

δG
(0)
δ,γ (t

′, t ′′)
G
(0)
δ,β (t

′, t1)︸ ︷︷ ︸
“second term”

(10.55)

The right-hand side is the sum of the values of all diagrams derived from the corresponding
parent diagram on the left-hand side.

The minus sign results from the fact that each diagram in the second term is obtained from
the diagram in the first term by one permutation of two elements of the permutation vector.
(see Eq. 10.38.)

This implies that the diagrams for the numerator are obtained as derivative of the diagrams in
the denominator with respect to a non-interacting Green’s function.

Tr
{
ρ̂
(0)
T,µTCŜI,C

}
=

∞∑
n=0

∑
P⃗∈An

1

n!2n
V (P⃗) (10.56)
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⇝ Tr
{
ρ̂
(0)
T,µTCŜI,C ĉI,α(t2)ĉ

+
I,β(t1)

}
Eq. 10.55
=

∞∑
n=0

∑
P⃗∈An

1

n!2n
iℏ

G(0)α,β(t2, t1)V (P⃗)−∑
γ,δ

∫
dt ′
∫
dt ′′ G(0)α,γ(t2, t

′′)
∂V (P⃗)

∂G
(0)
δ,γ (t

′, t ′′)
G
(0)
δ,β (t

′, t1)


= iℏ

G(0)α,β(t2, t1)Tr{ρ̂(0)T,µTCŜI,C}−∑
γ,δ

∫
dt ′
∫
dt ′′ G(0)α,γ(t2, t

′′)
∂Tr
{
ρ̂
(0)
T,µTCŜI,C

}
∂G
(0)
δ,γ (t

′, t ′′)
G
(0)
δ,β (t

′, t1)


(10.57)

Insertion into the expression for the Green’s function Eq. 10.40, yields11

Gα,β(t, t
′)

Eq. 10.40
=

1

iℏ

Tr
{
ρ̂
(0)
T,µTCŜI,C ĉI,α(t)ĉ

+
I,β(t

′)
}

Tr
{
ρ̂(0)TCŜI,C

}
Eq. 10.57
= G

(0)
α,β(t2, t1) +

∑
γ,δ

∫
dt ′
∫
dt ′′ G(0)α,γ(t2, t

′′)
∂
(
− ln Tr

{
ρ̂
(0)
T,µTCŜI,C

})
∂G
(0)
δ,γ (t

′, t ′′)
G
(0)
δ,β (t

′, t1)

(10.58)

Eq. 10.58 is an important result: There is one functional of the bare Green’s function, namely
QT,µ which provides the interacting Green’s function.

11 1
x
dy
dx
=

d ln(y(x))
dx

.
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GREEN’S FUNCTION FROM A FUNCTIONAL

The one-particle Green’s function is completely defined by a functionala Q of the non-interacting
Green’s function

QT,µ[G(0)]
def
= −kBT ln Tr

{
ρ̂
(0)
T,µTCŜI,C

}
Eq. 10.47
= −

1

β
ln

 ∞∑
n=0

1

n!

∑
P⃗∈An

1

2n
V (P⃗)

 (10.59)

where β = 1/(kBT ). With P⃗ ∈ An, I denote all permutation vectors of length 2n, with components
that are permutations of (1, 2, . . . , 2n).
The non-interacting Green’s function is specified on a time-contour C. The functional furthermore
depends on the interaction matrix elements, which can be time dependent along the contour.
The functional derivative specifies the Green’s function via Dyson’s equation

Gα,β(t2, t1) = G
(0)
α,β(t2, t1) +

∑
γ,δ

∫
C
dt4

∫
C
dt3 G

(0)
α,γ(t2, t4)

1

kBT

δQT,µ[G(0),W ]
δG
(0)
δ,γ (t3, t4)︸ ︷︷ ︸

=:Σred
γ,δ(t4,t3)

G
(0)
δ,β (t3, t1)

= G
(0)
α,β(t2, t1) +

∑
γ,δ

∫
C
dt4

∫
C
dt3 G

(0)
α,γ(t2, t4)Σ

red
γ,δ(t4, t3)G

(0)
δ,β (t3, t1) (10.60)

The self energy

Σ̂red(t, t ′)
def
=
∑
α,β

|πα⟩
1

kBT

δQT,µ[G(0),W ]
δG
(0)
β,α(t

′, t)
⟨πβ | (10.61)

is the so-called reducible self energy , which differs from the self energy used earlier.
With ⟨πα|, I denote the projector function corresponding to the local basis function ⟨χα|. The Green’s
function has the form Ĝ(t, t ′) =

∑
α,β |χα⟩Gα,β(t, t ′)⟨χβ |. The biorthogonality ⟨πα|χβ⟩ = δα,β holds.

aThis functional is identical to Φr [G] Stefanucci and van Leeuwen[2]. See their Eqs. 11.12-11.13

Table 10.1: Terminology for Green’s functions and self energies. “Irreducible” stands here for one-
particle irreducible (1PI), which means that the corresponding diagram does not fall apart by
removing any single particle line (Green’s function). The reducible self energy Σred contains also
irreducible diagrams and should actually be named “reducible and irreducible”, which I have not heard
so-far. However, I encountered the naming “proper and improper diagrams”.

Terminology
Ĝ(t, t ′) full Green’s function, dressed G.f., interacting G.f.
Ĝ(0)(t, t ′) bare Green’s function, non-interacting G.f.
Σ̂red(t, t ′) reducible self energy, (proper and) improper s.e.
Σ̂(t, t ′) proper self energy, irreducible s.e., 1PI s.e.

Reducible (improper) and irreducible (proper) self energy: The reducible self energy Eq. 10.61
differs from the self energy defined earlier in Eq. 8.15 on p. 257 (and in Eq. 5.34 on p. 187).

Eq. 10.60, which has the diagrammatic form
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Σ
red

Ĝ(t2, t1) = Ĝ
(0)(t2, t1) +

∫
dt ′
∫
dt ′′ Ĝ(0)(t2, t

′′)Σ̂red(t ′′, t ′)Ĝ(0)(t ′, t1) (10.62)

reminds of Dyson’s equation Eq. 8.23 on p. 258.

Σ
.

Ĝ(t2, t1)
Eq. 8.23
= Ĝ(0)(t2, t1) +

∫
dt ′
∫
dt ′′ Ĝ(0)(t2, t

′′)Σ̂(t ′′, t ′)Ĝ(t ′, t1) (10.63)

When we iterate Dyson’s equation by repeatedly inserting Dyson’s equation for the full Green’s
function on the right hand side 12, it becomes identical to the equation above, when we identify the
reducible self energy with

ΣΣ
red

Σ Σ Σ

Σ Σ

Σ Σ

Σ
red

Expressed with explicit time arguments, the self energies obey

Σ̂red(t2, t1) = Σ̂(t2, t1) +

∫
dt

∫
dt ′ Σ̂(t2, t)Ĝ

(0)(t, t ′)Σ̂red(t ′, t1) (10.65)

Proper self energy from the generating functional It may be tempting to obtain the proper self
energy by removing all one-particle reducible self-energy diagrams from the reducible self energy.
This is a valid procedure for the exact generating functional, but it is not allowed for approximate
ones. 13 This is unfortunate, because the generating functional is often used to arrive at consistent
approximations.

12Let me work out the relation between proper and total self energy by comparing Dyson’s equation with Eq. 10.60.
I write the Green’s function and self energies here as operators in one-particle Hilbert space and I suppress the time
arguments. As shown below, each product also implies an integration of the common time argument.

G
Eq. 8.23
= G(0) + G(0)ΣΣΣG

= G(0) + G(0)ΣΣΣ
(
G(0) + G(0)ΣΣΣG

)
︸ ︷︷ ︸

G

= G(0) + G(0)ΣΣΣG(0) + G(0)ΣΣΣG(0)ΣΣΣ
(
G(0) + G(0)ΣΣΣG

)
︸ ︷︷ ︸

G

= G(0) + G(0)
(
ΣΣΣ+ΣΣΣG(0)ΣΣΣ+ΣΣΣG(0)ΣΣΣG(0)ΣΣΣ+ . . .

)
︸ ︷︷ ︸

ΣΣΣred

G(0)

!
= G(0) + G(0)ΣΣΣredG(0) compare with Eq. 10.60 (10.64)

13First, we notice that, usually, the one-particle irreducible (1PI) self-energy insertions in the approximated reducible
self energy are different from each other. Furthermore, inserting the 1PI self-energy diagram Σ obtained from an
approximate generating functional into Dyson’s equation

Σred = Σ+ΣGC,(0)Σred ̸= β
δQT,µ
δGC,(0)

(10.66)

generates an infinite number of terms, even if the approximate generating functional has only few terms.
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The proper self energy must be obtained from the reducible self energy using Dyson’s equation.
In a short-hand notation this implies

Σred = Σ+ΣGC,(0)Σred = Σ
(
1 + GC,(0)Σred

)
⇒ Σ = Σred −ΣGC,(0)Σred = Σred

∞∑
n=0

(
−GC,(0)Σred

)n
(10.67)

This is itself a Dyson’s equation for the proper self energy Σ, which must be solved iteratively. It
produces an infinite number of terms, even if the generating functional is approximated by a few terms.
Truncating this Dyson’s equation will lead to yet another approximation, which has a complicated
generating functional, reducible self energy and Green’s function.

The construction of a generating functional for the proper self energy rather than the reducible
self energy is the topic of chapter 12 on the Luttinger-Ward functional.

Generating functional QT,µ from the reducible self energy: We just learned that the reducible
self energy can be obtained from the generating functional QT,µ[GC,(0)]. The reverse is also true,
however with a restriction: We need to know the self energy divided into individual orders of the
interaction.

If we close a diagram of the reducible self energy with a non-interacting Green’s function, we
obtain a closed diagram, namely the parent diagram from which the specific self-energy diagram has
been obtained. However, a diagram of the generating functional produces 2n self-energy diagrams,
because the diagram is a product of 2n Green’s functions. Thus, we overcount diagrams when we
add up all self-energy diagrams after closing them.

Let me divide the self energy into powers of the interaction

Σ̂red =

∞∑
n=1

Σ̂red,(n) (10.68)

where Σ̂red,(n) is the contribution of n-th order in the interaction.
With the reducible self energy available in individual orders of the interaction allows one to recon-

struct the generating functional as

QT,µ[GC,(0)] =
∞∑
n=1

1

2n

∫
C
dt

∫
C
dt ′ Σ

red,(n)
α,β (t, t ′)G

C,(0)
β,α (t

′, t) (10.69)

If the approximation is defined via a proper self energy, the corresponding reducible self energy
need to be constructed first via Dyson’s equation, before the generating functional Q[G(0)] can be
obtained.

The reconstruction of the generating functional may be useful in order to arrive at a consistent
theory from an approximate reducible self energy.

Relation to the grand potential: This functionalQ[G(0)], is closely related to the grand potential.
It is the interaction part of the grand potential, namely QT,µ = Ω(W )T,µ − Ω

(0)
T,µ. This makes contact

with the thermodynamics of an interacting electron gas. The close relation of Q[G(0)] with the grand
potential has been the reason for adding the factor kBT in the definition of the grand potential QT,µ.

The grand potential of the interacting system is given in Eq. 10.25 on p. 301. It depends on the
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grand potential of the non-interacting system which is given in Eq. 10.28 from p. 302.

Ω
(W )
T,µ

Eq. 10.25
= +kBTTr

{
ln
[
1̂ + iℏ lim

t ′→t+
Ĝ(0)(t, t ′)

]}
︸ ︷︷ ︸
=−kBT ln(ZT,µ)(0)=Ω(0)T,µ[G(0)] Eq. 10.28

−kBT ln
(
Tr
{
ρ̂
(0)
T,µTCŜI,C

})
︸ ︷︷ ︸

QT,µ Eq. 10.59

= +kBTTr

{
ln
[
1̂ + iℏ lim

t ′→t+
Ĝ(0)(t, t ′)

]}
︸ ︷︷ ︸

Ω
(0)
T,µ[G

(0)]

+ QT,µ[G(0)]︸ ︷︷ ︸
Ω
(W )
T,µ [G

(0)]−Ω(0)T,µ[G(0)]

(10.70)

Editor: See also section K.4.7. and Eq. 10.28 on p. 10.28. There are probably
some duplications.

In the remainder of this chapter, we will concentrate entirely on how to determine the functional
Q(G(0)).

Editor: In this section, we could also show that

GW =
δΩ

δ(G(0))−1
(10.71)

. However, this grand potential contains also the one without interaction.

10.5 Home study and practice

10.5.1 Green’s function from generating functional

Introduction

Editor: The term generating functional needs to be properly explained. It must be
clear that this generates the reducible self energy and not the correlation functions.

In this problem, we practice the calculation of the Green’s function from the generating functional.
To simplify matters, only a single diagram is considered in the generating functional. An expression
for the generating functional used here, will emerge only in the following chapter through the linked-
cluster theorem.

The linked-cluster theorem provides the generating functional in terms of linked diagrams D ∈ L
as

QT,µ[G(0)]
Eq. 11.17
= −

1

β

∞∑
n=1

∑
D∈Ln

V (D)

n!2n
(10.72)

where the logarithm is absent.
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Problem

Calculate the Green’s function from a specific generating functional Q̄T,µ[G(0)], namely

Q̄T,µ[GC(0)] = −
1

β

V (D)

n!2n
(10.73)

To simplify the task, only a single diagram D contributes to this generating functional, which is
specified by the permutation vector P⃗ = (1, 4, 2, 3). I use the bar on-top of the symbol for the
generating functional to distinguish it from the correct, general functional.
Caution: Using one diagram in the expression obtained so far, i.e. in Eq. 10.59, is much more
difficult and it leads to a different result than using the form obtained after the linked-cluster theorem
Eq. 11.17.

1 Write down the value of the diagram D with P = (1, 4, 2, 3) as functional of the bare Green’s
function and the interaction tensor.

2 Use the result to write down Q̄T,µ[GC,(0)]

3 extract the reducible self energy from Q̄T,µ[GC,(0)]. It is advisable to identify the expressions
for Hartree and exchange potential in order to make the expressions more compact.

4 construct the Green’s function from Q̄T,µ[GC,(0)].

5 Draw the Feynman diagrams for

• the generating functional Q̄T,µ[GC,(0)]
• the reducible self energy Σred

• the Green’s function GC

Discussion

1 Write down the value of the diagram D with P = (1, 4, 2, 3) as functional of the bare Green’s
function and the interaction tensor.

Let me work out the Green’s function from a generating functional, which consists out of only
a single Feynman diagram, namely the closed diagram in figure 10.5. The diagram belongs to the
permutation vector P = (1, 4, 2, 3).

First, we need to write out the value of the diagram itself

V (P⃗) Eq. 10.48
= ϵP1,...,P2n (iℏ)

n

∫
C
dt1 · · ·

∫
C
dt2n

∑
o1,i1,...,o2n,i2n

 n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j δC(t2j−1 − t2j)


×GC,(0)iP1 ,o1

(tP1 , t
+
1 ) · · ·G

C,(0)
iP2n ,o2n

(tP2n , t
+
2n)

P⃗=(1423)
= ϵ1,4,2,3︸ ︷︷ ︸

=+1

(iℏ)2︸ ︷︷ ︸
−ℏ2

∫
C
dt1 · · ·

∫
C
dt4

∑
o1,i1,...,o4,i4

Wo1,o2,i1,i2δC(t1 − t2)Wo3,o4,i3,i4δC(t3 − t4)

×GC,(0)i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t4, t

+
2 )G

C,(0)
i2,o3
(t2, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
4 )

= −ℏ2
∑

o1,i1,...,o4,i4

Wo1,o2,i1,i2Wo3,o4,i3,i4

×
∫
C
dt1

∫
C
dt3 G

C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 ) (10.74)
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2 Use the result to write down Q̄T,µ[GC,(0)]

For our specific example we use just one diagram so that

Q̄T,µ[G(0)] = −
1

β

V
( (1,4,2,3)︷︸︸︷
P⃗

)
8

Eq. 10.74
=

ℏ2

8β

∑
o1,i1,...,o4,i4

Wo1,o2,i1,i2Wo3,o4,i3,i4

×
∫
C
dt1

∫
C
dt3 G

C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )(10.75)

3 extract the reducible self energy from Q̄T,µ[GC,(0)]. It is advisable to identify the expressions
for Hartree and exchange potential in order to make the expressions more compact.

Let me first work out the corresponding reducible self energy. I start with the first variation of
the functional QT,µ with respect to changes of the non-interacting Green’s function.

dQ̄T,µ =
1

8
kBTℏ2

∑
o1,i1,...,o4,i4

Wo1,o2,i1,i2Wo3,o4,i3,i4

∫
C
dt1

∫
C
dt3

×
{
dG
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )dG

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )dG

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )dG

C,(0)
i3,o4
(t3, t

+
3 )

}
=
1

8
kBTℏ2

∑
δ,γ

∑
o1,i1,...,o4,i4

Wo1,o2,i1,i2Wo3,o4,i3,i4

∫
C
dt1

∫
C
dt3

×
{
δi1,δδo1,γδ(t1 − ta)δ(t+1 − tb)G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )δi4,δδo2,γδ(t3 − ta)δ(t+1 − tb)G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )δi2,δδo3,γδ(t1 − ta)δ(t+3 − tb)G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )δi3,δδo4,γδ(t3 − ta)δ(t+3 − tb)

}
dG
C,(0)
δ,γ (ta, tb)

!
=

∫
C
dta

∫
C
dtb

∑
δ,γ

δQT,µ[G(0),W ]
δG

,C,(0)
δ,γ (ta, tb)︸ ︷︷ ︸
kBTΣ

red
γ,δ(tb,ta)

dG
C,(0)
δ,γ (ta, tb) (10.76)
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The reducible self energy Σred is

Σred
γ,δ(tb, ta) =

1

kBT

δQT,µ[G(0),W ]
δG

,C,(0)
δ,γ (ta, tb)

=
ℏ2

8

∑
o1,i1,...,o4,i4

Wo1,o2,i1,i2Wo3,o4,i3,i4

∫
C
dt1

∫
C
dt3

×
{
δi1,δδo1,γδ(t1 − ta)δ(t+1 − tb)G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )δi4,δδo2,γδ(t3 − ta)δ(t+1 − tb)G

C,(0)
i2,o3
(t1, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )δi2,δδo3,γδ(t1 − ta)δ(t+3 − tb)G

C,(0)
i3,o4
(t2, t

+
3 )

+G
C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(t3, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
3 )δi3,δδo4,γδ(t3 − ta)δ(t+3 − tb)

}
=
ℏ2

8

∑
o2,i2,o3,o3,o4,i4

Wγ,o2,δ,i2Wo3,o4,i3,i4δ(ta − tb)
∫
C
dt3 G

C,(0)
i4,o2
(t3, t

+
a )G

C,(0)
i2,o3
(ta, t

+
3 )G

C,(0)
i3,o4
(t3, t

+
3 )

+
ℏ2

8

∑
o1,i1,i2,o3,i3,o4

Wo1,γ,i1,i2Wo3,o4,i3,δG
C,(0)
i1,o1
(tb, t

+
b )G

C,(0)
i2,o3
(tb, t

+
a )G

C,(0)
i3,o4
(ta, t

+
a )

+
ℏ2

8

∑
o1,i1,o2,i3,o4,i4

Wo1,o2,i1,δWγ,o4,i3,i4G
C,(0)
i1,o1
(ta, t

+
a )G

C,(0)
i4,o2
(tb, t

+
a )G

C,(0)
i3,o4
(tb, t

+
b )

+
ℏ2

8

∑
o1,i1,o2,i2,o3,o4,i4

Wo1,o2,i1,i2Wo3,γ,δ,i4δ(ta − tb)
∫
C
dt1 G

C,(0)
i1,o1
(t1, t

+
1 )G

C,(0)
i4,o2
(ta, t

+
1 )G

C,(0)
i2,o3
(t1, t

+
a )

=
ℏ2

8
δ(ta − tb)

∑
o2,i2

Wγ,o2,δ,i2

∫
C
dt3

∑
o3,i4

G
C,(0)
i2,o3
(ta, t

+
3 )
(∑
i3,o4

Wo3,o4,i3,i4G
C,(0)
i3,o4
(t3, t

+
3 )
)

︸ ︷︷ ︸
open oyster: 1

iℏ v
(0)
X,o3 ,i4

(t3)

G
C,(0)
i4,o2
(t3, t

+
a )

+
ℏ2

8

∑
i2

(∑
o1,i1

Wo1,γ,i1,i2G
C,(0)
i1,o1
(tb, t

+
b )
)

︸ ︷︷ ︸
tadpole: − 1

iℏ v
(0)
H,γ,i2

(tb)

∑
o3

G
C,(0)
i2,o3
(tb, t

+
a )
(∑
i3,o4

G
C,(0)
i3,o4
(ta, t

+
a )Wo3,o4,i3,δ

)
︸ ︷︷ ︸

open oyster: 1
iℏ v
(0)
X,o3 ,δ

(ta)

+
ℏ2

8

∑
o2,i4

(∑
i3,o4

Wγ,o4,i3,i4G
C,(0)
i3,o4
(tb, t

+
b )
)

︸ ︷︷ ︸
open oyster: 1

iℏ v
(0)
X,γ,o4(tb)

G
C,(0)
i4,o2
(tb, t

+
a )
(∑
o1,i1

Wo1,o2,i1,δG
C,(0)
i1,o1
(ta, t

+
a )
)

︸ ︷︷ ︸
tadpole: − 1

iℏ v
(0)
H,o2 ,δ

(ta)

+
ℏ2

8
δ(t3 − t4)

∑
o2,i2

∑
o3,o4,i4

Wo3,γ,δ,i4

∫
C
dt1 G

C,(0)
i4,o2
(ta, t

+
1 )
(∑
o1,i1

Wo1,o2,i1,i2G
C,(0)
i1,o1
(t1, t

+
1 )
)

︸ ︷︷ ︸
tadpole: − 1

iℏ v
(0)
H,o2 ,i2

(t1)

G
C,(0)
i2,o3
(t1, t

+
a )

(10.77)

In the last step, I grouped the terms in a sensible way. In that process I identified the Hartree potential

v
(0)
H,o,i(t) =

∑
o ′,i ′

Wo,o ′,i ,i ′

(
−iℏGC,(0)i ′,o ′ (t, t

+)
)

︸ ︷︷ ︸
ρ
(1),(0)

i ′ ,o′ (t)

(10.78)

and the exchange potential

v
(0)
X,o,i(t) = −

∑
o ′,i ′

Wo,o ′,i ′,i

(
−iℏGC,(0)i ′,o ′ (t)

)
︸ ︷︷ ︸

ρ
(1),(0)

i ′ ,o′ (t)

(10.79)
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where ρ(1),(0)i ,o (t), is the one-particle-reduced density matrix Eq. 8.28 of the non-interacting electrons.
The names “tadpole” and “open oyster” refer to the descriptive names of certain units of Feynman
diagrams. (see p. 327 and p. 328.)

4 construct the Green’s function from Q̄T,µ[GC,(0)].

Finally, we obtain the Greens function from

GCα,β(t2, t1)
Eq. 10.60
= G

C,(0)
α,β (t2, t1) +

∑
γ,δ

∫
C
dt4

∫
C
dt3 G

C,(0)
α,γ (t2, t4)

1

kBT

δQT,µ[GC,(0),W ]
δG
C,(0)
δ,γ (t3, t4)︸ ︷︷ ︸

=:Σred
γ,δ(t4,t3)

G
C,(0)
δ,β (t3, t1)

= G
C,(0)
α,β (t2, t1) +

∑
γ,δ

∫
C
dt4

∫
C
dt3 G

C,(0)
α,γ (t2, t4)G

C,(0)
δ,β (t3, t1)

×
ℏ2

8

{
δ(t3 − t4)

∑
o2,i2

Wγ,o2,δ,i2(t3)

∫
C
dt2

∑
o3,i4

G
C,(0)
i2,o3
(t3, t

+
2 )
−1
iℏ
v
(0)
X,o3,i4

(t2)G
C,(0)
i4,o2
(t2, t

+
3 )

+
∑
i2,o3

−v (0)H,γ,i2(t4)
iℏ

G
C,(0)
i2,o3
(t4, t

+
3 )
−v (0)X,o3,δ(t3)

iℏ

+
∑
o2,i4

−1
iℏ
v
(0)
X,γ,i4

G
C,(0)
i4,o2
(t4, t

+
3 )
−v (0)H,o2,δ(t3)

iℏ

+ δ(t3 − t4)
∑
o3,i4

Wo3,γ,δ,i4(t3)
∑
o2,i2

∫
C
dt1G

C,(0)
i4,o2
(t3, t

+
1 )
−v (1)H,o2,i2(t1)

iℏ
G
C,(0)
i2,o3
(t1, t

+
3 )

}
(10.80)

5 Draw the Feynman diagrams for

• the generating functional Q̄T,µ[GC,(0)]
• the reducible self energy Σred

• the Green’s function GC

The graphical representation is provided in figure 10.6 below.
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Fig. 10.6: Second part of the solution for the problem in section 10.5.1, demonstrating graphically
the construction of the Green’s function from a generating functional. Editor: The diagrams
for the generating functional and the Green’s function has been shown already in
figure 10.5. The self energy graphs are not shown there.



Chapter 11

Diagrammatics of the generating
functional

11.1 Classes of diagrams

In this section, I will present some terminology and names for diagrams, respectively for building
blocks of them. By doing so, we will identify recurring patterns within the diagrams, that can be
understood as one unit.

The elementary building blocks of a Feynman diagram are the particle line, the interaction line,
and the vertex.

• The particle line represents a Green’s function. The arrow with a single line represents a bare
Green’s function and the arrow with a double represents a full Green’s function.

• The interaction line represents an interaction. It is represented by a wriggly line. When
the wriggly line is drawn with a single line, the interaction line represents the bare Coulomb
interaction. When it is drawn with a double line it represents the full or screened interaction.

• The point, which joins particle lines and interaction lines is the vertex. For the Coulomb
interaction each vertex connects one incoming particle line, one outgoing particle line and one
interaction line. The topology of the vertex was the reason for the naming incoming and
outgoing indices of a particle line.

11.1.1 Green’s function diagram

A general Green’s-function diagram has two external “half”-vertices. One of the external half-
vertices can accept an incoming particle line and an interaction line. The other can accept an
outgoing particle line and an interaction line.

The most simple Green’s function diagrams are the particle lines.

11.1.2 Interaction diagram

An interaction diagram has two external vertices, each of which can accept one incoming and one
outgoing particle line.

325
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11.1.3 Self-energy diagrams

A self-energy diagram has two external vertices. One of the external indices can accept an incoming
particle line and the other can accept an outgoing particle line.

A self-energy diagram can be inserted into a self-energy diagram.
Examples are the tadpole on p. 327, the open-oyster diagram on p. 328 and the ring diagram on

p. 329.

11.1.4 Polarization diagram

A polarization diagram has two external vertices, each of which can be connected to an interaction
line.

A polarization diagram can be inserted into an interaction line.
A diagram with two external vertices, to which one can attach exactly one interaction lines each,

is called a polarization diagram .
An example for a polarization diagram is the ring diagram on p. 329.

11.1.5 Vertex diagram

A diagram with three vertices, to which one can attach exactly one interaction line, one incoming
and one outgoing Greens functions function line is called a vertex diagram.

11.1.6 Closed diagrams

The diagrams of the denominator of the Green’s function are the so-called closed diagrams. They
are called closed as opposed to the diagrams in the numerator of the Green’s function, which have
external indices. The closed diagrams with n interactions form the set of An. This set of diagrams
is easily constructed from all permutation vectors of dimension 2n.

Editor: Note that the value of open diagrams has not been defined. Thus, their
value should be taken with a grain of salt. I first have to supply a formula for
the value.

A diagram that is not closed, is called open diagram. Open diagrams have an external vertex.
An external vertex is one that is not fully connected by one interaction line, one incoming and one
outgoing particle line.

11.1.7 Linked diagrams

A linked diagram or linked cluster is a diagram without disconnected parts, that are connected
neither by a Green’s function nor an interaction with the rest of the diagram.

The linked diagrams form a subset Ln of the set An of all closed, linked diagrams of order n.
From the second-order diagrams shown in figure 11.2, all diagrams but four are linked. The

four exceptions are the two-by-two block in the upper-left corner. The unlinked diagrams consist of
combinations of the closed diagrams of lower order.

11.1.8 One-particle irreducible (1PI) diagrams

A diagram is one-particle irreducible (1PI) if it does not fall apart when one Green’s function is
removed. Because Green’s functions in closed diagrams form Fermi-loops, linked closed diagrams are
one-particle irreducible.
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11.1.9 Two-particle irreducible (2PI) diagrams

A diagram is two-particle irreducible (2PI) if it does not fall apart when two Green’s function are
removed. A diagram which is not two-particle irreducible, is called two-particle reducible. Closed,
two-particle irreducible diagrams are also called skeleton diagrams. The set Sn of skeleton diagrams
of order n is obtained from Ln by removing all two-particle reducible diagrams.

11.1.10 Named diagrams

There are patterns of diagrams that are easily recognized and interpreted. These structures shall be
selected and discussed. In order to identify their values we refer to Eq. 10.48 on p. 308.

V (P⃗) Eq. 10.48
= ϵP1,...,P2n (iℏ)

n

∫
C
dt1 · · ·

∫
C
dtn

∑
o1,i1,...,o2n,i2n

n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j (tj)

×G(0)iP1 ,o1
(
t(P1), t+(1)

)
· · ·G(0)iP2n ,o2n

(
t(P2n), t+(2n)

)
(11.1)

Many diagram names are taken from Mattuck[4]. (bubble p.18, ladder p.18, oyster p18, ring
p.18., open oyster p.66.). The tadpole diagram has been used by Abdus Salam[83].

• bubble diagram: density matrix

The bubble diagram can be identified with the density matrix of the non-interacting system at
a given time.

−G(0)i ,o (t, t
+)

Eq. 8.28
=

1

iℏ
ρ
(1)(0)
i ,o (t) (11.2)

In a real-space representation, the one-particle-reduced density matrix would reduce to the
density at a given point in space and time. A bubble diagram with a double-lined arrow indicating
a full Green’s function would yield the one-particle-reduced density matrix of the interacting
system.

• tadpole diagram: Hartree potential

The tadpole diagram can be attributed to the Hartree potential

−iℏ
∑
i2,o2

Wo1,o2,i1,i2(t)G
(0)
i2,o2(t, t

+)
Eq. 8.28
=

∑
i2,o2

Wo1,o2,i1,i2(t)ρ̂
(1)(0)
i2,o2 (t)

Eq. 2.38
= v

(0)
H,o1,i1

(t)

(11.3)
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The tadpole diagram describes the Hartree potential of the non-interacting or the interacting
density, depending on whether a non-interacting or an interacting Green’s function is present.

The order (o, i) of the orbital indices of the potential is opposite to that (i , o) in the one-
particle-reduced density matrix. One rationale is that the trace of potential and one-particle-
reduced density matrix 2EH =

∑
i ,o ρ

(1)
i ,o vH,o,i is (twice) the Hartree energy. Editor: Think

of something more convincing, e.g. working it out brute force.

• eyeglass diagram or double-bubble diagram: Hartree term

1 2

The eyeglass diagram can be attributed to the Hartree energy of the non-interacting electrons.

V (eyeglass diagram) = iℏ
∫
C
dt

∑
i1,o1i2,o2

Wo1,o2,i1,i2(t)G
(0)
i1,o1(t, t

+)G
(0)
i2,o2(t, t

+)

=
1

iℏ

∫
C
dt

∑
i1,o1i2,o2

Wo1,o2,i1,i2(t)ρ
(1)(0)
i1,o1 (t)ρ

(1)(0)
i2,o2 (t) (11.4)

The Hartree energy of interacting electrons is obtained by replacing the bare Green’s function
by the full one.

• oyster diagram: exchange term

1 2

The oyster diagram can be attributed to the exchange energy

V (oyster diagram) = iℏ
∫
C
dt

∑
i1,o1,i2,o2

Wo1,o2,i1,i2(t)G
(0)
i1,o2(t, t

+)G
(0)
i2,o1(t, t

+)

Eq. 8.28
=

1

iℏ

∫
C
dt

∑
i1,o1,i2,o2

Wo1,o2,i1,i2(t)ρ
(1)(0)
i1,o2 (t)ρ

(1)(0)
i2,o1 (t) (11.5)

• open-oyster diagram : exchange potential

The open-oyster diagram can be attributed to the exchange potential

iℏ
∑
i2,o1

Wo1,o2,i1,i2(t)G
(0)
i2,o1(t, t

+)
Eq. 8.28
= −

∑
i2,o1

Wo1,o2,i1,i2(t)ρ
(1)(0)
i2,o1 (t)

Eq. 2.41
= v

(0)
X,o2,i1

(t)

(11.6)
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• ring diagram: virtual electron-hole pair. The electron-hole pair is induced by an electric field.
I creates a dipole which screens the interaction. The screened interaction in a free-electron gas
has an exponential tail, rather than the long-ranged 1/|r⃗ | Coulomb tail.

Π
(r ing)
i1,o1,i2,o2

(t, t ′) = −G(0)i2,o1(t
′, t)G

(0)
i1,o2
(t, t ′) (11.7)

Editor: Make the link to the bare polarization and electric susceptibility. Look
up Mattuck-Eq.10.3.6. ϵRPA(q⃗, ω) = 1 + VqΠ(q⃗, ω).

• particle-hole ladder: Coulomb attraction between an electron and a hole. Responsible for
exciton formation?

• particle-particle ladder: short-range Coulomb repulsion between two electrons or two holes.

11.2 Systematic construction of closed diagrams

The diagrams can be constructed systematically by forming all permutation vectors of length n.

11.2.1 Construct all permutation vectors

The guiding principle is that we construct the permutation vectors P⃗ in a specific order.
In order to keep track of this order, we construct for each vector P⃗ of length 2n a unique integer

number

Z(P⃗) def
=

2n∑
j=1

Pj · (2n)2n−j (11.8)

The number has no physical meaning. Its only purpose is to place all permutation vectors into a
well-defined order. By working through an ordered list, we ensure that none of the permutation
vectors is missed or considered twice. Z gives a value to any sequence of 2n numbers in the given
range 0 < Pj < 2n, not only true permutations: This is not problematic because the purpose is not
to enumerate permutations, but arrange them in a unique order.

Next, we set up a construction scheme for the permutation vectors P such that Z(P⃗) increases
from step to step.
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1. start with all 2n indices in ascending order, that is P⃗ = (1, 2, . . . , 2n).

2. for a given permutation vector P⃗ find the longest rightmost subsequence in descending order.
If the rightmost sequence is ascending, consider the last element as the descending sequence.

Examples:

• for the sequence (2, 3, 4, 1), the rightmost descending sequence is (4, 1)

• for the sequence (1, 2, 3, 4), the rightmost descending sequence is (4)

3. If the sequence with descending indices starts at position m, i.e.

Pm−1 < Pm > Pm+1 > . . . > P2n ,

the preceding number Pm−1 needs to be increased by the smallest possible amount. We pick
from the decreasing sequence {Pm, . . . ,P2n} the smallest number, which, however, still is larger
than Pm−1. This number, let us denote it as Pq, is placed on position m − 1, and the other
numbers from {Pm−1, . . . ,Pq−1,Pq+1 . . . ,P2n} are arranged in increasing order and placed into
positions m, . . . , 2n.

The resulting permutation vector P⃗ ′ is equal to the original vector P⃗ for the firstm−1 elements.
On the position m, P ′m = Pq. The components of the new permutation vector P ′j with j > m
consists of the components of the old vector with j > m − 1 with the exception of Pq. These
components are arranged in ascending order.

Examples:

• for the permutation vector P⃗ = (2, 3, 4, 1), the rightmost descending sequence is (4, 1).
That is, m = 3. We need to increase the value of Pm−1 = 3. The next higher number in
the descending sequence (4, 1) is 4. That is, q = 3. We place Pq = 4 into P ′m−1 = 4 and
remove it from the sequence (3, 4, 1). The remaining numbers {3, 1} are arranged in as-
cending order (1, 3) and placed behind P ′m−1 = 4. Thus, one obtains as next permutation
P⃗ ′ = (2, 4, 1, 3).

• for the permutation vector P⃗ = (1, 2, 3, 4), the rightmost descending sequence is (4).
This is the fourth component so that m = 4. The preceding component Pm−1 = 3 needs
to be increased in value by picking the next higher number in the decreasing sequence,
namely Pq = 4, where q = 4. The remaining number from the sequence (3, 4), namely 3
is placed into the last position. Thus, one obtains as next permutation P⃗ ′ = (1, 2, 4, 3).

4. this step is repeated until all indices are in decreasing order.

5. One should count the number of permutations constructed in this way to verify that all (2n)!
diagrams have been formed.

11.2.2 First-order diagrams

The order in the interaction is one. We start constructing the permutation vectors 2n = 2 dimensions.

Nr P⃗
1 1 2
2 2 1

Thus, we obtain two diagrams which can be expressed by the column-wise mappings of the vertices
by Green’s functions.

• The first diagram with P⃗ = (1, 2) has the mapping
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1 2 3 4 5 6
1 2 3 4 5 6

4 6 5
5 4 6
5 6 4
6 4 5

3 6 5 4
4 3 5 6

3 6 5
5 3 6
5 6 3
6 3 5

4 6 5 3
5 3 4 6

3 6 4
4 3 6
4 6 3
6 3 4

5 6 4 3

1 2 5 6 4 3
6 3 4 5

3 5 4
4 3 5
4 5 3
5 3 4

2 6 5 4 3
3 2 4 5 6

4 6 5
5 4 6
5 6 4
6 4 5

2 6 5 4
4 2 5 6

2 6 5
5 2 6
5 6 2
6 2 5

4 6 5 2

1 3 4 6 5 2
5 2 4 6

2 6 4
4 2 6
4 6 2
6 2 4

5 6 4 2
6 2 4 5

2 5 4
4 2 5
4 5 2
5 2 4

3 6 5 4 2
4 2 3 5 6

3 6 5
5 3 6
5 6 3
6 3 5

2 6 5 3

Table 11.1: Example for building up permutation vectors of length 6 using the technique of sec-
tion 11.2.1. Only the first 54 permutation vectors from 720 in total are shown. The trailing de-
scending sequence is marked as bold faced. The preceding element, which is to be increased in value,
is marked in red. Elements that do not change are omitted. The top line in each column is the
reference for starting the sequence below. It is a repetition of the last entry of the previous column.

o 1 2
i 1 2

This will produce Hartree diagram, which is also called eyeglass diagram. It is shown on the
left of figure 11.1.

• The second diagram with P⃗ = (2, 1) has the mapping

o 1 2
i 2 1

This will produce exchange diagram, which is also called oyster diagram. It is shown on the
right of figure 11.1.

11.2.3 Second-order diagrams

The order in the interaction is two. We start constructing the (2n)! = 24 permutation vectors 2n = 4
dimensions.
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1 2 1 2

Fig. 11.1: First-order Feynman diagrams in the interaction. The left diagram is the Hartree diagram
and the diagram to the right is the exchange diagram. The two diagrams describe the non-self-
consistent Hartree-Fock approximation.

Nr P⃗
1 1 2 3 4
2 1 2 4 3
3 1 3 2 4
4 1 3 4 2
5 1 4 2 3
6 1 4 3 2

Nr P⃗
7 2 1 3 4
8 2 1 4 3
9 2 3 1 4

10 2 3 4 1
11 2 4 1 3
12 2 4 3 1

Nr P⃗
13 3 1 2 4
14 3 1 4 2
15 3 2 1 4
16 3 2 4 1
17 3 4 1 2
18 3 4 2 1

Nr P⃗
19 4 1 2 3
20 4 1 3 2
21 4 2 1 3
22 4 2 3 1
23 4 3 1 2
24 4 3 2 1

The diagrams are shown in figure 11.2. The diagrams are arranged line-by-line, as opposed to the
column wise arrangement of the permutations given above.
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Fig. 11.2: Second-order Feynman diagrams in the interaction. Referring to the order of the pairings
developed above the orderings run in rows rather than columns.

11.3 Sign theorem

The value V (D) of a diagram D specified by a permutation vector P⃗ is given by Eq. 10.48 on p. 308.
It contains a sign factor, namely the fully antisymmetric tensor ϵP1,P2,... of the permutation vector
P⃗ specifying the diagram. Evaluating the sign factor can be rather cumbersome. The sign theorem
simplifies this task so that the sign can be trivially read off from a Feynman diagram.
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Fig. 11.3: Topologically distinct diagrams of second order grouped according to disconnected
diagrams (top row), skeleton diagrams (middle row) and non-skeleton connected diagrams (bottom
row). The number of Fermi loops L, the symmetry factor S, the multiplicities M and participating
diagrams in parenthesis are: top-left: L=4, S=8, M=1, (1); top-middle: L=3,S=4, M=2, (2,7), top-
right: L=2, S=8, M=1, (8), middle-left: L=2, S=4, M=2, (17,24), middle-right: L=1, S=4, M=2,
(18,23); bottom-left: L=3, S=2, M=4, (3,6,22,15); bottom-middle: L=1, S=2, M=4, (10,11,14,19)
bottom-right: L=2, S=1, M=8, (4,5,9,12,13,16,20,21). The graph numbers refer to the order in
Fig. 11.2.

What is a Fermi loop?

Let me first introduce the concept of a Fermi loop: Consider any closed diagram: Let me pick out
any Green’s function in that diagram. The Green’s function points to a vertex, which connects this
Green’s function to exactly one other (or the same) Green’s function. When we proceed repeatedly
from one Greens function to the next, we arrive at some point at the vertex where the first Green’s
function emerged from, because the diagram is closed. This ring of Green’s function is called a Fermi
loop. A closed diagram may have one or more such Fermi loops. A Fermi loop may only contain a
single Green’s function, which closes on itself, as in the tadpole diagram.
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Identify Fermi-loops in a permutation vector P⃗: Fermi loops can be identified from the permu-
tation vector without drawing the diagram. The permutation vector is considered as a mapping
between vertices, which allows to follow the Green’s functions until they close a Fermi loop. Let me
demonstrate the procedure at the following example:

P⃗tot =
(
7, 1, 4, 3, 10, 5, 8, 2, 9 6

)
o 1 2 3 4 5 6 7 8 9 10
i 7 1 4 3 10 5 8 2 9 6

We start at the first outgoing vertex (o = 1) and follow the permutation vector to the corresponding
incoming vertex i = P1 = 7. We denote this step by (1→ 7). Next, we choose the resulting vertex
as outgoing vertex o = 7 and pass on to i = P7 = 8. We proceed until we arrive at the first vertex
in the loop, namely 1, which implies that the first Fermi loop is closed. The Fermi loop consists of
the hops

(1→ 7), (7→ 8), (8→ 2), (2→ 1) (11.9)

and the vertices visited by the Fermi loop are

[1, 7, 8, 2] (11.10)

The next Fermi loop starts at the first outgoing vertex that has not yet been visited, namely vertex
3. From here we identify the next Fermi loop.

(3→ 4), (4→ 3) (11.11)

The vertices visited by the first two Fermi loops are

[1, 7, 8, 2][3, 4] (11.12)

We proceed analogously to the third Fermi loop

(5→ 10), (10→ 6), (6→ 5) (11.13)

and the fourth Fermi loop

(9→ 9) . (11.14)

The grouping of the vertices into Fermi loops is therefore

⇝ [1, 7, 8, 2][3, 4][5, 10, 6][9] (11.15)

Now all vertices have been visited once. Thus, there are four Fermi loops in the corresponding
diagram.

Sign theorem

With the concept of a Fermi loop, we can state the sign theorem:
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SIGN THEOREM

The sign ϵP⃗ due to the permutations of field operators is obtained from the number L of Fermi loops
in a diagram as ϵP1,P2,P3,... = (−1)L.
A Fermi loop is a closed chain of Green’s functions.
The sign theorem in the form presented here is applicable only to closed diagrams.

Proof of the sign theorem

Let me verify the sign theorem.

• Let me start with a diagram specified by the permutation vector P⃗ = (1, 2, 3, . . .). Because the
elements of the permutation are in ascending order, the sign factor is +1. The corresponding
diagram consists of a product of so-called eyeglass diagrams, one for each interaction. An
eyeglass diagram has two Fermi loops. Hence, the number of Fermi loops is even, and the sign
theorem predicts, correctly, a positive sign factor.

• A sign change due to ϵP1,P2,... is related to a permutation of two components of the permutation
vector. Each permutation changes the number of Fermi loops by ±1.

– Consider the interchange of two components of the permutation vector P⃗, which refer to
vertices of distinct Fermi loops. As shown below, this will merge the two Fermi loops
into one big Fermi loop.

42

1 3

2

1 3

4

– Consider the interchange of two components of the permutation vector, which refer to
vertices in the same Fermi loop. Each of the two Greens function, which are reattached
closes a Fermi loop, so that the Fermi loop is divided into two Fermi loops. Because this
step is related to a permutation of two indices, it is related to a sign change.

This shows that an even number of Fermi loops is related to a positive sign and an odd number of
Fermi loops is related to a negative sign. This proves the sign theorem.

Exercise: Verify the sign theorem by evaluating the sign for eye-glass and oyster diagram, once
with the Levi-Civita symbol and using the sign theorem.

11.4 Linked-cluster theorem

The linked-cluster theorem[84] 1 allows one to get rid of the logarithm in the generating functional
QT,µ defined in Eq. 10.59.

QT,µ
Eq. 10.59
= −kBT ln Tr

{
ρ̂
(0)
T,µTCŜI,C

}
Eq. 10.59
= −

1

β
ln

{ ∞∑
n=0

1

n!

1

2n

∑
D∈An

V (D)

}
(11.16)

Furthermore, the set A of general closed diagrams is reduced to a smaller set L of so-called linked
diagrams.

1For the proof of the linked-cluster theorem, Luttinger points to Bloch and de Dominicis[85].
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What is a linked diagram?

A linked diagram or linked cluster is a diagram without disconnected parts. Two parts of a diagram
are disconnected, when they are neither connected by a Green’s function nor by an interaction line.

Disconnected diagrams can easily be identified by inspection of the diagram. To identify discon-
nected diagrams on the computer or for formal derivations, a criterion based on the permutation
vector P⃗ is preferable. Let me develop such a criterion:

• The permutation vector maps a subset B of vertices onto another set B′. When the permutation
vector maps B onto itself, i.e. B′ = B, this subset is not connected by Green’s functions to
the rest of the diagram. (It may still be connected by an interaction line.)

• Our rule to translate a permutation vector into a diagram enforces that an odd-numbered vertex
j and the next higher even-numbered vertex j + 1 are connected by an interaction line. This
implies that all odd-even-numbered vertex pairs are connected by interaction lines.

This implies that a sub diagram is disconnected from the rest, if it consists of a subset B of vertices ,
which, firstly, consists of odd-even numbered vertex pairs, and which, secondly, is mapped onto itself
by the permutation vector. A procedure to identify disconnected diagrams from a set of permutation
vectors is described in the appendix L.1 on p. 585.

Linked-cluster theorem

Let me now state the linked-cluster theorem, which I will prove below.

LINKED-CLUSTER THEOREM

The linked-cluster theorem removes the logarithm and reduces the sums over closed diagrams to the
sum over linked diagrams, i.e.

QT,µ[G(0)]
Eq. 10.59
= −

1

β
ln
{ ∞∑
n=0

∑
D∈An

V (D)

n!2n

}
= −

1

β

∞∑
n=1

∑
D∈Ln

V (D)

n!2n
(11.17)

where Ln is the subset of linked diagrams in An, the set of all closed diagrams of order n.
Note, that the sum on the right-hand side starts with element n = 1 and not with n = 0 as on the
left-hand side.

The linked-cluster theorem represents the generating functional QT,µ, and thus the Green’s func-
tion, as a power-series expansion in the interaction. Without the linked-cluster theorem, the Green’s
function is a fraction of two terms, each of which is a power series expansion of the interaction. A
single power-series expansion is important to preserve symmetries with their conservation laws and
sum rules. Truncating a Taylor expansion at any given order preserves all sum rules that are valid
independent of the interaction strength. Truncating the sum inside the logarithm would violate these
sum rules.
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Proof of the linked-cluster theorem

We start taking the exponential function of both sided of the linked-cluster theorem Eq. 11.17.

∞∑
n=0

∑
D∈An

V (D)

n!2n
Eq. 11.17
= exp

( ∞∑
n=1

∑
D∈Ln

V (D)

2n(n!)

)

=

∞∑
p=0

1

p!

( ∞∑
n=1

∑
D∈Ln

V (D)

2n(n!)

)p

= 1 +
1

1!

( ∞∑
n=1

∑
D∈Ln

V (D)

2n(n!)

)1
︸ ︷︷ ︸

linked clusters

+
1

2!

( ∞∑
n=1

∑
D∈Ln

V (D)

2n(n!)

)2
︸ ︷︷ ︸

singly disconnected

+ . . . (11.18)

The second term on the right-hand side (p = 1) contains all linked diagrams. The third term (p = 2)
contains all diagrams that consist of two disconnected parts. The next one (p = 3) contains diagrams
with three disconnected parts, etc.

The proof of the linked-cluster theorem Eq. 11.17 needs to verify Eq. 11.18. Our task is to
establish a one-to-one map of arbitrary closed diagrams D ∈ A on the left side of Eq. 11.18 and the
terms on the right-hand side of Eq. 11.18.

Let me consider a permutation vector P⃗tot defining the diagram Dtot ∈ A on the left side of
Eq. 11.18. Let me assume that it consists of p disconnected parts D1, . . . , Dp, which themselves are
linked clusters.

The permutation vector P⃗j of the sub-diagram Dj is obtained from the permutation vector P⃗tot
by relabeling the vertices of diagram Dj and by remapping P⃗j accordingly. The order of the vertices
within diagram Dj has to remain intact and the vertices have numbers from one to 2nj , where n is
the order of the diagram Dj .



338 11 DIAGRAMMATICS OF THE GENERATING FUNCTIONAL

Example An example for a disconnected diagram in A is

P⃗tot =
(
7, 1, 4, 3, 10, 5, 8, 2, 9, 6

)
o 1 2 3 4 5 6 7 8 9 10
i 7 1 4 3 10 5 8 2 9 6

I have colored the sections of the permutation vector P⃗tot belonging to disconnected sub-clusters.
The table specifies the pairs of vertex labels corresponding to the outgoing (right) (o) and incoming
(left) (i) indices of a Green’s function.
The diagram above consists of the following three subdiagrams, which are linked clusters and discon-
nected from each other. The arrows indicate the remapping of the vertex labels from the combined
diagram Ptot to that of an isolated linked cluster P⃗j .

P⃗1 =
(
3, 1, 4, 2

)
o 1 2 - - - - 7→ 3 8→ 4 - -
i 7→ 3 1 - - - - 8→ 4 2 - -

P⃗2 =
(
2, 1

)
o - - 3→ 1 4→ 2 - - - - - -
i - - 4→ 2 3→ 1 - - - - - -

P⃗3 =
(
4, 1, 3, 2

)
o - - - - 5→ 1 6→ 2 - - 9→ 3 10→ 4
i - - - - 10→ 4 5→ 1 - - 9→ 3 6→ 2

This last diagram P3 consists of two Fermi loops with vertices [1, 4, 2] and [3], which are connected
by an interaction between vertices 3 and 2.

There is more than one diagram in A that falls apart into the same set of sub-diagrams. The
number of such diagrams is obtained by counting the number of ways the interaction lines of the
subdiagrams can be assigned to those of the combined diagram.

1. There are

ntot(ntot − 1) . . . (ntot − n1 + 1)
n1!

=
ntot !

n1!(ntot − n1)!
(11.19)

possibilities to assign the n1 interaction lines of D1 to the ntot interaction lines of the combined
diagram, while maintaining the internal order of the vertices in D1. The count for preserving
the internal order of the vertices is obtained by dividing by the number n1! of permutations of
the interactions in D1.

2. There are

(ntot − n1)(ntot − n1 − 1) . . . (ntot − n1 + 1)
n2!

=
(ntot − n1)!

n2!(ntot − n1 − n2)!
(11.20)

possibilities to assign the n2 interactions of D2 to those of the combined diagram, while main-
taining the internal order of the vertices in D2. The number of ways to distribute the interaction
of D1 and D2 is

ntot !

n1!n2!(ntot − n1 − n2)!
(11.21)

3. Let me proceed to the last diagram: There are

ntot !∏p
k=1 nk !

(11.22)
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possibilities to assign the interactions of all sub-diagrams D1, . . . , Dp to those of the combined
diagram.

The set of diagrams D on the left-hand side of Eq. 11.18, which dissociate into the same specific
set {D1, . . . , Dp} of linked sub diagrams, contribute

ntot !∏p
k=1 nk !︸ ︷︷ ︸

Eq. 11.22

V (D)

ntot !2ntot
=

p∏
k=1

V (Dk)

nk !2nk
(11.23)

which is the weight of the same set of diagrams {D1, . . . , Dp} on the right-hand side of Eq. 11.18,
if the diagrams in the set are all distinct. On the right-hand side the set occurs p! times in the sum,
which is compensated by a factor 1p! in Eq. 11.18.

Let me now remove the restriction that the diagrams in the set {D1, . . . , Dp} are distinct from
each other:

When two sub diagrams are equal, an interchange of these diagrams does not produce a new com-
posite diagram with another permutation vector. Therefore, the weight of this diagram in Eq. 11.23
must be divided by the number of interchanges of equivalent diagrams.

If there are q distinct sub diagrams in the set {D1, . . . , Dp} with multiplicities m1, m2, . . . , mq
(with m1 +m2 + . . .+mq = p), an additional factor 1

m1!···mq !
needs to be considered.

With this correction, the weight of the diagrams on the left-hand side of Eq. 11.18 consisting of
D1, . . . , Dp is

1

m1! · · ·mq!

p∏
k=1

V (Dk)

nk !2nk
(11.24)

Let me now turn to the right-hand side of Eq. 11.18:
If the diagram Dtot consists of p linked sub-diagrams, its weight is contained in the term with

power p in the Taylor expansion of the exponential function. The diagrams D1, . . . , Dp occur p!
m1!···mq !

times in the sum, if distinct diagrams have multiplicities m1, . . . , mq. The factor p! is due to the
different orders of the diagrams in the sum.

The total weight of the diagrams consisting of the subdiagrams D1, . . . , Dp on the right-hand
side of Eq. 11.18 is

1

p!

p!

m1! · · ·mq!

p∏
k=1

V (Dk)

nk !2nk
(11.25)

which is equivalent to the weight Eq. 11.24 obtained on the left-hand side of Eq. 11.18. Thus, for
each diagram D occuring on the left-hand side Eq. 11.18, the weight is equal to that of the set
of subdiagrams on the right-hand side of Eq. 11.18. This completes the proof of the linked-cluster
theorem.

11.5 Topologically-equivalent diagrams and symmetry factors

In this section, I will show that the set L of linked diagrams of the generating functional can be
reduced to a much smaller set T of so-called topologically distinct, linked diagrams. The vertex
labels, used so far, become irrelevant for this new set. The reduction in the number of terms is
compensated with the help of a so-called symmetry factor S(D).

The result of this section can be summarized in the following box:
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SUM OVER TOPOLOGICALLY DISTINCT DIAGRAMS

The generating functional QT,µ
[
G(0)

]
of Eq. 11.16 can be expressed in terms of topologically distinct

diagrams and their symmetry factor S(D) as

QT,µ
[
G(0)

] Eq. 11.32
= −

1

β

∞∑
n=1

∑
D∈Tn

V (D)

S(D)
(11.26)

Tn is the set of all topologically distinct, linked, closed diagrams of order n. The value V (D) of the
diagram is defined in Eq. 10.48. S(D) is the symmetry factor of the diagram, which is obtained as
the number of mere deformations constructed by topology preserving transformations among vertex
labels.

What are topologically equivalent diagrams?

The topology of a diagram refers to its network of particle lines and interaction lines.
Many diagrams of the generating functional QT,µ Eq. 11.17, have the same value V (D). Their

values are equivalent, because the integrals in the expressions for V (D), Eq. 10.48, are related by
a mere renaming of integration variables. In the diagram, a renaming of the integration variables
is equivalent to changing the vertex labels, while preserving the connectivity, the topology, of the
diagram.

Relabeling vertices: Up to now, we have used so-called labeled diagrams, meaning that every ver-
tex has a specific label (number). The labels allowed us to represent diagrams in terms of permutation
vectors P⃗.

Renaming (relabeling) the vertices can be done by a vector M⃗, which maps every vertex label j
uniquely onto a new vertex label Mj . Mapping vectors M⃗ have much in common with permutation
vectors P⃗, because both are a unique mappings of the vertices in a diagram onto each other.

A Green’s function that points from vertex j to vertex Pj turns, after remapping, into a Greens-
function from vertex Mj to vertex MPj . The new permutation vector satisfies therefore

P ′Mj
= MPj (11.27)

Considering both vectors as transformation operators acting on the vertex labels, this can also be
written in the form2

P ′ = M ◦ P ◦M−1 (11.28)

2The inverse of the mapping M is obtained by, first, interchanging the sequences of outgoing and incoming vertices,
and secondly reordering the (o, i) vertex pairs so that the new outgoing vertices are in ascending order.

o 1 2 3 4
i 2 1 3 4

i↔o→
o 2 1 3 4
i 1 2 3 4

order→
o 1 2 3 4
i 2 1 3 4

The inverse mapping M⃗−1 = (2, 1, 3, 4) is, in this case, identical to the forward mapping M⃗ = (2, 1, 3, 4).
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Example for relabeling a diagram:

o 1 2 3 4
i P1 P2 P3 P4

remap→
o M1 M2 M3 M4

i MP1 MP2 MP3 MP4

order→
o 1 2 3 4
i P ′1 P ′2 P ′3 P ′4

In the first step “remap”, all vertex labels, incoming and outgoing, are relabeled so that the vertex with
label j receives the new label Mj . In the second step “order”, the columns (outgoing-incoming pairs)
are rearranged such that the outgoing vertex labels are in ascending order. The resulting sequence
of incoming vertex labels form the new permutation vector P⃗ ′.
Let me consider a specific example with P⃗ = (3, 1, 4, 2) and M⃗ = (2, 1, 3, 4), which yields the new
permutation vector P⃗ ′ = (2, 3, 4, 1).

o 1 2 3 4
i 3 1 4 2

remap→
o 2 1 3 4
i 3 2 4 1

order→
o 1 2 3 4
i 2 3 4 1

Topology-preserving transformations: Relabeling vertices in an arbitrary manner 3 preserves the
network of Green’s functions, but it could change the network of interactions lines. In order to also
preserve the network of interaction lines, the following transformations are allowed:

• n! interchanges of vertex-label pairs between interactions, while maintaining the internal odd-
even-order of the vertex labels on each interaction.

• 2n interchanges of the vertex labels within interactions.

These n!2n operations form a group Gn of transformations of vertex labels, which maintain the same
network of particle lines and interaction lines and therefore leave the value of the diagram unchanged.4

The mapping vectors M⃗ for the second-order terms in the interaction , i.e. n = 2, are given as an
example in table 11.2.

Table 11.2: The 2nn! mappings of the vertices for order n = 2 in the interaction, which leave the
topology of a diagram unchanged. Required is that all interactions connect an odd numbered vertex
with the next higher even-numbered vertex. There are n!2n = 8 such mappings.

Vi 1 2 3 4
M1 = I 1 2 3 4 identity
M2 2 1 3 4 flips vertices of 1st interaction
M3 = M5 ◦M2 ◦M5 1 2 4 3 flips vertices of 2st interaction
M4 = (M2 ◦M5)2 2 1 4 3 flips vertices of each interaction
M5 3 4 1 2 interchanges two interactions
M6 = M5 ◦M2 3 4 2 1 inverts 1st interaction and interchanges interactions
M7 = M2 ◦M5 4 3 1 2 inverts 2st interaction and interchanges interactions
M8 = M2 ◦M5 ◦M2 4 3 2 1 inverts both interactions and interchanges interactions

3Also an arbitrary mapping vector must be unique mapping of the vertex labels onto each other.
4The generators of the group are (1) the interchange of the vertex labels on the first interaction and (2) the

interchange of the vertex labels of every interaction, except the first, with the first. In total, the symmetry group for
a diagram of order n has n generators. All other transformation of the symmetry group are obtained as products of
these generators.
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Mere deformations: Some of the topology-preserving transformations turn a diagram into itself,
rather than into a different diagram with the same topology. More precisely, the resulting permu-
tation vector is identical to the original one, i.e. P⃗ ′ = P⃗. Such a transformation is called a mere
deformation. Whether a transformation is a mere deformation depends on the diagram at hand.
Following Eq. 11.27, a mere deformation satisfies

PMj
= MPj . (11.29)

When we consider permutation vector and mapping vector as transformations, Eq. 11.29 implies that
these two transformations commutate.

Example for a mere deformation: Let us pick the same permutation vector P⃗ = (3, 1, 4, 2) as in the
example above, but transform it with another re-mapping, namely M⃗ = (4, 3, 2, 1). In that case we
obtain

o 1 2 3 4
i 3 1 4 2

remap→
o 4 3 2 1
i 2 4 1 3

order→
o 1 2 3 4
i 3 1 4 2

This remapping produces the same permutation vector P⃗ ′ = P⃗ as the original one. Thus, we have
not produced a new diagram, but a mere deformation of the original diagram.
Let me now implement the criterion Eq. 11.29 for a mere deformation given above(

1
P→ 3 M→ 2

)
=
(
1
M→ 4 P→ 2

)
(
2
P→ 1 M→ 4

)
=
(
2
M→ 3 P→ 4

)
(
3
P→ 4 M→ 1

)
=
(
3
M→ 2 P→ 1

)
(
4
P→ 2 M→ 3

)
=
(
4
M→ 1 P→ 3

)
We observe, that the mapping commutates with the permutation, which identifies this mapping as a
mere deformation of the diagram specified by the permutation.

Set T of the topologically inequivalent (linked) diagrams: The goal is to pick only one diagram
out of a set of topologically equivalent diagrams. This can be done, diagram by diagram: First,
the set of all diagrams {P⃗ ′} that are topologically equivalent to P⃗ is constructed by applying all
topology-preserving transformations to a specific diagram P⃗. Then, we define a criterion to select
exactly one specific diagram from this set. If the current diagram satisfies the criterion, it is kept.
Otherwise the diagram is discarded.

The criterion is that the number5 Z(P⃗) assigned to its permutation vector

Z(P⃗) def
=

2n∑
j=1

Pj · (2n)2n−j (11.30)

is the smallest in the set of topologically equivalent diagrams. The comparison of Z(P⃗) of two
diagrams P⃗ and P⃗ ′ is straightforward: We only need to compare the first distinct component of the
permutation vectors from the left: If that component of P⃗ is smaller than that of P⃗ ′, this also holds
for Z, i.e. Z(P⃗) < Z(P⃗ ′). That is

Pj < P ′j and Pk = P ′k for k < j ⇒ Z(P⃗) < Z(P⃗ ′) (11.31)

Once the topologically equivalent diagrams have been removed from the set L, the vertex labels
are redundant. Any labeling of vertices that satisfies the odd-even rule6 is as good as any other one.

5Eq. 11.30, has been introduced in order to systematically construct all permutation vectors in section 11.2.1.
6With odd-even rule I mean that an interaction always contains a vertex with an odd-numbered vertex and the

vertex with the next higher even number.
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Thus, we switch from a set L of linked labeled diagrams to the much smaller set T of unlabeled
linked diagrams.

As shown in appendix L, there are 592 closed, linked diagrams of third order, while there are only
20 such topologically distinct diagrams (about 3 %). In the fourth order, the number of topologically
distinct diagrams (107) is about 3 permille of the number of linked diagrams (33888).

Counting diagrams and symmetry factor: The weight of each diagram in the set T must account
for topologically equivalent diagrams, that have been omitted.

The value V (D) of a diagram has been defined so that each diagram in L (or A) contributes
with a weight 1

n!2n to the generating functional QT,µ as given in Eq. 11.17. There are exactly n!2n

transformations of vertex labels that lead to either distinct, topologically equivalent diagrams or mere
deformations. If there were no mere deformations, each diagram in T would contribute with its value
V (D): in this special case, there are n!2n topologically equivalent diagrams which would cancel the
prefactor 1

n!2n . If the relabeling produces also mere deformations, the number of distinct, topologically
equivalent diagrams is smaller than n!2n by a factor S(D), which is called the symmetry factor.

Below, I will show that the symmetry factor is given as follows:

SYMMETRY FACTOR

The symmetry factor S(D) is the number of mere deformations among the results of the topology-
preserving transformations (including the identity) acted on the (labeled) diagram D.

Let me follow in spirit the argument given in section 2.3 of the textbook of Negele and Orland[6]:
The topology-preserving transformations form a group Gn. 7 The transformations that produces
mere deformations of a given diagram D form a subgroup FD of the topology-preserving diagrams.

The sub-group FD of transformations that produce mere deformations of a diagram D is con-
structed by applying all topology-preserving transformations of Gn to one diagram. If the permutation
vector of a resulting diagram is identical to that of the original diagram, this specific transformation
produces mere deformations. If a transformation produces a mere deformation for one diagram D
it does so also for all other topologically equivalent diagrams. As an alternative to producing all
topologically equivalent diagrams, one can use the test Eq. 11.29 to identify transformations in FD.
The number of elements of FD will later be the symmetry factor.

The number of elements in the subgroup FD must be a divisor of n!2n: For any two distinct,
but topologically equivalent diagrams, the transformations of the subgroup FD produce two non-
overlapping sets of mere deformations. Thus, the set of diagrams produced by the topology preserving
transformations Gn falls apart into an integer number of non-overlapping subsets, each of which holds
only mere deformations of each other. The diagrams of two different subsets are distinct. If FD has
S(D) elements, the number of subsets of diagrams is therefore n!2n/S(D). In other words there are
n!2n/S(D) distinct topologically equivalent diagrams in L, which are combined into one diagram in
the set T of topologically distinct diagrams.

QT,µ
Eq. 11.16
= −

1

β

∞∑
n=1

∑
D∈Ln

V (D)

n!2n
= −

1

β

∞∑
n=1

∑
D∈Tn

n!2n

S(D)

V (D)

n!2n
= −

1

β

∞∑
n=1

∑
D∈Tn

V (D)

S(D)
(11.32)

Exercise 11.10.3 on p. 357 is strongly recommended to understand how to determine symmetry
factors in practice.

Graphical approach to determine the symmetry factor

As an alternative, one can relabel the vertices in the graphical diagram according to the topology-
preserving transformations. Each relabeled diagram is then deformed so that the vertex labels fall

7A group is a set of elements with a binary operation ◦, which is (1) associative A ◦ (B ◦C) = (A ◦B) ◦C, has (2)
an identity A ◦ 1 = A and an (3) inverse of each element A−1 ◦ A = 1.
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on-top of those of the original diagram. The remapped diagram is a deformation of the original
one, if the Green’s function lines, including their orientation, can be superimposed to those of the
original diagram, while they remain attached to the vertices of the transformed diagram. A mere
deformation is simply the same diagram as the original one.

1 3

42

1 3

42

3 1

24

31

2 4

2 3
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3
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1 4 1

23 4
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1 4
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2

3 1

14

3

2

1

4

2 4

31 2 4

31 4 2

13 42

1 3

Fig. 11.4: Example for the graphical determination of the symmetry factor. Each box corresponds
to one of the n!2n diagrams obtained by appropriate relabeling of the indices. In each box, the
left diagram shows the same diagram after relabeling the indices. The right diagram in each box is
obtained by deforming the diagram so that the vertices fall Ont of the original ones. If the diagrams
on the right of two boxes look equivalent, considering also the directions of the Green’s functions,
the two boxes describe mere deformations of each other. The top-left and the bottom-right diagrams
are mere deformations of the original diagram. Hence, the symmetry factor is S(D) = 2.

The example for the diagram Eq. 11.74 is given in Fig. 11.4. There are two mere deformations,
(upper left and lower right) which are mere deformations of the original diagram. This the symmetry
factor is S(D) = 2. Because the identity is always included, the symmetry factor is never zero.

Note, that the upper right diagram changes the orientation of the Green’s functions, which makes
it a distinct diagram.

The set of topologically equivalent diagrams in Fig. 11.4 is divided into four subsets, each of
which contains two diagrams, which are mere deformations of each other.

11.5.1 Hand’s-on for the evaluation of symmetry factors

In this section, the sum over all closed, linked diagrams for a given order Ln has been replaced by
a sum over only the topologically inequivalent, closed, linked diagrams Tn. This reduction in the
number of diagrams has to be accounted for by a symmetry factor S(D).

What does this mean? Let us consider the contribution from the second-order diagrams∑
D∈L2

V (D)

2!22
=
∑
D∈L2

V (D)

8
(11.33)

where all diagrams D ∈ A2 are listed in Fig. 11.2 on p. 332.
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Before we start, we need to exclude the four diagrams from Fig. 11.2, which are not linked.
Unlinked diagrams are part of A2 but not part of L2. They have been excluded by the linked-cluster
theorem, which removed the logarithm in front of the sum over diagrams and the unlinked diagrams.

Many of the remaining 20 diagrams are topologically equivalent, that is, they correspond to the
same integral, only with some integration variables renamed. In other words, they differ only by the
vertex labels and irrelevant deformations, that do not affect the connectivity of the vertices.

In figure 11.5, the diagrams are grouped into sets of topologically equivalent diagrams. Each
set contributes one diagram to the set of topologically distinct diagrams. This diagram receives the
entire weight of the set.
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(11.34)

Fig. 11.5: Distribution of the second-order diagrams into sets of topologically equivalent diagrams,
one for each topologically distinct diagram in T. The weights are collected. The resulting prefactor
1/S(D) provides the symmetry factor S(D).

Confirm the result of figure 11.5 by yourself! The same scheme applies to all the other orders n
in QT,µ. Therefore you should be able to check this for n = 1. And if you really want to have fun,
you might also like to check it for n = 3, by taking all 720 diagrams for n = 3, rejecting all unlinked
diagrams and identifying all topologically equivalent ones.
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11.6 Systematic rule to construct all topologically distinct, linked,
closed diagrams

Determine all closed diagrams of order n as follows:

1. construct all permutation vectors of length 2n. as described in section 11.2.1 on p. 329.

2. remove all permutation vectors that produce disconnected (un-linked) diagrams. This can
be done by inspection after drawing the diagram, or by a procedure on the elements of the
permutation vector as described in section 11.4 on p. 335.

3. For each diagram construct the topologically equivalent diagrams using the topology-preserving
transformations. These transformations are the (1) vertex exchanges on one interaction and
the interchange of vertex pairs between interactions.

Discard the current diagram if there is a topologically equivalent diagram with a value Z(P⃗ ′)
defined in Eq. 11.30 smaller than that of the current diagram.

Determine the symmetry factor for the current diagram as the number of mere deformations
as described in section 11.5 on p. 339.
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11.7 Systematic rule to evaluate Feynman diagrams

11.7.1 Contour time and orbital basisset

GENERATING FUNCTIONAL

QT,µ[G(0)]
Eq. 10.59
= −

1

β
Tr
{
ρ̂
(0)
T,µTCŜI,C

}
Eq. 11.17
= −

1

β

∞∑
n=1

∑
D∈Ln

V (D)

n!2n
Eq. 11.26
= −

1

β

∞∑
n=1

∑
D∈Tn

V (D)

S(D)

(11.35)

Ln is set of all linked, closed diagrams of order n in the interaction. Tn is set of all topologically
distinct, linked, closed diagrams of order n in the interaction. S(D) is the symmetry factor of the
diagram D.
V (D) is the value of the diagram given below. Each diagram of order n can be represented by a 2n
dimensional permutation vector P⃗

V (D)
Eq. 10.48
= ϵP1,...,P2n (iℏ)

n

∫
C
dt1 · · ·

∫
C
dt2n

∑
o1,i1,...,o2n,i2n

 n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j δC
(
t2j−1 − t2j

)
×GC,(0)iP1 ,o1

(
tP1 , t

+
1

)
· · ·GC,(0)iP2n ,o2n

(
tP2n , t

+
2n

)
(11.36)

The interaction matrix elements are

Wo1,o2,i1,i2
Eq. 3.48
=

∫
d4x

∫
d4x ′

e2χ∗o1(x⃗)χ
∗
o2(x⃗

′)χi1(x⃗)χi2(x⃗
′)

4πϵ0|r⃗ − r⃗ ′|
(11.37)

and the non-interacting Green’s function is

G
C,(0)
i ,o (t, t

′)
Eq. 7.27
=

1

iℏ
⟨πi |Û(t, 0)

{
θC(t − t ′)

(
1̂− ρ̂(1),(0)T,µ

)︸ ︷︷ ︸
electrons

− θC(t ′ − t)ρ̂(1)T,µ︸ ︷︷ ︸
holes

}
Û(0, t ′)|πo⟩

(11.38)

The full Green’s function is obtained from the generating functional with Eq. 10.60 on p. 316 and
the irreducible self energy is obtained by Eq. 10.61.

Draw a diagram from a permutation vector:

Determine the value of a drawn diagram

1. Labels: Label the vertices with numbers from 1 to 2n such that an odd-numbered vertex and
the following even-numbered vertex on the same interaction line.

2. Permutation vector: The Green’s function starting at vertex j points to vertex Pj . While
passing through the vertices in ascending order, note down the sequence of target vertices.

3. Vertices: For each vertex j include a time integral and a sum over all orbital indices for incoming
and outgoing Green’s functions. ∑

oj ,ij

∫
C
dtj (11.39)
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4. Interaction lines: For the interaction line with number j introduce a factor

iℏWo2j−1,o2j ,i2j−1,i2j δC(t2j−1 − t2j) (11.40)

5. Particle lines:

• For each particle line8 introduce a factor

G
C,(0)
iPj ,oj
(tPj , t

+
j ) (11.41)

j is the label of the vertex from which the Green’s function emerges and Pj is the label of
the vertex, where the Green’s function arrives.
The infinitesimal displacement ∆ of the second time argument to of a Green’s function to
t+o = to + ∆ is only relevant for non-propagating particle lines , which otherwise have
equal time arguments ti = to . A non-propagating Green’s function

G
C,(0)
i ,o (t, t

+)
Eq. 8.28
=

1

iℏ
ρ̂
(1),(0)
i ,o (t) (11.42)

starts and ends at the same interaction line. Non-propagating Green’s function lines are
present only in bubbles, oysters and open-oysters. This infinitesimal shift has been intro-
duced in section 10.2.2 to ensure the proper order of creation and annihilation operators
of one interaction.
For propagating Green’s function lines the infinitesimal shift is without consequence and
can be disregarded.

6. Sign factor: count the number of Fermi loops, including all bubbles (tadpoles), and introduce
a sign change for each.

7. Symmetry factor:

• When only topologically distinct diagrams are considered, introduce a factor 1
S(D) where

S(D) is the symmetry factor of the diagram.

• when all linked diagrams are considered, irrespective of whether they are topologically
equivalent or not, introduce a factor 1

n!2n

Comparison with Stefanucci-vanLeeuwen

As a sanity check, let me compare our result with that of Stefanucci and van Leeuwen[2].
The generating functional Eq. 11.35 is identical to −kBT ln Z

Z0
= QT,µ(G(0),W ) of Stefanucci-

vanLeeuwen-Eq. 11.3.9 10

Each diagram D of order n is represented by a permutation vector P of length 2n. The sum over
permutation vectors can be cast in the expression of a determinant, e.g.∑

P⃗

ϵP1,...,P2nG
(0)
o1,iP1
(tiP1 , t

+
o1)G

(0)
o2,iP2
(tiP2 , t

+
o2)G

(0)
o3,iP3
(tiP3 , t

+
o3) . . . G

(0)
o2n,iP2n

(tP2n , t
+
o2n)

= det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G
(0)
o1,i1
(ti1 , t

+
o1) G

(0)
o1,i2
(ti2 , t

+
o1) G

(0)
o1,i3
(ti3 , t

+
o1) . . . G

(0)
o1,i2n
(ti2n , t

+
o1)

G
(0)
o2,i1
(ti1 , t

+
o2) G

(0)
o2,i2
(ti2 , t

+
o2) G

(0)
o2,i3
(ti3 , t

+
o2) . . . G

(0)
o2,i2n
(ti2n , t

+
o2)

...
...

...
...

G
(0)
o2n,i1
(ti1 , t

+
o2n) G

(0)
o2n,i2
(ti2 , t

+
o2n) G

(0)
o2n,i3
(ti3 , t

+
o2n) . . . G

(0)
o2n,i2n

(ti2n , t
+
o2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(11.43)

8In this context, one does not discriminate between particle lines and hole lines.
9Stefanucci-vanLeeuwen include the zero’th order term, which is absent in my equation. I consider that a omission

on their side, because there is no zero-order term except ln(Z0) in Stefanucci-vanLeeuwenFig. 11.1.
10Stefanucci-vanLeeuwen do not explicitly write “det” and they set ℏ = 1
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The determinant of Stefanucci-vanLeeuwen is limited to the terms representing connected (=linked)
diagrams, just as the sum over linked diagrams D ∈ Ln in Eq. 11.35

The diagram Eq. 10.48 translates into Dc,i
def
= 1

n!2n V (P⃗) of Stefanucci-vanLeeuwen-Eq. 11.3.

In Stefanucci-vanLeeuwen-Eq. 11.12 the functional Φr [G(0),W ] is introduced as

ΩT,µ = −kBT ln[ZT,µ] = −kBT ln[Z(0)T,µ] + kBTΦr [G
(0),W ] (11.44)

In Stefanucci-vanLeeuwen-Eq. 11.13 it is shown how the reducible (improper) self energy is ob-
tained as functional derivative of Φr [G(0),W ] with respect to the bare Green’s function Ĝ(0).

11.7.2 Contour time and real-space-and-spin representation

In order to change the representation one usually simply reinterprets the orbital indices in another
basisset. For the real-space and spin representation, there is a more simple procedure.

In the first step, I express the Green’s function with orbital indices by the one with real-space-
and-spin coordinates.

G
C,(0)
i ,o (ti , to)

Eq. 7.27
=

1

iℏ
∑
n

⟨πi |ϕn⟩
{
θC(ti − to)(1− fn)︸ ︷︷ ︸

electrons

− θC(to − ti)fn︸ ︷︷ ︸
holes

}
e−

i
ℏ ϵn(ti−to)⟨ϕn|πo⟩

=
1

iℏ
∑
n

⟨πi |
∫
d4xi |x⃗i ⟩⟨x⃗i |︸ ︷︷ ︸
=1̂

|ϕn⟩
{
θC(ti − to)(1− fn)︸ ︷︷ ︸

electrons

− θC(to − ti)fn︸ ︷︷ ︸
holes

}

× e−
i
ℏ ϵn(ti−to)⟨ϕn|

∫
d4xo |x⃗o⟩⟨x⃗o |︸ ︷︷ ︸

=1̂

πβ⟩

=

∫
d4xi

∫
d4xo ⟨πi |x⃗i ⟩⟨x⃗o |πo⟩

×
1

iℏ
∑
n

⟨x⃗i |ϕn⟩
{
θC(ti − to)(1− fn)︸ ︷︷ ︸

electrons

− θC(to − ti)fn︸ ︷︷ ︸
holes

}
e−

i
ℏ ϵn(ti−to)⟨ϕn|x⃗o⟩

︸ ︷︷ ︸
GC,(0)(x⃗i ,ti ,x⃗o ,to)

=

∫
d4xi

∫
d4xo ⟨πi |x⃗i ⟩⟨x⃗o |πo⟩GC,(0)(x⃗i , ti , x⃗o , to) (11.45)

For each argument of the Green’s function, I obtain one space-spin “integration” and one projector
function ⟨π|x⃗⟩.

In the second step, the projector functions from Eq. 11.45 ⟨πα|x⃗⟩ are combined with the corre-
sponding orbitals ⟨x⃗ |χβ⟩ from the interaction matrix elements

Wo1,o2,i1,i2
Eq. 3.48
=

∫
d4x

∫
d4x ′

e2χ∗o1(x⃗)χ
∗
o2(x⃗

′)χi1(x⃗)χi2(x⃗
′)

4πϵ0|r⃗ − r⃗ ′|
, (11.46)

Then, one can exploit the completeness of the local orbitals∑
α

⟨x⃗ |χα⟩⟨πα|x⃗ ′⟩ = ⟨x⃗ |x⃗ ′⟩ = δ(x⃗ − x⃗ ′) (11.47)

to remove the orbital summations.
The Coulomb interaction

v(x⃗ , x⃗ ′) =
e2

4πϵ0|r⃗ − r⃗ ′|
(11.48)
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can be replaced by any other pair-wise interaction.
I combine, firstly, the interaction matrix elements with the corresponding orbital summations and,

secondly, the integrations and projector functions resulting from the Green’s function. Rather than
the product of Green’s function I use some arbitrary function Y (x⃗i1 , x⃗i2 , x⃗o1 , x⃗o2) of the coordinates,
so that I can limit the discussion to only four arguments.∑

i1,o1,i2,o2

∫
d4xo1

∫
d4xi1

∫
d4xo2

∫
d4xi2⟨πi1 |x⃗i1⟩⟨x⃗o1 |πo1⟩⟨πi2 |x⃗i2⟩⟨x⃗o2 |πo2⟩

×Wo1,o2,i1,i2Y (x⃗i1 , x⃗i2 , x⃗o1 , x⃗o2)

Eq. 3.48
=

∫
d4x

∫
d4x ′

∫
d4xo1

∫
d4xi1

∫
d4xo2

∫
d4xi2

e2

4πϵ0|r⃗ − r⃗ ′|
Y (x⃗i1 , x⃗i2 , x⃗o1 , x⃗o2)

×
∑
i1

⟨x⃗ |χi1⟩⟨πi1 |x⃗i1⟩︸ ︷︷ ︸
δ(x⃗−x⃗i1 )

∑
o1

⟨x⃗o1 |πo1⟩⟨χo1 |x⃗⟩︸ ︷︷ ︸
δ(x⃗−x⃗o1 )

∑
i2

⟨x⃗ ′|χi2⟩⟨πi2 |x⃗i2⟩︸ ︷︷ ︸
δ(x⃗ ′−x⃗i2 )

∑
o2

⟨x⃗o2 |πo2⟩⟨χo2 |x⃗ ′⟩︸ ︷︷ ︸
δ(x⃗ ′−x⃗o2 )

=

∫
d4x

∫
d4x ′

e2

4πϵ0|r⃗ − r⃗ ′|
Y (x⃗ , x⃗ ′, x⃗ , x⃗ ′)

(11.49)

By combining the terms from all interaction lines, and by replacing Y by the corresponding product
of Green’s functions I obtain the rule for the functional QT,µ.

SUM AND VALUES OF LINKED DIAGRAMS

QT,µ[G(0)] = −
1

β
Tr
{
ρ̂
(0)
T,µTCŜI,C

}
= −

1

β

∞∑
n=1

∑
D∈Tn

V (D)

S(D)
(11.50)

Tn is set of all topologically distinct, linked, closed diagrams of order n in the interaction. S(D) is
the symmetry factor of the diagram D and V (D) is the value of the diagram given below. Each
diagram of order n can be represented by a 2n dimensional permutation vector P⃗

V (D)
Eq. 10.48
= ϵP1,...,P2n (iℏ)

n

∫
C
dt1 · · ·

∫
C
dtn

∫
d4x1 . . .

∫
d4x2n

 n∏
j=1

v(x⃗2j−1, x⃗ ′2j , tj)


×GC,(0)

(
x⃗P1 , t(P1), x⃗1, t+(1)

)
· · ·GC,(0)

(
x⃗P2n , t(P2n), x⃗2n, t+(2n)

)
(11.51)

a

aI added a time dependence to the interaction matrix elements to allow for adiabatic switching on.

11.8 Exploit the symmetry of the problem

11.8.1 Exploit time-translation symmetry

Editor: to be done: (Energy representation t ⇝ ϵ. Try to do the energy representation
first without time translation symmetry to include inelastic scattering terms.

Time-translation symmetry is the condition for energy conservation. For the diagrammatic ex-
pansion of the generating functional it implies that the interaction matrix elements does not have
an explicit time dependence. Furthermore, the Green’s function depends only on the relative time
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argument.11

G
C(0)
i ,o (t, t

′) =
∑
m

G
C(0)
i ,o (ϵm)e

− i
ℏ ϵm(t−t

′)− 1ℏ η|t−t
′| (11.52)

V (D)
Eq. 11.36
= ϵP1,...,P2n (iℏ)

n

∫
C
dt1 · · ·

∫
C
dtn

∑
o1,i1,...,o2n,i2n

 n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j (tj)


×GC,(0)iP1 ,o1

(
t(P1), t+(1)

)
· · ·GC,(0)iP2n ,o2n

(
t(P2n), t+(2n)

)
Eq. 7.27
= ϵP1,...,P2n (iℏ)

n
∑

o1,i1,...,o2n,i2n

 n∏
j=1

Wo2j−1,o2j ,i2j−1,i2j (0)

∫
C
dt1 · · ·

∫
C
dtn

×
∑
m1

G
C(0)
iP1 ,o1
(ϵm1)e

− i
ℏ ϵm1

(
t(P1)−t+(1)

)
− 1ℏ η
∣∣t(P1)−t+(1)∣∣

︸ ︷︷ ︸
G
C,(0)
iP1 ,o1

(
t(P1),t+(1)

)
· · ·

×
∑
m1

G
C(0)
iP2n ,o2n

(ϵm2n)e
− i
ℏ ϵm2n

(
t(P2n)−t+(2n)

)
− 1ℏ η
∣∣t(P2n)−t+(2n)∣∣

︸ ︷︷ ︸
G
C,(0)
iP2n ,o2n

(
t(P2n),t+(2n)

)
= (11.53)

Note here that the generating functional is a functional of the non-interacting Green’s function.
Therefore it is not sensible to resolve the non-interacting Green’s function Eq. 7.27 by the eigenvalues
and eigenstates of the non-interacting system.

11.8.2 Exploit spatial translation symmetry

Editor: to be done: momentum representation (plane waves) x⃗ ⇝ (p⃗, σ).

11.8.3 Exploit spin-inversion symmetry

So-far we worked with general two-component spinor functions. However, often it is convenient to
specialize the expressions to a basis set of Ŝz eigenstates.

In that case, the index of an creation or annihilation operator must be considered as a combined
index o = (α(o), σ(o)) describing the orbital index α(o) and the spin quantum number σ(o) of the
orbital.

Wo1,o2,i1,i2 = W(αo1 ,σo1 ),(αo2 ,σo2 ),(αi1 ,σi1 ),(αi2 ,σi2 )δσo1 ,σi1 δσo2 ,σi2 (11.54)

Thus, the integration over all indices can be mapped onto an integration over all spatial indices,
while the sum over spins is attributed to each vertex. The delta functions adds a sum rule, saying
that the spin of the incoming Green’s function is equal to that of the outgoing Green’s function.

11The non-interacting Hamiltonian is time independent, as precondition for Wick’s theorem. Therefore the non-
interacting Green’s function should automatically only depend on the relative time argument. However, later we will
use the generating functional also with the full Green’s function as arguments. Time translation symmetry implies that
we may restrict the domain for the functional to Green’s functions that only depend on the relative time argument.
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11.8.4 Exploit Bloch theorem

If the one-particle Hamiltonian is periodic, we may choose a basisset of Bloch states. In that case
the orbital index is a combined index referring to a Bloch-vector k⃗ , a band index n and a spin index
σ.

We can make use that the Green’s function of the non-interacting system is block diagonal in a
basis of the Bloch states, i.e.

G
(0)
i ,o (t, t

′) = δ
(
k⃗i − k⃗o

)
G
(0)

(k⃗i ,ni ,σi ),(k⃗o ,no ,σo)
(t, t ′) (11.55)

Because the Coulomb interaction is isotropic and translation invariant under a shift of both spatial
coordinates of the Green’s function, the interaction conserves the momentum and thus has the form

Wo1,o2,i1,i2 = δ
(
(k⃗o1 − k⃗i1)− (k⃗o2 − k⃗i2)

)
W(k⃗o1 ,no1 ,σo1 ),(k⃗o2 ,no2 ,σo2 ),(k⃗i1 ,ni1 ,σi1 ),(k⃗i2 ,ni2 ,σi2 )

(11.56)

This results in the rule that we can attribute the interaction matrix elements to a momentum q⃗, that
is transferred from one vertex of the interaction to the other. Thus, we have momentum conservation
at each vertex between the incoming and outgoing Green’s function and the interaction.

11.9 Zoo of diagrams

Editor: This section is in preparation
In this section, I will discuss common diagrams. The diagrams up to second order in the interaction

and their self-energy diagrams are shown in figure 11.6 on p. 352

Fig. 11.6: Diagrams in T and their self-energy contributions up to second order in the interaction.
The closed diagrams, which are part of the generating functional QT,µ also carry the prefactor
1/S(D), where S(D) is the symmetry factor. On the right, the self-energy diagrams resulting from
the closed diagram on the left are shown including their multiplicity. See text for explanation.

Editor: Interestingly the prefactor given by the symmetry factor is exactly canceled
by the multiplicity of the self-energy diagrams.
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Fig. 11.7: Diagrams in T and their self-energy contributions in the interaction. The closed diagrams,
which are part of the generating functional QT,µ also carry the prefactor 1/S(D), where S(D) is the
symmetry factor. On the right, the self-energy diagrams resulting from the closed diagram on the
left are shown including their multiplicity. See text for explanation.

11.9.1 First-order Hartree Fock

The diagrams A and B in figure 11.6 on p. 352, are the Hartree diagram (eyeglass) and exchange
diagram (oyster).

The term Hartree-Fock approximation is used in many sometimes different context. Here we
refer to the first order expansion in the interaction. The self-consistent Hartree-Fock approximation
includes also higher order diagrams.

11.10 Home study and practice

11.10.1 Enumerate permutations

Introduction

In section 11.2.1, a method has been presented to enumerate all permutations of a sequence of
numbers. This is a useful method not only in the context of Feynman diagrams. It can be used to
calculate a determinant of a matrix, even though I do not claim that it is the most efficient method.

The method can also be coded up easily as shown in appendix L. Therefore, it is useful to get
familiar with it.
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Problem

• Enumerate all permutations of the sequence numbers (1,2,3,4). Check that there are 4! = 24
such permutations.

• assign the sign to each diagram in this sequence (Use the sign theorem.)

Discussion

• Enumerate all permutations of the sequence numbers (1,2,3,4). Check that there are 4! = 24
such permutations.

• assign the sign to each diagram in this sequence (Use the sign theorem.)

The permutation vectors are listed in section 11.2.3 on p. 331. The diagrams are shown in
figure 11.2 arranged row-wise. Using sign-theorem described in section 11.3, the signs are obtained
by counting Fermi loops.

Nr P⃗ sign Nr P⃗ sign
1 (1,2,3,4) + 13 (3,1,2,4) +
2 (1,2,4,3) - 14 (3,1,4,2) -
3 (1,3,2,4) - 15 (3,2,1,4) -
4 (1,3,4,2) + 16 (3,2,4,1) +
5 (1,4,2,3) + 17 (3,4,1,2) +
6 (1,4,3,2) - 18 (3,4,2,1) -
7 (2,1,3,4) - 19 (4,1,2,3) -
8 (2,1,4,3) + 20 (4,1,3,2) +
9 (2,3,1,4) + 21 (4,2,1,3) +

10 (2,3,4,1) - 22 (4,2,3,1) -
11 (2,4,1,3) - 23 (4,3,1,2) -
12 (2,4,3,1) + 24 (4,3,2,1) +

One sanity check is to ensure that half of the diagrams have positive and the other half have
negative sign.

The number of diagrams if 4! = 24.

11.10.2 Feynman diagrams from permutation vectors

The recipe to construct Feynman diagrams depends on the strict enforcement of a consistent set of
rules. (There are different sets of rules in the literature.) Therefore, this exercise is to practice the
set of rules provided in this text.
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Problem

1 Draw the Feynman diagrams related to the permutation vectors

P⃗ = (1, 3, 5, 6, 2, 4) (11.57)

P⃗ = (1, 3, 5, 6, 4, 2) (11.58)

P⃗ = (2, 3, 1, 5, 6, 4) (11.59)

P⃗ = (2, 3, 4, 5, 6, 1) (11.60)

P⃗ = (2, 3, 5, 1, 6, 4) (11.61)

P⃗ = (2, 3, 5, 6, 1, 4) (11.62)

and

• count the number of Fermi loops,

• determine the sign of the diagrams,

• identify the 2-particle reducible diagrams,

• identify the 1-particle reducible diagrams,

2 determine the diagrams for the Green’s function resulting from the closed diagram P⃗ =
(2, 3, 4, 5, 6, 1).

Discussion

1 Draw the Feynman diagrams related to the permutation vectors

P⃗ = (1, 3, 5, 6, 2, 4) (11.63)

P⃗ = (1, 3, 5, 6, 4, 2) (11.64)

P⃗ = (2, 3, 1, 5, 6, 4) (11.65)

P⃗ = (2, 3, 4, 5, 6, 1) (11.66)

P⃗ = (2, 3, 5, 1, 6, 4) (11.67)

P⃗ = (2, 3, 5, 6, 1, 4) (11.68)

and

• count the number of Fermi loops,

• determine the sign of the diagrams,

• identify the 2-particle reducible diagrams,

• identify the 1-particle reducible diagrams,
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1. P⃗ = (1, 3, 5, 6, 2, 4); 3 Fermi loops, sign= −, 2-particle reducible, 1-particle irreducible

2. P⃗ = (1, 3, 5, 6, 4, 2) 2 Fermi loops, sign= +, 2-particle reducible, 1-particle irreducible

3. P⃗ = (2, 3, 1, 5, 6, 4) 2 Fermi loops, sign= +, 2-particle reducible, 1-particle irreducible

4. P⃗ = (2, 3, 4, 5, 6, 1) 1 Fermi loops, sign= −, 2-particle reducible, 1-particle irreducible

5. P⃗ = (2, 3, 5, 1, 6, 4) 1 Fermi loops, sign= −, 2-particle reducible, 1-particle irreducible

6. P⃗ = (2, 3, 5, 6, 1, 4) 2 Fermi loops, sign= +, 2-particle reducible, 1-particle irreducible

2 determine the diagrams for the Green’s function resulting from the closed diagram P⃗ =
(2, 3, 4, 5, 6, 1).
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11.10.3 Evaluate symmetry factors

Introduction

The reduction to topologically inequivalent diagrams results in a tremendous saving in the number of
terms to be evaluated. Nevertheless it requires to evaluate the symmetry factor. While the operations
are not very complicated, one needs to practice them to learn the technique properly.

In this exercise we exercise the technique for two examples, namely one that has been used as
example in the main text, and another one which is new.
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Problem

1 Determine the topology-preserving transformations of diagrams for the second order of the
interaction. Describe them in words and provide the mapping vectors.

2 Construct the permutation vectors of all diagrams which are topologically equivalent (distinct
or mere deformation) to the diagram.

P⃗ = (3, 1, 4, 2) (11.69)

3 Use the criterion that permutation and relabeling commutate to determine the symmetry factor
for the same diagram.

P⃗ = (3, 1, 4, 2) (11.70)

4 Construct graphically the diagrams which are topologically equivalent to

1 3

42 (11.71)

determine mere deformations and the symmetry factor.

5 Work out the symmetry factor for the following second-order diagrams

P⃗ = (1, 3, 2, 4) (11.72)

using the method of your choice.

Do not use the trivial approach of constructing all linked diagrams of a given order and search for
topologically equivalent ones. This would not be feasible for diagrams of higher order.

Solution

The final solution can be read off from Fig. 11.5 on p. 345, which keeps all second-order diagrams
and their symmetry factor.

1 Determine the topology-preserving transformations of diagrams for the second order of the
interaction. Describe them in words and provide the mapping vectors.

The topologically equivalent diagrams are obtained by

• 2n interchanges of the two vertices of the same interaction line, and

• n! permutations of the interaction lines, that is of their indices, while preserving the “orientation”
of the interaction, that is odd indices are mapped again onto odd indices and the even indices
are mapped onto even indices.

These vertex-mappings are given in table 11.2 on p. 341. The mappings for the second-order diagrams
are

M⃗1 = (1234) M⃗5 = (3412)

M⃗2 = (2134) M⃗6 = (4312)

M⃗3 = (1243) M⃗7 = (3421)

M⃗4 = (2143) M⃗8 = (4321)
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2 Construct the permutation vectors of all diagrams which are topologically equivalent (distinct
or mere deformation) to the diagram.

P⃗ = (3, 1, 4, 2) (11.73)

The diagram represented by the permutation vector P⃗ = (3, 1, 4, 2) has the following appearance

1 3

42 (11.74)

This diagram can be represented by the mapping from the indices o to the indices i .

o 1 2 3 4
i 3 1 4 2

(11.75)

The permutation vector defining this diagram is given by the second line, i.e. P⃗ = (3, 1, 2, 4). The
Green’s functions can be described as mappings between vertices, G(0)i3,o1=̂(1 → 3), G

(0)
i1,o2
=̂(2 → 1),

G
(0)
i4,o3
=̂(3→ 4), and G(0)i2,o4=̂(4→ 2).

Let me now construct all topologically equivalent diagrams using the mappings

1.
M⃗1 = (1234)

P⃗ ′ = (1234)
o 1 2 3 4
i 3 1 4 2

remap→
o 1 2 3 4
i 3 1 4 2

order→
o 1 2 3 4
i 3 1 4 2

2.
M⃗2 = (2134)

P⃗ ′ = (2341)
o 1 2 3 4
i 3 1 4 2

remap→
o 2 1 3 4
i 3 2 4 1

order→
o 1 2 3 4
i 2 3 4 1

3.
M⃗3 = (1243)

P⃗ ′ = (4123)
o 1 2 3 4
i 3 1 4 2

remap→
o 1 2 4 3
i 4 1 3 2

order→
o 1 2 3 4
i 4 1 2 3

4.
M⃗4 = (2143)

P⃗ ′ = (2413)
o 1 2 3 4
i 3 1 4 2

remap→
o 2 1 4 3
i 4 2 3 1

order→
o 1 2 3 4
i 2 4 1 3

5.
M⃗5 = (3412)

P⃗ ′ = (2413)
o 1 2 3 4
i 3 1 4 2

remap→
o 3 4 1 2
i 1 3 2 4

order→
o 1 2 3 4
i 2 4 1 3

At this point we already encounter two diagrams that are mere deformation of each other, namely
the last two above. Thus, we can identify one operation that produces mere deformations of this
diagram. It is the inverse of the fourth mapping leading M⃗4 = (2143) followed by the fifth mapping
M⃗5 = (3412). The fourth mapping interchanges the vertices of the first interaction and of the
second interaction. Its inverse does the same. M⃗5 = (3412) interchanges the two interactions. The
combined operation is M5 ◦M−14 = (4321) = M8. This transformation produces a mere deformation
rather than a topologically equivalent but distinct diagram.

We can actually stop here, because the same operation will produce a mere deformation of any
diagram of the four distinct diagrams obtained M⃗1 to M⃗4. Thus, there are four mere deformations
and four distinct diagrams. We obtain rD = 4

8 =
1
2 and S(D) = 1

1−rD = 2.
For the sake of completeness let me work through the remaining three mappings.

6
M⃗6 = (4312)

P⃗ ′ = (2341)
o 1 2 3 4
i 3 1 4 2

remap→
o 4 3 1 2
i 1 4 2 3

order→
o 1 2 3 4
i 2 3 4 1
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7
M⃗7 = (3421)

P⃗ ′ = (4123)
o 1 2 3 4
i 3 1 4 2

remap→
o 3 4 2 1
i 2 3 1 4

order→
o 1 2 3 4
i 4 1 2 3

8
M⃗8 = (4321)

P⃗ ′ = (1234)
o 1 2 3 4
i 3 1 4 2

remap→
o 4 3 2 1
i 2 4 1 3

order→
o 1 2 3 4
i 3 1 4 2

3 Use the criterion that permutation and relabeling commutate to determine the symmetry factor
for the same diagram

P⃗ = (3, 1, 4, 2) (11.76)

used in the previous problem

M1 ◦ P 3142 M1 1234 P ◦M1 3142
M2 ◦ P 3241 M2 2134 P ◦M2 1342
M3 ◦ P 4132 M3 1243 P ◦M3 3124
M4 ◦ P 4231 M4 2143 P ◦M4 1324
M5 ◦ P 1324 M5 3412 P ◦M5 3412
M6 ◦ P 1423 M6 4312 P ◦M6 2431
M7 ◦ P 2314 M7 3421 P ◦M7 4213
M8 ◦ P 2413 M8 4321 P ◦M8 2413

To set up the table above, I proceeded as follows

• I fill the first column with the permutation vector P⃗, the second one with 1234 and the third
column again with P⃗

• now I perform, line-by-line, the transformations on the sequences of the second and the third
column. This will construct the vectors M⃗ in the second column and P ◦M in the third.

• Finally I transform the sequences of the first column, which currently holds P⃗ in each line, by the
corresponding transformation M from the middle column. Starting with the first component,
I look up Pj , which tells me at which position of M⃗ I find the new value MPj for the j-th
component of the vector in the first column. For each component j , this step is efficiently on
all lines simultaneously.

From the table above, we find that mere deformations are the identity M1 and M8. The identity
is trivial and is discarded. Thus, there is one mere deformation, except for the identity M1, among
the eight transformations in the group.

4 Construct graphically the diagrams which are topologically equivalent to

1 3

42 (11.77)

determine mere deformations and the symmetry factor.

The solution is given in figure 11.4 on p. 344.
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5 Work out the symmetry factor for the following second-order diagram

P⃗ = (1, 3, 2, 4) (11.78)

using the method of your choice.

This diagram is a ring diagram with a tadpole attached to either side.

M1 ◦ P 1324 M1 1234 P ◦M1 1324
M2 ◦ P 2314 M2 2134 P ◦M2 3124
M3 ◦ P 1423 M3 1243 P ◦M3 1342
M4 ◦ P 2413 M4 2143 P ◦M4 3142
M5 ◦ P 3142 M5 3412 P ◦M5 2413
M6 ◦ P 4132 M6 4312 P ◦M6 4213
M7 ◦ P 3241 M7 3421 P ◦M7 2431
M8 ◦ P 4231 M8 4321 P ◦M8 4231

There are two transformations including the identity that produce mere deformations of the given
diagram, namely M1 and M8. Thus, the symmetry factor is S(D) = 2.

11.10.4 Value of a given Feynman diagrams

Editor: This exercise needs to be completed.
For the shown P⃗ = (1, 4, 3, 2). Show the

P = (1432)

V (1, 4, 3, 2) = ϵ1,4,3,2(iℏ)2
∑

i1,o1,i2,o2,i3,o3,i4,o4

∫
C
dt1

∫
C
dt2

×Wo1,o2,i1,i2(t)Wo3,o4,i3,i4(t
′) (11.79)

Gi1,o1(t1, t
+
1 )Gi4,o2(t2, t1)Gi3,o3(t2, t

+
2 )Gi2,o4(t1, t2) (11.80)

Feynman diagram

• extract a permutation vector

• work out value of the Feynman diagram in terms of non-interacting Green’s function and the
interaction matrix

Solution: place numbers onto the vertices. Read of vertex the green’s function points to.

11.10.5 Example: Evaluate the Green’s function for a specific example

Editor: This exercise needs to be completed.
So-far we manipulated expressions given in terms of Green’s functions and interaction matrix

elements. We did not practice to work out the Green’s function for a specific system. In this section,
we will work out the Green’s function for the Hartree-Fock approximation for the Hubbard dimer.

11.11 Summary

A sequence of theorems have been required to set up the diagrammatic expansion of the Green’s
function
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1. interaction picture and introduction of the S-matrix

2. replacement of the interacting state operator by that of the non-interacting system. Description
of the conversion by propagation along the imaginary time axis.

3. Wick’s theorem

4. linked-cluster theorem

5. sign theorem

6. symmetry factors

7. conversion of QT,µ into Green’s functions

We learned how to enumerate all diagrams using permutation vectors.
Permutation vectors, Feynman diagrams and the expression for the value V (D) of a diagram can

be translated into each other.



Chapter 12

Luttinger-Ward functional

Truncating the diagrammatic expansion can lead to Green’s functions that violate conservation laws
such as particle-number conservation, energy conservation, momentum conservation, angular mo-
mentum conservation.

Kadanoff and Baym[86, 87] have shown that these conservation laws can be enforced when the
equations for the Green’s function are derived from the so-called Luttinger-Ward functional[88].

In this section, I am using a compact notation, in which a product involves a matrix product and
the corresponding time integrations. Similarly the Trace includes also all time integrations.

12.1 Compact notations

12.1.1 Combined vertex indices

Often a short-hand notation is used:

• rather than listing orbital indices oj , ij , and time arguments tj connected to a vertex with label
j , only a number is used.

– G(0)(1, 2) expands into GC,(0)o1,i2
(t1, t

+
2 )

– G(1, 2) expands into GCo1,i2(t1, t
+
2 )

– W (1, 2) expands into iℏWo1,o2,i1,i2δC(t1 − t2)
–
∫
d1 expands into

∑
o1,i1

∫
C dt1

• Einstein notation is used. That is, if a vertex label occurs twice in a product, a sum over orbital
indices and a time integration, i.e.

∫
d1 is implicitly assumed.

As an example, Dyson’s equation has the form

G(1, 2)
Eq. 8.23
= G(0)(1, 2) + G(0)(1, 3)Σ(3, 4)G(4, 2) (12.1)

The value of a closed diagram Eq. 10.48 in a short-hand notation reads as follows

V (P⃗) = ϵP1,...,P2n (iℏ)
n

∫
d1 · · ·

∫
d2n

 n∏
j=1

W (2j − 1, 2j)

( 2n∏
k=1

GC,(0)(Pk , k)

)
(12.2)

From generating functional Q[G(0),W ], we obtain the Green’s function via

G(2, 1)
Eq. 10.60
= G(0)(2, 1) +

∫
3,4

G(0)(2, 4)Σred(4, 3)G(0)(3, 1) (12.3)

363
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which is a short-hand notation for

Gi2,o1(t2, t1) = G
(0)
i2,o1
(t2, t1) +

∫
C
dt1

∫
C
dt2

∑
i3,o4

G
(0)
i2,o4
(t2, t4)Σ

red
o4,i3(t4, t3)G

(0)
i3,o1
(t3, t1) (12.4)

where the reducible self energy Σred is the functional derivative of the generating functional.

Σredo2,i1(t1, t2)
Eq. 10.61
= β

∂Q[G(0)]
∂G
(0)
i1,o2
(t2, t1)

(12.5)

or, in the short-hand notation,

Σred(2, 1)
Eq. 10.61
= β

∂Q[G(0)]
∂G(0)(1, 2)

(12.6)

How is the reducible self energy Σred related to the proper self energy Σ, introduced earlier? The
proper self energy is defined in Eq. 8.15 on 257, which converts the equation of motion Eq. 8.8 for
the Green’s function into Dyson’s equation Eq. 8.23.

G(2, 1)
Eq. 8.23
= G(0)(2, 1) +

∫
3,4

G(0)(2, 4)Σ(4, 3)G(3, 1) (12.7)

The full Green’s function is given by the equation of motion.

12.1.2 Generalized matrix algebra

In the following, I introduce another compact notation: We treat time argument and orbital index as
one combined matrix index.

Aα,β(t, t
′)⇝ A(α,t);(β,t ′) (12.8)

The time argument shall be considered discretized. The product is

C = AB ⇔ Cα,β(t, t
′) =

∑
γ

∫
dt ′′ Aα,γ(t, t

′′)Bγ,β(t
′′, t ′) (12.9)

This implies that another scalar product has been defined that involves also a time integration.

12.2 From the generating functionalQT,µ[G(0)] of the bare Green’s
function to the Luttinger-Ward functional

From the reducible to the proper self energy

Let me rearrange Dyson’s equation Eq. 12.7 to allow the comparison with Eq. 12.3

G
Eq. 12.7
= G(0) + G(0)ΣG(0) + G(0)ΣG(0)ΣG(0) + . . .

= G(0) + G(0)
(
Σ+ΣG(0)Σ+ . . .

)
︸ ︷︷ ︸

Σred

G(0) (12.10)

By comparing with Eq. 12.3, we obtain the reducible self energy in the form
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Σred = Σ+ΣG(0)Σ+ΣG(0)ΣG(0)Σ+ . . .

=

∞∑
n=0

(
ΣG(0)

)n
Σ

=

∞∑
n=0

1

n + 1

∂

∂G(0)

∣∣∣∣
Σ

Tr
[(
ΣG(0)

)n+1]
n+1→n
=

∂

∂G(0)

∣∣∣
Σ

∞∑
n=1

1

n
Tr
[(
ΣG(0)

)n]
ln(1−x)=−

∑∞
n=1

1
n
xn

= −
∂

∂G0

∣∣∣
Σ
Tr

[
ln
(
1−ΣG(0)

)]
(12.11)

The logarithm and the inverse shall be understood as their Taylor expansions (1 − x)−1 =
∑∞

n=0 x
n

for |x | < 1 and ln(1− x) = −
∑∞

n=1
1
nx

n for |x | < 1. The limited convergence radius implies that the
expression is not defined when ΣG(0) has any eigenvalue with an absolute value equal or larger than
1.

This allows one to rewrite the identity

β
∂Q
∂G(0)

Eq. 12.5
= Σred

Eq. 12.11
= −

∂

∂G0

∣∣∣
Σ
Tr

[
ln
(
1−ΣG(0)

)]
(12.12)

in the form of a stationary condition for a function that depends on the bare Green’s function and
the proper self energy.

0 =
∂

∂G(0)

∣∣∣
Σ

{
Q
[
G(0)

]
+ kBT Tr

[
ln
(
1−ΣG(0)

)]}
(12.13)

This suggests to define a functional of the proper self energy Σ. Remember that the products
and derivatives use a compact notation. A product involves a summation over orbitals and a contour
integral over the complex time contour. The logarithm is to be replaced by its power-series expansion.

A functional of the proper self energy

Let me define a self-energy functional [89, 90] 12 F (Σ) by a generalized Legendre transform3.

F [Σ]
def
= stat

G(0)

{
Q[G(0)] + kBT Tr ln

(
1−ΣG(0)

)}
(12.14)

What we just did is a generalized Legendre transform, which does not work with straight lines
like a normal Legendre transform but with another family of functions. To explain, what I mean
with generalized Legendre transform let me quickly review the ordinary Legendre transform in the
following box.

1Hofmann et al. [90] show the generalization of the self-energy functional to non-equilibrium Green’s functions.
2Editor: The bare Green’s function can be parameterized by an effective potential, which may be

useful.
3In order to brush up on Legendre transforms you may consult section 3.2 of ΦSX:Statistical Physics[33].
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Legendre transform in thermodynamics: Let me consider a normal Legendre transform in ther-
modynamics. Start from an internal energy U(S) as function of the entropy S. The derivative of the
internal energy defines a physical quantity, namely the temperature T :

T =
dU

dS
(12.15)

Let me consider the problem of finding the entropy for a given temperature: I define a Legendre
transform of the internal energy, namely the free energya F (T ) by

F (T ) = stat
S

{
U(S)− TS

}
(12.16)

The stationary conditionb encapsulates the definition Eq. 12.15 of the temperature. The derivative
of the free energy, in turn, is the (negative) entropy

dF

dT
=
∂(U(S)− TS)

∂S︸ ︷︷ ︸
=0

∂S

∂T
+
∂(U(S)− TS)

∂T︸ ︷︷ ︸
=−S

= −S (12.17)

This is the desired result, namely the entropy as function of the temperature. The Legendre transform
describes a function U(S) not by values U(S) for a given argument S, but by values F (T ) for given
slope T of the original function U(S). F (T ) describes the vertical (along the U-axis) displacement
of a tangent yT (S) = F (T ) + TS. to the function U(S).
Some caution is necessary, because a Legendre transform does not guarantee that the back transform
is identical to the original function. The Legendre transform is bijective only, if the original function
is purely convex or purely concave. Otherwise, several tangents with the same slope may exist, so
that the Legendre transformed function F (T ) would be double valued. If the other branches of the
Legendre transform are omitted, one obtains the outer envelope of the original function. This route
is taken in the Legendre-Fenchel transform.
The arguments, given here for one-dimensional functions are not meant to be exhaustive, but they
should raise the attention to problems that have been an issue[91] related to the existence of the
Luttinger-Ward functional.

aThe free energy has nothing to do with our self-energy functional, despite using the same symbol.
bI invented the symbol stat as generalization of min and max to any point with vanishing gradient. That is, saddle

points are explicitly considered as well.

Let us now turn from the reminder of the regular Legendre-Fenchel transform to the generalized
Legendre transform at hand. Rather than describing a function U(S) by a family of tangential straight
lines yT (S) = U(S) − TS, we can also use other functions, in this case yΣ(G(0)) = −kBT ln(1 −
ΣG(0)). The parameter Σ is determined such that the slope of the original function Q(G(0)) is
identical to that of yΣ(G(0)) at the point, where the two functions touch.

The stationary condition of the self-energy functional Eq. 12.14 with respect to the bare Green’s
function encapsulates the expression Eq. 12.13 for the proper self energy via the reducible self energy
expressed as functional derivative of the generating functional Q[G(0)].

The functional derivative of the self-energy functional is, up to the sign, the full Green’s function

β
∂F [Σ]

∂Σ

Eq. 12.14
= −G(0)

(
1−ΣG(0)

)−1 Eq. 12.7
= −G (12.18)

Thus, the self-energy functional F (Σ) is a generating functional of the full Green’s function.
The expression Eq. 12.18 for the functional derivative can be rewritten as a stationary condition.

0 =
∂

∂Σ

∣∣∣∣
G

{
F [Σ] + kBT Tr

[
GΣ
]}

(12.19)
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Luttinger-Ward functional

Let me now define a new functional ΦLWT [G], the so-called Luttinger-Ward functional 4[88]. of the
full Green’s function by a second Legendre transform

ΦLWT (G)
def
= stat

Σ

{
F [Σ] +

1

β
Tr
[
ΣG
]}

Eq. 12.14
= stat

Σ,G(0)

{
Q[G(0)] +

1

β
Tr
[
ln
(
1−ΣG(0)

)
+ΣG

]}
(12.20)

The stationary conditions of the functional in curly brackets in Eq. 12.20 are,

• for the derivative with respect to the bare Green’s function G(0),

0
!
=

δQ[G(0)]
δG(0)︸ ︷︷ ︸

= 1
β
Σred (Eq. 10.61)

+
1

β

[
−
(
1−ΣG(0))−1Σ

]
⇝ Σ(G(0)) (12.21)

• and for the derivative with respect to the self energy Σ,

0
!
=
1

β

[
−G(0)

(
1−ΣG(0)

)−1
+ G

]
⇝ G(Σ, G(0)) (12.22)

Using the first stationary condition, we obtain the proper self energy Σ = Σred(1 + G(0)Σred)−1

as function of the bare Green’s function. The reducible self energy Σred = βδQ/δG(0) is given by
the derivative of the functional Q, which itself is a functional of the bare Green’s function. The
second stationary condition is Dyson’s equation, which provides the full Green’s function in terms
of the proper self energy Σ and the bare Green’s function G(0). With these two equations, we can
evaluate the Luttinger-Ward functional for a specified bare Green’s function, and we can evaluate
the full Green’s function from the bare Green’s function. That is, we can construct the pair of the
functional ΦLWT and its argument G for a given bare Greens function G(0), but we cannot construct
the functional ΦLWT (G) directly from the full Green’s function.

Unfortunately, we do not know the mapping G ⇝ G(0), which would allow a direct evaluation
of the Luttinger-Ward functional. While the mapping G(0) ⇝ G is unique, the inverse mapping
G ⇝ G(0) may be multi-valued. Thus, it may contain physical and nonphysical branches.Editor:
Provide citations

When we exploit the stationary conditions, the functional derivative of the Luttinger-Ward func-
tional is readily obtained as proper self energy

β
δΦLWT (G)

δG

Eq. 12.20
= Σ (12.23)

4You will find different expressions for the Luttinger-Ward functional. Using Dyson’s equation G = G(0)+G(0)ΣG =
G(0) + GΣG(0), we obtain G(1−ΣG(0)) = G(0) and thus (1−ΣG(0)) = G(0)G−1.
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DEFINING PROPERTIES OF THE LUTTINGER-WARD FUNCTIONAL

The Luttinger-Ward function has the following properties:[92]

• The derivative

βδΦLWT [G, Ŵ ]

δGb,a(t ′, t)
= Σa,b(t, t

′) . (12.24)

of the Luttinger-Ward functional evaluated at a physical Green’s function defined by Eq. ??
yields a self energy that obeys Eq. ??.

• It is universal, that is it depends only on the interaction, the chemical potential and the tem-
perature, but not on the non-interacting Hamiltonian ĥ.

• It vanishes in the non-interacting case.

The Luttinger-Ward functional ΦLWT (G) has substantially fewer Feynman diagrams than Q(G(0)T,µ,
because several geometric series expansions are already considered by using the full Green’s function
rather than the bare Green’s function. This will be discussed in the next section.

The stationary principles encapsulate a set of equations, which need to be solved self-consistently.
As a result of the self-consistent equations, on obtains the quantities of interest, namely the proper
self energy and the full Green’s function.

Approximations which are done to the Luttinger-Ward functional are conserving approximations.
[86, 87] This means that conservation laws are obeyed and the resulting theory is thermodynamically
consistent.

Kadanoff-Baym functional

Performing the Legendre transformations backwards will express our generating functional in terms
of the Luttinger-Ward functional.

Q[G0] Eq. 12.20
= stat

Σ,G

{
ΦLWT (G)−

1

β
Tr
[
ln
(
1−ΣG(0)

)
+ΣG

]}
(12.25)

This expression

1. provides the grand potential ΩWT,µ by adding the grand potential Ω0T,µ of the non-interacting
system and

2. it allows to construct an approximate generating functional QT,µ(G(0)) from an approximation
of the Luttinger-Ward functional ΦLWT (G).

The so-called5 Kadanoff-Baym functional ΨKBT,µ provides the grand potential

ΩT,µ(ĥ + Ŵ ) = stat
G,Σ
ΨKBT,µ[G,ΣΣΣ, h, Ŵ ] , (12.26)

where

ΨKBT,µ[G,ΣΣΣ, h, Ŵ ] = Ω
(0)
T,µ[h]︸ ︷︷ ︸

− 1
β
Tr ln(−iℏG(0))

+ΦLWT [G, Ŵ ]−
1

β
Tr

{
ln
[ (
111− G(0)ΣΣΣ

)
︸ ︷︷ ︸
[−iℏG]−1[−iℏG(0)]

]
+ΣΣΣG

}
. (12.27)

The terms shown below the underbraces are often found in the literature, and the bare Green’s func-
tions in the two logarithm terms are often canceled against each other. Some caution is required

5We adopt this naming of Luttinger-Ward and Kadanoff-Baym functional from Chitra and Kotliar [93].
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because the expressions I found in the literature are expressed in the Matsubara formalism.Editor:
Check whether this replacement is permitted. I am concerned because the Green’s function
may have units attached and must not stand alone in a logarithm. Secondly, Tr[AB] ̸=
T r [A]T r [B]

Existence of the Luttinger-Ward functional

See https://www.pnas.org/content/pnas/115/10/2282.full.pdf for a recent paper summa-
rizing the state about the existence or non-existence of the Luttinger-Ward functions. Tarantino et
al.[69] explore the problem using the Hubbard atom as example.

Sanity check

The reader may skip this section. As a sanity check, let me compare Eq. 12.27 with the literature.
A few precautions are necessary: While my lecture notes works with a complex time contour, the

results are often compared with the Matsubara formalism.

• Caution is required because many expressions are given in the Matsubara formalism. The Mat-
subara Green’s function G(τ2, τ1) = −iGC(−iτ2,−iτ1)eµ(τ2−τ1)/ℏ, Eq. ?? is defined different
from the Matsubara part of the non-equilibrium Green’s function used here.

• Secondly, the stationary condition for the self energy is usually resolved, so that Σ = G(0),−1−
G−1 is eliminated. I do not do this step, because it is not yet clear to me, whether the required
expressions are permitted on the complete complex-time contour.

• The non-interacting grand potential is often expressed as Ω(0)T,µ = −
1
βTr[ln(−iℏG

(0))].Editor:
caution check whether this holds on a general complex time contour. Once writ-
ten in this form, it is canceled against another similar term in the other logarithm ln(1−ΣG(0)) =
ln[G(0)G−1] = ln(−iℏG(0))− ln(−iℏG)

with these remarks we can now compare to individual authors:

• Potthoff’s equation[89]:

ΩT,µ[G] = Φ
LW
T [G] + Tr ln[−iℏG]− Tr

[(
G(0),−1 − G−1

)︸ ︷︷ ︸
Σ[G]

G
]

(12.28)

can be compared with our Eq. 12.27. I have included a factor iℏ, which is not present in
Potthoff’s expression.

• Luttinger and Ward [88] provide the connection between the grand potential (Y ) and the
Luttinger-Ward functional (Y ′) in their Eq. 47,

ΩT,µ = −
1

β
Tr
[
ln(−G−1) + GΣ

]
+ΦLWT (G) (12.29)

Luttinger and Ward use the symbol Gr for the proper self energy, Sr for the full Green’s function,
while the bare Green’s function is 1/(ζl − ϵr ). As in the comparison with Pothoff given above,
there is an additional factor iℏ in the comparison of Green’s functions.

12.3 Skeleton diagrams

The Luttinger-Ward functional has a diagrammatic expansion very similar to that of our generating
functional QT,µ. The diagrammatic expansion of the Luttinger-Ward functional is obtained by re-
moving all two-particle reducible from the diagrammatic expansion of Q. Secondly, the bare Green’s
function are replaced by the full Green’s function.[88, 65] This shall be shown in the following.

https://www.pnas.org/content/pnas/115/10/2282.full.pdf
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Let me start with our generating functional QT,µ and extract the reducible self energy.

Σred [G(0)]
Eq. 10.61
= β

δQT,µ
δG(0)

Eq. 11.26
= β

∂

δG(0)

[
−
1

β

∑
D∈T

V (D)

S(D)

]
︸ ︷︷ ︸

QT,µ(G(0))

(12.30)

The diagrammatic expansion of QT,µ contains all linked, closed, and topologically distinct diagrams
D. V (D) is the value of the diagram and S(D) is the symmetry factor.

The reducible self energy is made from all open necklaces of proper self energies interconnected
with bare Green’s functions, Eq. 10.65.

ΣΣ
red

Σ Σ Σ

Σ Σ

Σ Σ

Σ
red

Therefore, one obtains the proper self energy by removing all self-energy diagrams, which are one-
particle-reducible. That are all diagrams, which can be divided into two pieces by cutting through
one bare Green’s function.

The improper self energy Σred has been obtained by removing one bare Green’s line from the
Feynman-diagrams in QT,µ(G(0)), which results in the self-energy diagrams given above. Removing
all one-particle-reducible self-energy diagrams, leaves the proper self energy Σ.

The same result for the proper self energy is obtained, when we first remove all two-particle
reducible diagrams from the functional QT,µ(G(0)), and only then form the derivative with respect
to the bare Green’s function by removing a particle line. What is left, are the so-called two-particle
irreducible (2PI) diagrams, also called skeleton diagrams. Hence

Σ[G(0)] = β
∂

δG(0)

[
−
1

β

∑
Skeleton-D∈T

V (D)

S(D)︸ ︷︷ ︸
expressed in terms of bare Green’s functions G(0)

]
(12.31)

A skeleton diagram is a closed diagram, which cannot be divided into two distinct pieces by removing
two particle lines.

Note that the diagrams D are still expressed in terms of bare Green’s functions. However,
because we are discussing functionals rather than values, one can name the argument as one wants
and therefore one can replace the bare Green’s function in V (D) by the full Green’s function.

β
δΦT,µ[G]

δG
= Σ[G] = β

∂

δG

[
−
1

β

∑
Skeleton-D∈T

V (D)

S(D)︸ ︷︷ ︸
expressed in terms of full Green’s functions G

]
(12.32)

This equation shows that the diagrammatic expansion on the right-hand side has the same functional
derivatives as the Luttinger-Ward functional, namely the proper self energy. Hence the Skeleton
expansion is equal to the Luttinger-Ward functional up to a constant. The identity of the skeleton
expansion with the Luttinger-Ward functional can thus be established by showing that they agree for
only one Green’s function–which is not done here–. Hence,

ΦLWT [G] =

[
−
1

β

∑
Skeleton-D∈T

V (D)

S(D)︸ ︷︷ ︸
expressed in terms of full Green’s functions G

]
(12.33)

which is identical to Eq. 12.23. With this, we have already obtained the most important property of
the Luttinger-Ward functional.



12 LUTTINGER-WARD FUNCTIONAL 371

So-far we have shown that the functional derivatives of the skeleton expansion and the Luttinger-
Ward functionals are identical. We need to show, that they do not differ by a constant. Editor:
This needs to be done.

Editor: Read the remark following Eq. 11.18 in the Book by Stefanucci and van Leeuwen[2]

12.4 Renormalized interaction

Editor: This is under construction! Do not read
Similar to the Green’s function also the interaction can be renormalized. This results in an expan-

sion in terms of a screened interaction, which lacks the long-ranged tail of the Coulomb interaction.

W scr = W bare +W bareΠW scr (12.34)

Consider again the derivative of the generating functional Q with respect to an interaction line.

∂Q
∂W bare

=
1

2
χ (12.35)

where χ is the reducible polarizibility (or susceptibility).
A polarization diagram is one with two outer vertices to which interactions can be attached. A

polarization diagram can be reducible, if it falls into two disconnected pieces by removing one bare
interaction line. If it cannot be divided in this way, it is called an irreducible polarization diagram.

The reducible polarization χ can be expressed by the irreducible polarizibility Π

W scr = W bare +W bareΠW bare +W bareΠW bareΠW bare + . . .

=

∞∑
n=0

(W bareΠ)nW bare

=

∞∑
n=0

1

n + 1

∂

∂W bare

∣∣∣∣
G(0)
Tr
[
(W bareΠ)n+1

]
n+1→n
=

∂

∂W bare

∣∣∣∣
G(0)

∞∑
n=1

1

n
Tr
[
(W bareΠ)n

]
= −

∂

∂W bare

∣∣∣∣
G(0)
Tr

(
ln
(
1−W bareΠ

)]
(12.36)

This defines a stationary principle

0 =
∂

∂W bare

∣∣∣∣
G(0)

{
Q[G(0),W bare ] + kBT Tr

(
ln
(
1−W bareΠ

)]}
(12.37)

Polarization functional

Thus, I can define a functional of the polarization

F (Π, G(0)) = stat
W bare

{
Q[G(0),W bare ] + kBT Tr

[
ln
(
1−W bareΠ

)]}
(12.38)

1

kBT

∂F

∂Π
= −W bare

(
1−W bareΠ

)−1
= −W scr (12.39)

Let me now define a new functional of the bare Green’s function and the screened interaction.

Ψ[G,W scr ] = (12.40)

Continue along section 11.8 of Setfanucci and van Leeuwen.
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12.5 Conserving approximations

1. Hartree-Fock approximation

2. second-order Born approximation

3. Random-phase approximation

4. T-matrix approximation

Two additional classes of diagrams, which form geometric series, are described below, namely
the particle-particle ladders and the wheel. I need to confirm, whether they also lead to conserving
approximations. (They should.)

12.5.1 Hartree-Fock approximation

1 2 1 2

Fig. 12.1: The two diagrams in the Luttinger-Ward functional of the self-consistent Hartree-Fock
approximation. The first is the Hartree diagram, while the second describes exchange.

Hartree Exchange

12.5.2 Second-order Born approximation

The Luttinger-Ward functional of the second-order Born approximation includes all skeleton diagrams
of first and second order. The first-order diagrams, which are also part of the second-order Born
approximation, are the ones from the Hartree-Fock approximation. In addition, two skeleton diagrams,
shown in fig. 12.2, contribute to the second order in the interaction.

The second-order skeleton diagrams can be collected from all second-order diagrams shown in
fig. 11.2 on p.332 by removing all non-skeleton diagrams. The various topologically distinct diagrams,
un-closed, skeleton and closed non-skeleton, are shown in fig. 11.3.

12.5.3 Diagrammatic sequences that can be summed up analytically

There are sequences of Feynman diagrams that form a geometric series and can be summed up to
infinite order. The random-phase approximation [43, 44, 45]. is one of them.

While there are many of such sequences, we concentrate on those that have four vertices of which
two have an empty incoming and two have an empty outgoing index.
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4

1

3

2

4

1

2

3

Fig. 12.2: The double-ring diagram and the double-exchange diagram are the only two second order
contributions to the Luttinger-Ward functional. They are added to the first order terms.

• ring necklace (RPA, GW)

position 1 2 3 4 5 . . . 2n-1 2n
P⃗ 2n 3 2 5 4 . . . 2n-2 1

Any even-numbered vertex is mapped onto the next higher index, while ever odd-numbered
index is mapped to the next lower one. The diagram of lowest order is the oyster diagram
of Hartree-Fock. The second-order ring-necklace is the double-ring diagram. To avoid double
counting, it is important that these two diagrams are removed, before the geometric series of
ring-necklaces is added.

By inspection of the diagrams in section L.6 I obtain a symmetry factor 2n for a n-th order
ring necklace and a sign of (−1)n.

2j-1 2j+12j

Fig. 12.3: The ring necklace and its elemental diagram.

• The particle-hole ladder (T-matrix approximation)

position 1 2 3 4 5 . . . 2n-1 2n
P⃗ 3 2n+1 5 2 7 . . . 1 2

Any odd numbered vertex is mapped to the next-higher odd-numbered index. Any even-
numbered vertex is mapped to the next lower even-numbered index. The diagram of lowest
order is the eyeglass diagram of the Hartree approximation. The second-order diagram is the
double-ring necklace.

By inspection of the diagrams in section L.6, I obtain a symmetry factor 2n for a n-th order
particle-hole ladders and a sign of +1.

• The particle-particle ladders are given by the permutation vectors.

position 1 2 3 4 5 . . . 2n-1 2n
P⃗ 3 4 5 6 7 . . . 1 2

All vertices are mapped to the next-higher index, i.e. Pj = j + 2 with cyclic permutation. The
diagram of lowest order is the eyeglass diagram of the Hartree approximation. The second
diagram is the double-ring diagram of the second-order approximation.
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o1 = o2j−1

i1 = i2j−1

o2 = o1j+2

i2 = i2j+1

Fig. 12.4: Particle-hole ladder in the Luttinger-Ward functional. Ladders can also inserted into each
ring diagram of the ring series.

By inspection of the diagrams in section L.6, I obtain a symmetry factor 2n for a n-th order
particle-particle ladders and a sign of +1.

Fig. 12.5: The particle-particle ladder and its elemental diagram

• The wheel is given by the permutation vectors.

position 1 2 3 4 5 . . . 2n-1 2n
P⃗ 3 4 5 6 7 . . . 2 1

Any vertex, except the two last ones, is mapped to the second-next higher one. The last
odd-numbered index, V2n−1 is mapped onto the first even-numbered vertex, V2, and the last
even-numbered vertex V2n is mapped onto the first odd numbered index, V1.

The diagram of lowest order is the oyster diagram of the Hartree-Fock approximation. The
second-order wheel is second order exchange diagram of the second-order approximation.

By inspection of the diagrams in section L.6, I obtain a symmetry factor 2n for a n-th order
wheel and a sign of −1.

i ′2

i1

i ′1

i2

Fig. 12.6: The wheel and its elemental diagram

The wheel is obtained by introducing one exchange into particle-particle ladder as shown in
figure 12.7.
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Fig. 12.7: The wheel diagram results from including exchanges into the particle-particle ladder. The
diagram on the left is the particle-particle ladder. The diagram in the middle and on the right are
equivalent: They contain one Fermi loop with 2n Green’s functions, for which each interaction joins
the Fermi loop after n Green’s function again.

12.6 Symmetries and conservation laws

Editor: Include here the conservation laws starting with particle conservation.
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Chapter 13

Organization and examination

13.1 Teaching goals

• Fock space, Slater determinants, occupation-number representation, Mazny-particle wave func-
tions, ensembles.

• Hartree- and exchange energy, exchange-correlation hole. Hund’s rule.

• mean-field approximation (Hartree Fock) and self-consistent equations, Fock operator

• creation and annihilation operators. Relation to Slater determinants. Calculations.

• Spectral function as electron addition and removal energies. quasi-particles and their interac-
tion.

• downfolding, self energy, retarded potentials.

• one-particle Green’s function of a many-particle system.

• many-body perturbation theory (MBPT). (limited to fermions interacting via the Coulomb
interaction.)

– Wick’s theorem

– enumerate diagrams

– sign theorem

– linked-cluster theorem

– topologically inequivalent diagrams

– symmetry factors

– self energy (proper vs reducible)

• full Green’s function from generating functional

• convert Feynman diagrams into formulas and vice versa

13.2 Examination

Here, I am collecting some material that could be relevant for the examination. When it is com-
plete it should cover the main points conveyed in the lecture. Editor: It is still far from
complete! The student can orient himself on this list while preparing for the lecture. I do not recom-
mend, however, to use this as the sole approach to prepare because this will accumulate ill-connected

377
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knowledge, which is of little practical value and which is thus easily forgotten. Rather the student is
encouraged to consult this list during learning the material to remind himself and to gain confidence.

• know the Hartree and exchange energy. Derive the Fock operator.

• know the difference of the one-particle-reduced density matrix and the von-Neumann density
matrix. Obtain the former from the latter.

• properties of the exchange hole. Relation of the exchange hole to the two-particle density.

• provide creation and annihilation operators in terms of Slater determinants, once as real-space-
and spin wave functions, as well as using Slater determinants in occupation-number represen-
tation.

• explain the physical significance of the spectral function. (relation to photoemission, inverse
photoemission and optical excitation) Why is the one-particle spectral function insufficient to
describe optical spectra? What is missing?

• know the definition of natural orbitals and occupations.

• Convert a one-particle Hamiltonian in Dirac notation into a one-particle-at-a-time operator
with creation and annihilation operators.

• Slater-Condon rules and maximum coincidence.

• down-folding: example is the non-interacting Hubbard dimer

• conversion between: (1) Slater determinant (2) occupation-number representation (3) creation
and annihilation operators applied to vacuum state

• transformation of one-particle basis set between: (1) orbital representation (2) eigenstates of
the non-interacting Hamiltonian (3) real-space (4) reciprocal space

• translate a general operator into its representation with creation and annihilation operators.

• manipulate expressions with creation and annihilation operators

• Schrödinger-, Heisenberg- and interaction picture

• construct the Green’s function from the vacuum (closed) diagrams. (For example considering
only a single diagram.)

• understand and work with retarded potentials

• derive the spectral function from a non-interacting Green’s function

• express the propagator in Fock space once using energy dependent wave functions and once as
time-ordered exponential.

• Lehmann’s representation of the Green function

• spectral function in terms of quasiparticle amplitudes.

• spectral function of the interacting Hubbard atom

• express the Green’s function using the spectral function. (for a time-independent Hamiltonian.)

• know the definition of a quasi-particle.

• properties of the propagator (in complex time)

• time-ordered exponential
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• Green’s function

– construct the bare (non-interacting) Green’s function with a given Hamiltonian

– contour-ordered GF in the Heisenberg picture

– contour-ordered GF in the interaction picture using the trace with the non-interacting
ensemble.

– Explain contours: What is the Matsubara branch good for?

– extract the full Green’s function from a given generating functional of the bare Green’s
function.

• know the main formulas: eg. one-particle-reduced density matrix, many-particle Green’s func-
tion, self energy, equation of motion of the many-particle Green’s function, Dyson’s equation,
Lehmann representation, spectral density, Wick’s theorem.

• understand the difference between contours in the interaction and the Heisenberg picture. Why
are the contours different?

• diagrams:

– conversion between: (1) Feynman diagram (2) permutation vector (3) formula

– sign factor using sign theorem

– symmetry factors

– Define the meaning of “sum over all diagrams” in the generating functional. Each labeled
diagram of order n corresponds to an 2n-dimensional permutation vector. Unlinked di-
agrams need to be excluded. Eeach labeled diagram carries a factor 1/(n!2n) and each
unlabeled diagram has a factor 1/S(D) where S is the symmetry factor of diagram D.

• perform functional derivatives

• transform Green’s function from time arguments into energy arguments.

• be able to determine the time-dependent wave function in the presence of an energy dependent
self energy.

13.3 Todo

This section collects suggestions from the students for improvements.

• make symbols uniform

• prepare a time plan for the material

• select one exercise per week. (The exercises are relatively extensive.) Also include smaller
exercises in the spirit of examination questions as opposed to the “mini-projects”.

• explain teaching goals for the exercises in their introduction and connect them with the material
in the lecture.

• Specific: Introduce an exercise on functional derivatives before the derivation of the Fock
operator.

• In the exercises add tasks such as “discuss the physics of the result just obtained”
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13.4 Distribution of the teaching load

Editor: Do not read this. It is in preparation.
The teaching period of semester has 14 weeks. The lecture aims at four academic hours of

teaching and two academic hours of exercise classes. An academic hour consists of 45 min teaching.
Type refers to lecture “L” and exercises “E”. Sections refer to the section number in these lecture

notes. Note, however that the numbers may become asynchronous with the lecture notes and need
to be updated.

Week type sections topics
1 L 1.1-1.2 One-particle QM and N-particle QM

Bra-ket notation, spin orbitals, extended states, non-orthonormal orbitals
Slater determinants

1 L 1.3-1.4 Many-particle states and thermodynamics
Fock space, occupation-number representation
ensembles, entropy, grand potential, Fermi distribution

1 E 1.5 Non-interacting electrons
hydrogen molecule, linear chain, free-electron gas, 2 1-d particles in a box

2 L 2.1-2.4 Hartree-Fock total energy and selfconsistency
one and two-particle operators, Slater rules, HF total energy
Hartree and exchange energy, 1-p reduced density matrix, Fock operator

2 L 2.5-2.9 Spectral properties and exchange hole
Experiments, addition and removal energies, spectral function
exciton binding energy
exchange hole, Hund’s rule, HF of the free-electron gas

2 E
3 L 3.1-3.5 Creation and annihilation operators
3 L 2.5-2.9 Field operators, change of representation
3 E Conversion to and from field operators
4 L 4 Green’s functions in one-particle QM
4 L 5 Open systems and down folding
4 E Simple Green’s function problems
5 L 6 Propagator, time-ordering operator
5 L 7.1-7.7 Green’s function concept in many-particle physics
5 E
5 L
5 L
5 E
6 L
6 L
6 E
7 L
7 L
7 E
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Week type sections topics
8 L
8 L
8 E
9 L
9 L
9 E
10 L
10 L
10 E
11 L
11 L
11 E
12 L
12 L
12 E
13 L
13 L
13 E
14 L
14 L
14 E

13.5 List of exercises

1. Chapter 1: Non-interacting electrons

(a) 1.6.1 Hydrogen molecule

(b) 1.6.2 General diatomic molecule

(c) 1.6.3 Linear chain of hydrogen atoms

(d) 1.6.4 Insulating linear chain

(e) 1.6.5 Free-electron gas or jellium model

(f) 1.6.6 Thermodynamics of the hydrogen molecule

2. Chapter 2: Weakly interacting electrons

(a) 2.9.1 The hydrogen atom in the Hartree-Fock approximation

(b) 2.9.2 Two one-dimensional particles in a box

(c) 2.9.3 Two fermions in a 1d-box

(d) 2.9.4 Self-made density functional

3. Chapter 3: Second Quantization

(a) 3.11.1 Hartree Fock at finite temperature

(b) 3.11.2 Hydrogen molecule with interacting electrons !

(c) 3.11.3 Spin eigenstates !

(d) 3.11.4 Ground state of the linear chain in second quantization
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4. Chapter 4: Green’s functions in one-particle quantum mechanics

(a) 4.6.1 Role of boundary conditions

(b) 4.6.2 Green’s function for a Lorentzian-shaped density of states

5. Chapter 5: Composite and open systems: down-folding and retarded potentials

(a) 5.4.1 Minimal model for a quantum system coupled to a bath

(b) 5.4.2 System in contact with a bath having a finite lifetime

(c) 5.4.3 Fano-Anderson model

(d) 5.4.5 Surface Green’s function of a one-dimensional linear chain

(e) 5.4.6 Interfaces and metal-induced gap states (sketch only)

(f) 5.4.7 Inelastic tunneling (Sketch only)

6. Chapter 6: Dynamics in Fock space and complex time

No exercises yet

7. Chapter 7: Green’s functions in many-particle physics

(a) 7.6.1 Non-interacting contour Green’s function for the non-interacting hy- drogen molecule

8. Chapter 8: Exact properties of the many-particle Green’s function

(a) 8.5.1 Self-energy and contour Green’s function of the Hubbard atom

9. Chapter 9: Spectral properties

(a) 9.6.1 Model for strongly retarded Green’s function

(b) 9.6.3 Exercise: Anderson impurity model

(c) 9.6.4 Home study and practice: spectral function and momentum density of a 1d chain

10. Chapter 10: Diagrammatic expansion of the Green’s function

(a) 10.5.1 Green’s function from generating functional

11. Chapter 11: Diagrammatics of the generating functional

(a) 11.9.1 Enumerate permutations !

(b) 11.9.2 Feynman diagrams from permutation vectors !

(c) 11.9.3 Value of a Feynman diagrams ! Editor: complete

(d) 11.9.4 Evaluate the symmetry factor ! Editor: complete

(e) 11.9.5 Example: Evaluate the Green’s function for a specific example
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Appendix A

Mathematical expressions

A.1 Laplace expansion theorem (not needed)

Let D be the determinant of an N × N matrix A, and let Di ,jN−1 be the determinant of the matrix
obtained from A by deleting the i-th line and the j-th column. Then

D =

N∑
i=1

(−1)i+jAi ,jDi ,jN−1

The Laplace expansion theorem can be applied twice, leading to

D =

N∑
i=1

N∑
k=1

(−1)i+j+k+lAi ,jAk,lDik,j lN−2

where Dik,j l is the determinant of the matrix A with the i-th and k-th line, and the j-th and l-th
column deleted.

A.2 Fourier transforms

Here, I summarize only the main formulas used in this lecture. More on the Fourier transform can
be found in ΦSX:Quantum physics[14].

A.2.1 Choices

Fourier transforms in time

F (ω) =

∫
dt f (t)eiωt (A.1)

f (t) =

∫
dω

2π
F (ω)e−iωt (A.2)

F (ϵ) =

∫
dt f (t)e

i
ℏ ϵt (A.3)

f (t) =

∫
dϵ

2πℏ
F (ω)e−

i
ℏ ϵt (A.4)
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f (t) F (ω)

δ(t) 1

1 2πδ(ω)

Fourier transforms in space

F (k⃗) =

∫
d3r f (r⃗)e−i k⃗ r⃗ (A.5)

f (r⃗) =

∫
d3k

(2π)3
F (k⃗)ei k⃗ r⃗ (A.6)

F (p⃗) =

∫
d3r f (r⃗)e−

i
ℏ p⃗r⃗ (A.7)

f (p⃗) =

∫
d3p

(2πℏ)3
F (k⃗)ei k⃗ r⃗ (A.8)

A.2.2 Fourier transform of the step function

Here, we derive the relation

∫ ∞
−∞

dt θ(t)e
i
ℏ (ϵ+iη)t =

iℏ
ϵ+ iη

(A.9)∫ ∞
−∞

dt θ(−t)e
i
ℏ (ϵ−iη)t =

−iℏ
ϵ− iη (A.10)

where η > 0.

Derivation:

∫ ∞
−∞

dt θ(t)e
i
ℏ (ϵ+iη)t =

∫ ∞
0

dt e
i
ℏ (ϵ+iη)t =

1
i
ℏ (ϵ+ iη)

e
i
ℏ (ϵ+iη)t

∣∣∣∞
0

η>0
=

−1
i
ℏ (ϵ+ iη)

=
iℏ

ϵ+ iη

∫ 0
−∞

dt θ(−t)e
i
ℏ (ϵ−iη)t =

∫ 0
−∞

dt e
i
ℏ (ϵ−iη)t =

1
i
ℏ (ϵ− iη)

e
i
ℏ (ϵ−iη)t

∣∣∣0
−∞

η>0
=

1
i
ℏ (ϵ− iη)

=
−iℏ
ϵ− iη

The function is a simple pole at ϵ = −iη or ϵ = +iη respectively.

A.3 Wirtinger derivatives

In order to form the derivatives with respect to complex numbers, it is advantageous to be familiar
with the Wirtinger derivatives, which are described briefly in ΦSX: Klassische Mechanik.
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Wirtinger derivatives The essence of Wirtinger derivatives is that we can write the identity

df =
∂f

∂Re[z ]
dRe[z ] +

∂f

∂Im[z ]
d Im[z ]

=
1

2

( ∂f

∂Re[z ]
− i

∂f

∂Im[z ]

)
︸ ︷︷ ︸

df /dz

(
dRe[z ] + id Im[z ]

)
︸ ︷︷ ︸

dz

+
1

2

( ∂f

∂Re[z ]
+ i

∂f

∂Im[z ]

)
︸ ︷︷ ︸

df /dz∗

(
dRe[z ]− id Im[z ]

)
︸ ︷︷ ︸

dz∗

=
df

dz
dz +

df

dz∗
dz∗ (A.11)

for the first variation of f . Thus, we can form the variations of a function of complex arguments, as
if the variable and its complex conjugate were completely independent variables.
The Wirtinger derivatives are defined as

∂f

∂z
=
1

2

( ∂f

∂Re[z ]
− i

∂f

∂Im[z ]

)
∂f

∂z∗
=
1

2

( ∂f

∂Re[z ]
+ i

∂f

∂Im[z ]

)
. (A.12)

The Wirtinger derivatives obey the following rules:

• linearity

∂
(
af (z, z∗) + bg(z, z∗)

)
∂z

= a
∂f (z, z∗)

∂z
+ b

∂g(z, z∗)

∂z

∂
(
af (z, z∗) + bg(z, z∗)

)
∂z∗

= a
∂f (z, z∗)

∂z∗
+ b

∂g(z, z∗)

∂z∗
(A.13)

• product rule

∂
(
f (z, z∗)g(z, z∗)

)
∂z

=
∂f (z, z∗)

∂z
g(z, z∗) + f (z, z∗)

∂g(z, z∗)

∂z

∂
(
f (z, z∗)g(z, z∗)

)
∂z∗

=
∂f (z, z∗)

∂z∗
g(z, z∗) + f (z, z∗)

∂g(z, z∗)

∂z∗
(A.14)

• complex conjugation

∂ [f (z, z∗)]∗

∂z
=

(
∂f (z, z∗)

∂z∗

)∗
∂ [f (z, z∗)]∗

∂z∗
=

(
∂f (z, z∗)

∂z

)∗
(A.15)

• chain rule

∂
[
f (g(z, z∗), g∗(z, z∗))

]
∂z

=
∂f (g, g∗)

∂g

∂g(z, z∗)

∂z
+
∂f (g, g∗)

∂g∗

(
∂g∗(z, z∗)

∂z

)
∂
[
f (g(z, z∗), g∗(z, z∗))

]
∂z∗

=
∂f (g, g∗)

∂g

∂g(z, z∗)

∂z∗
+
∂f (g, g∗)

∂g∗

(
∂g(z, z∗)

∂z

)∗
(A.16)

A complex function is analytic, if ∂f
∂z∗ = 0.

My personal recommendation is to produce the rules from the first variation of the complex function
in terms of dz and dz ′, rather than to memorize these equations.
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For the derivatives, we use

dΨ∗n(r⃗ , σ)

dΨ∗k(r⃗0, σ0)
= δ(r⃗ − r⃗0)δσ,σ0δn,k and

dΨn(r⃗ , σ)

dΨ∗k(r⃗0, σ0)
= 0 (A.17)

A.4 Cauchy relation

Editor: It is not clear whether it should be kept.
(Cauchy relation Eq.2.23 of Stefanucci.)

lim
η→0+

1

ϵ− ϵ0 ± iη
= P

1

ϵ− ϵ0
∓ iπδ(ϵ− ϵ0) (A.18)

where P denotes the principal part.
Cauchy principal value is[Bronstein and Semendyayev 1997, p. 283]

P

∫ b

a

dx f (x) = lim
ϵ→0+

[∫ c−ϵ

a

dx f (x) +

∫ b

c+ϵ

dx f (x)

]
(A.19)

A.5 Imaginary part of a pole and spectral density

In Eq. 4.51 on p. 4.51, we used the identity

IMAGINARY PART OF A POLE AND THE DELTA FUNCTION

−
1

π
lim
η→0
Im
( 1

x + iη

)
= δ(x) (A.20)

It is used to extract the density of states respectively the spectral function from a Green’s function.
First, we determine the imaginary part

1

x + iη
=

x − iη
x2 + η2

⇒ Im
( 1

x + iη

)
=

−η
x2 + η2

(A.21)

The imaginary part of an inverse pole in the complex plane is closely related to a Lorentzian
Lη(x).

LORENTZIAN

Lη(x)
def
=
1

π

η

x2 + η2
= −

1

π
Im
( 1

x + iη

)
(A.22)

The Lorentzian is fairly pathological function because of its long ranged tails. While the integral is
defined, its first and higher moments Mn =

∫∞
−∞ dx x

nL(x) with n ≥ 1 are ill-defined.
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Let me demonstrate that the Lorentzian integrates to one. 1

∫ ∞
−∞

dx
η

x2 + η2
=

∫ ∞
−∞

dx

η

1(
1 + x

η

)2 z
def
= x

η
=

∫ ∞
−∞

dz
1

1 + z2
z(q)=tan(q)
=

∫ ∞
−∞

dz
dq

dz
=

∫ π
2

− π
2

dq = π

⇒
∫ ∞
−∞

dx Lη(x) = 1 (A.25)

Next I will demonstrate, that the Lorentzians approach the delta function for η → 0.

lim
η→0

Lη(x) = lim
η→0
Im
[
−
1

π

η

x2 + η2

]
= δ(x) (A.26)

In other words, when the position x + iη of the pole approaches the real axis, its imaginary part
approaches, up to a constant, a delta function.

A complete proof for the identity of L0(x) with the delta function would need to establish∫
dx L0(x)g(x) = g(0) (A.27)

for any function that is differentiable to arbitrary high order.
Here. we we will show that it is a series of functions, that (1) integrate to one, that (2) are

positive and that (3) approach zero except for the origin.

• We have already shown above that the integral of the Lorentzian equals unity.

• From the defining equation Eq. A.22, it is easily seen that a Lorentzian is positive everywhere.

• In the limit η → 0, the Lorentzian vanishes except at the origin.

lim
η→0

η

x2 + η2
x ̸=0
= lim

η→0

η

x2
= 0 for x ̸= 0 (A.28)

Thus, we have shown that Eq. A.20 is valid.

A.6 Padé approximation

Editor: In progress:
The Padé approximation2 is used to perform an analytic continuation of the Matsubara Green’s

function or the self energy from the imaginary frequency axis to the real frequency axis. Its values
on the real frequency axis is the spectral function.

In this section, I am following the article of Schött et al. [doi:10.1103/PhysRevB.93.075104].
The Padé approximation is an interpolation of a complex function by a rational polynomial.

Pk,r (z) =

∑k+1
i=1 aiz

i−1[∑r
i=1 biz

i−1
]
+ z r

(A.29)

1In the derivation, we use the variable transform

q(z)
def
= atan(z) ⇒ q(z = ±∞) = ±

π

2
(A.23)

z(q) = tan(q) ⇒
dz

dq
=
sin2(q) + cos2(q)

cos2(q)
=
sin2(q)

cos2(q)
+ 1 = 1 + tan2(q) = 1 + z2 (A.24)

2Named after the French Mathematician Henri Padé. Earlier work has been published by Georg Frobenius. (Source:
Wikipeida: Padé approximation)
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This polynomial has poles at the zeros of the denominator, while the numerator controls the
weights of the poles.

For large |z | the function approaches

Pk,r (z)→ ak+1z
k−r +

(
ak − ak+1br

)
zk−r−1 + . . . (A.30)

For Greens function which fall off as 1z the case k = r − 1 is relevant. The self energy behaves
similarly, once the static contribution is subtracted. Therefore, we will be concerned with

Pr (z) =

∑r
i=1 aiz

i−1[∑r
i=1 biz

i−1
]
+ z r

(A.31)

A.6.1 Problems

It is often said that the analytic continuation using the Padé approximation is unreliable when using
noisy data as those obtained from a Quantum Monte Carlo calculation.

I myself made a few observations:

1. The spectral function is obtained from the imaginary part of the Green’s function on the real
frequency axis. If the poles are still close to the real frequency axis, small numerical errors can
create results that vary strongly.

The reason is that the imaginary part of a complex function varies extremely rapidly along the
imaginary direction.

−
1

π
Im

(
1

x + iy

)
= −

1

π

y

x2 + y2
x→0→ −

1

π

1

y
(A.32)

Thus, a small shift, which displaces the pole across the real axis, can even change the sign of
the density of states. A negative spectral function is furthermore nonphysical and renders the
description useless.

A possible remedy of this problem is to determine the spectral function for several lines, which
are displaced along the imaginary component. This allows to identify the position of the pole
and to correct it such that is falls on the correct side of the real frequency axis.

2. Matsubara Green’s function spreads the information unevenly along the imaginary frequency
axis. The Laurent expansion coefficients of the Green’s function contain the energy moments
of the spectral function, while the behavior close to the origin determines the structure of
the spectral function near the Fermi level. The details of the spectral function are probably
exponentially damped out beyond a few times kBT away from the Fermi level

Therefore, I suggest to take one point for the interpolation at iωx , which is the outermost
point on the grid. The next few points are chosen at ωj = iωx2

−j . This captures the first
few moments of the density of states. For the remaining points one could take the Matsubara
frequencies next to the origin. The attempt to improve the result by increasing the points to
be interpolated may worsen the results because it may give too much weight to region, where
the Matsubara Green’s function does not carry significant information.

A.6.2 Least-square Padé

From the requirement that the function f (z) to be interpolated is represented at a given point z by
the rational polynomial, we obtain the conditions

f (z) = Pr (z)
Eq. A.31
=

∑r
i=1 aiz

i−1[∑r
i=1 biz

i−1
]
+ z r

(A.33)
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we obtain
r∑
i=1

(
z i−1

)
ai +

r∑
i=1

(
−f (z)z i−1

)
bi = f (z)z

r (A.34)

Let us now require the identity f (z) = Pr (z) for a set of M points zj with j = 1, . . . ,M. We
obtain an equation system with M equations and 2r unknowns, the coefficients ai and bi .

r∑
i=1

(
z i−1j

)
ai +

r∑
i=1

(
−f (zj)z i−1j

)
bi = f (zj)z

r
j for j = 1,M (A.35)

This system of equations is overdetermined with M > 2r . Therefore, we solve it with singular-value
decomposition, which amounts to a least-square fit. The singular-value decomposition is a standard
linear algebra operation, which is for example implemented in the numerical library LAPACK.

The singular value decomposition rewrites a M × 2r matrix A as

A = UΣΣΣV † (A.36)

where U is a unitary M ×M matrix, ΣΣΣ is a diagonal M × 2r matrix holding the real-values singular
values on the diagonal. V is a unitary 2r × 2r matrix.

The equation system Ax⃗ = b⃗ can be solves approximately by

Ax⃗ = UΣΣΣV †x⃗ = b⃗ ⇒ x⃗ = V Σ−1U†b⃗ (A.37)

The inversion of the singular values is done such that the inverse of a zero singular value is set to
zero. This implies that the corresponding contribution is projected out.

The resulting vector x contains the coefficients ai and bi . This defines the interpolating rational
polynomial, which can be evaluated for the desired values.

Sum of poles: The rational polynomial can be transformed into a sum of poles

Pr (z)
Eq. A.31
=

∑r
i=1 aiz

i−1[∑r
i=1 biz

i−1
]
+ z r

=

r∑
k=1

Ak
z − z̄k

(A.38)

The coefficients are obtained as follows. First, we determine the poles z̄k of the rational polyno-
mial. The pole positions are the zeros of the polynomial in the denominator of the rational polynomial.
The zero’s can be obtained using the method of Vieta.

Pr (z) =

∑r
i=1 aiz

i−1∏r
j=1(z − z̄j)

=

r∑
k=1

Ak
z − zk

⇔
r∑
i=1

aiz
i−1 =

r∑
k=1

Ak

r∏
j=1;j ̸=k

(z − z̄j)

⇒
r∑
i=1

ai z̄
i−1
ℓ =

r∑
k=1

Ak

r∏
j=1;j ̸=k

(z̄ℓ − z̄j) = Aℓ
r∏

j=1;j ̸=ℓ
(z̄ℓ − z̄j)

⇒ Aℓ =

∑r
i=1 ai z̄

i−1
ℓ∏r

j=1;j ̸=ℓ(z̄ℓ − z̄j)
(A.39)

Thus, we obtain as interpolation

P (z) =

r∑
k=1

1

z − z̄k

∑r
i=1 ai z̄

i−1
k∏r

j=1;j ̸=k(z̄k − z̄j)
(A.40)
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Sum of poles: If the poles are on the wrong side of the real frequency axis, it will contribute with
the wrong sign to the spectral function. Therefore, we shift all poles with the wrong imaginary part
onto the real frequency axis.

In order to smoothen the spectral function I evaluate the spectral function on the imaginary axis.

A.7 Baker-Hausdorff Theorem

The Baker-Hausdorff theorem 3[94, 95, 96, 97, 98, 99] provides a method to evaluate the product of
two exponentials of non-commutating operators[100]. Specifically we look for the resulting operator
Ĉ of

eÂeB̂ = eĈ

for two given operators A,B.
Here, we will only investigate a few special cases.

A.7.1 Baker-Hausdorff Theorem

Here I show a specialization of the Baker-Haussdorf theorem, which applies if certain commutator
relations hold.

BAKER-HAUSDORFF THEOREM

eÂ+B̂ = eÂeB̂e−
1
2
[Â,B̂]− (A.41)

if both operators commutate with their commutator, i.e.

[Â, [Â, B̂]−]− = [B̂, [Â, B̂]−]− = 0 (A.42)

Proof:4

F (α)
def
= eαÂ+βB̂

dF

dα
=

d

dα

∞∑
n=0

1

n!
(αÂ+ βB̂)n

=

∞∑
n=0

1

n!

n−1∑
j=0

(αÂ+ βB̂)j Â(αÂ+ βB̂)n−j−1

Let us now analyze the individual terms:

(αÂ+ βB̂)Â = Â(αÂ+ βB̂) + β[B̂, Â]−

(αÂ+ βB̂)k Â = (αÂ+ βB̂)k−1Â(αÂ+ βB̂) + (αÂ+ βB̂)k−1β[B̂, Â]−
Eq. A.42
= (αÂ+ βB̂)k−1Â(αÂ+ βB̂) + β[B̂, Â]−(αÂ+ βB̂)

k−1

= Â(αÂ+ βB̂)k + kβ[B̂, Â]−(αÂ+ βB̂)
k−1

3Felix Hausdorff, 1868-1942 German mathematician. Professor in Leipzig, Bonn, Greifswald, Bonn. Is considered as
co-founder of the modern topology. He invented the Hausdorff dimension, which is used to characterize fractals. The
corresponding work is the most cited original paper in mathematics between 1910 and 1920. The Jewish Hausdorff,
his wife and her sister committed suicide as they about to be deported into a concentration camp under the NS
Dictatorship.

4fromCavity Quantum Electrodynamics: The Strange Theory of Light in a Box, S.M. Dutra, (John Wiley, 2005)
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dF

dα
=

∞∑
n=0

1

n!

n−1∑
j=0

(αÂ+ βB̂)j Â(αÂ+ βB̂)n−j−1

=

∞∑
n=0

1

n!

n−1∑
j=0

(
Â(αÂ+ βB̂)n−1 + jβ[B̂, Â]−(αÂ+ βB̂)

n−2
)

=

∞∑
n=0

1

n!

(
nÂ(αÂ+ βB̂)n−1 +

n(n − 1)
2

β[B̂, Â]−(αÂ+ βB̂)
n−2
)

= Â

∞∑
n=1

1

(n − 1)!(αÂ+ βB̂)
n−1 +

1

2
β[B̂, Â]−

∞∑
n=2

1

(n − 2)!(αÂ+ βB̂)
n−2

=

(
Â+

1

2
β[B̂, Â]−

)
F (α)

This is a differential equation for F (α), which can be solved as if the operator were a number because
only one operator, namely Â+ 12β[B̂, Â]− is involved.

We obtain

F (α) = F (0)e
α

(
Â+ 1

2
β[B̂,Â]−

)
= eβB̂

(
eαÂe

1
2
αβ[B̂,Â]−

)
⇒ eαÂ+βB̂ = eβB̂eαÂe

1
2
αβ[B̂,Â]− = eβB̂eαÂe−

1
2
αβ[Â,B̂]− q.e.d.

In the last step, we exploited that Â commutates with the commutator [Â, B̂]−, so that we can
disentangle the exponential as if the operators were numbers.

A.7.2 Hadamard Lemma

The Hadamard Lemma is a specialization of Zassenhaus formula[100], which again is a variant of
the Baker-Campbell-Hausdorff theorem. It is useful to work out simple operators in the interaction
picture.

HADAMARD’ S LEMMA

eλÂB̂e−λÂ
Eq. A.47
=

∞∑
n=0

X̂nλ
n

with X̂n+1 =
1

n + 1
[Â, X̂n]− and X̂0 = B̂ (A.43)

eλÂB̂e−λÂ =

( ∞∑
i=0

1

i !
(λÂ)i

)
B̂

 ∞∑
j=0

1

j!
(−λÂ)j

 (A.44)

=

∞∑
n=0

λn

 n∑
j=0

(−1)j

(n − j)!j! Â
n−j B̂Âj


︸ ︷︷ ︸

Xn

(A.45)
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Let us now work out the expression denoted X̂n in Eq. A.45. X̂0 = B̂ can be determined directly.
The higher X̂n are obtained by recursion.

[Â, X̂n]− =

n∑
j=0

(−1)j

(n − j)!j! Â
n+1−j B̂Âj −

n∑
j=0

(−1)j

(n − j)!j! Â
n−j B̂Âj+1

=

n∑
j=0

(n + 1− j)(−1)j

(n + 1− j)!j! Ân+1−j B̂Âj +

n∑
j=0

(j + 1)(−1)j+1

(n + 1− (j + 1))!(j + 1)! Â
n+1−(j+1))B̂Âj+1

j+1→j
=

n∑
j=0

(n + 1− j)(−1)j

(n + 1− j)!j! Ân+1−j B̂Âj +

n+1∑
k=1

j(−1)j

(n + 1− j)!j! Â
n+1−j))B̂Âj

= (n + 1)

n+1∑
j=0

(
(−1)j

(n + 1− j)!j! Â
n+1−j B̂Âj

= (n + 1)X̂n+1 (A.46)

Thus, we obtain the Baker-Campbell-Hausdorff theorem saying

eλÂB̂e−λÂ
Eq. A.45
=

∞∑
n=0

X̂nλ
n

with X̂n+1
Eq. A.46
=

1

n + 1
[Â, X̂n]− and X̂0 = B̂ (A.47)

A.8 Sum rules related to the f-sum rule

Source: W. Thomas, “Über die Zahl der Dispersionselectronen, die einem stationären Zustande zu-
geordnet sind. Vorläufige Mitteilung”, Naturwiss. 13, 627 (1925); W. Kuhn, “Über die Gesamtstärke
der von einem Zustande ausgehenden Absorptionslinien”, Z. Phys. 33, 408-412 (1925); F. Reiche
and W. Thomas, “Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet
sind”, ibid. 34, 510-525 (1925)

A.8.1 General derivation by Wang

I follow here the very general derivation given by Wang[101], from which a number of other sum rules
can be derived in a straightforward manner.

For a general operator Â we obtain

∑
n

(En − E0)
∣∣⟨0|Â|n⟩∣∣2 =∑

n

(En − E0)⟨0|Â|n⟩⟨n|Â†|0⟩

=
∑
n

(
−⟨0|ĤÂ|n⟩+ ⟨0|ÂĤ|n⟩

)
⟨n|Â†|0⟩

=
∑
n

⟨0|[Â, Ĥ]−|n⟩⟨n|Â†|0⟩

= ⟨0|[Â, Ĥ]−Â†|0⟩ (A.48)
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We proceed completely analogously but for the commutator with the second matrix element∑
n

(En − E0)
∣∣⟨0|Â†|n⟩∣∣2 =∑

n

(En − E0)⟨0|Â†|n⟩⟨n|Â|0⟩

=
∑
n

⟨0|Â†|n⟩
(
⟨n|ĤÂ|0⟩ − ⟨n|ÂĤ|0⟩

)
= −

∑
n

⟨0|Â†|n⟩⟨n|[Â, Ĥ]|0⟩

= −⟨0|Â†[Â, Ĥ]|0⟩ (A.49)

Adding the two results, Eq. A.48 and Eq. A.49, yields

WANG’S SUM RULE

∑
n

(En − E0)
(∣∣⟨0|Â|n⟩∣∣2 + ∣∣⟨0|Â†|n⟩∣∣2) = ⟨0| [Â†, [Â, Ĥ]−]− |0⟩ (A.50)

This is a rather general result, from which the f-sum rule can be obtained by choosing Â = x̂ and
the one-dimensional Hamilton operator of the form Ĥ = p̂2

2m + V (x̂).

A.8.2 f-sum rule or Thomas-Reiche-Kuhn sum rule

The f-sum rule or Thomas-Reiche-Kuhn sum rule can be obtained from Eq. A.50 with Â = ˆ⃗r
and the one-dimensional Hamilton operator of the form Ĥ =

ˆ⃗p2

2m + V (
ˆ⃗r). Here we first calculate the

one-dimensional case from which the three-dimensional can be obtained immediately.
Hence, we insert Â = x̂ and the one-dimensional Hamilton operator of the form Ĥ = p̂2

2m + V (x̂)
into Wang’s sum rule Eq. A.50. We begin with the right-hand side of Eq. A.50.

[
Ĥ, x̂

]
− =

[
p̂2

2m
+ V (x̂), x̂

]
−
=
1

2m

(
p̂2x̂ −p̂x̂ p̂ + p̂x̂ p̂︸ ︷︷ ︸

=0

−x̂ p̂2
)

=
1

2m

(
p̂ [p̂, x̂ ]− + [p̂, x̂ ]− p̂

)
=
1

2m

ℏ
i

(
p̂ + p̂

)
=
−iℏ
m
p̂ (A.51)

[
x̂†,
[
Ĥ, x̂

]
−

]
−

Eq. A.51
=

[
x̂†,
−iℏ
m
p̂

]
−
=
−iℏ
m

[
x̂†, p̂

]
− =

ℏ2

m
(A.52)

Thus, we obtain with Eq. A.50 ∑
n

(En − E0) |⟨0|x̂ |n⟩|2 =
ℏ2

2m
(A.53)

which is the one-dimensional version of the f-sum rule.
Now, we sum over the three coordinates and obtain the f- or Thomas-Reiche sum rule.

F-SUM RULE OR THOMAS-REICHE-KUHN SUM RULE

∑
n

(En − E0)
∣∣∣⟨0|ˆ⃗r |n⟩∣∣∣2 = 3ℏ2

2m
(A.54)
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A.8.3 Bethe sum rule

The Bethe sum rule can be obtained from Eq. A.50 with Â = ei q⃗
ˆ⃗r and the Hamiltonian Ĥ =

ˆ⃗p2

2m + V (
ˆ⃗r).

[
Ĥ, ei q⃗

ˆ⃗r
]
−
=

[
ˆ⃗p2

2m
+ V (ˆ⃗r), ei q⃗

ˆ⃗r

]
−

=
1

2m

(
ˆ⃗p2ei q⃗

ˆ⃗r − ˆ⃗pei q⃗ˆ⃗r ˆ⃗p + ˆ⃗pei q⃗ˆ⃗r ˆ⃗p︸ ︷︷ ︸
=0

−ei q⃗ˆ⃗r ˆ⃗p2
)

=
1

2m

(
ˆ⃗p
[
ˆ⃗p, ei q⃗

ˆ⃗r
]
−
+
[
ˆ⃗p, ei q⃗

ˆ⃗r
]
−
ˆ⃗p
)
=
1

2m

(
ˆ⃗pℏq⃗ei q⃗ˆ⃗r + ℏq⃗ei q⃗ˆ⃗r ˆ⃗p

)
=
ℏq⃗
2m

(
ˆ⃗pei q⃗

ˆ⃗r + ei q⃗
ˆ⃗r ˆ⃗p
)

(A.55)

[(
ei q⃗
ˆ⃗r
)†
,
[
Ĥ, ei q⃗

ˆ⃗r
]
−

]
−

Eq. A.55
=

[
e−i q⃗

ˆ⃗r ,
ℏq⃗
2m

(
ˆ⃗pei q⃗

ˆ⃗r + ei q⃗
ˆ⃗r ˆ⃗p
)]
−

=
ℏq⃗
2m

(
e−i q⃗

ˆ⃗r ˆ⃗pei q⃗
ˆ⃗r︸︷︷︸

ℏq⃗ei q⃗ˆ⃗r+ei q⃗ˆ⃗r ˆ⃗p

+ˆ⃗p − ˆ⃗p︸ ︷︷ ︸
=0

−ei q⃗ˆ⃗r ˆ⃗pe−i q⃗ˆ⃗r︸ ︷︷ ︸
−ℏq⃗e−i q⃗ˆ⃗r+e−i q⃗ˆ⃗r ˆ⃗p

)

=
ℏq⃗
2m

(
(ℏq⃗ + ˆ⃗p)− (−ℏq⃗ + ˆ⃗p)

)
=
(ℏq⃗)2

m
(A.56)

Insertion into Wang’s sum rule Eq. A.50 results in Bethe’s sum rule.

BETHE SUM RULE

∑
n

(En − E0)
∣∣∣⟨0|ei q⃗ˆ⃗r |n⟩∣∣∣2 = (ℏq⃗)2

2m
(A.57)

A.9 Friedel sum rule

Editor: This section on the Friedel sum rule is preliminary. It is geared strongly
towards the Anderson impurity model

Editor: For the Friedel sum rule, see also Jones and March “Theoretical Solid State
Physics” Vol. 2 section 10.3.3, p.993.

Editor: I am following Antoine Georges[102], “ The beauty of impurities: Two revivals
of Friedel’s virtual bound-state concept” C. R. Physique 17 (2016) 430–446. (C.R.Physique=Comptes
Rendus Physique) http://dx.doi.org/10.1016/j.crhy.2015.12.005

Consider an impurity in an otherwise homogeneous material

Ĥ =
∑
σ

ϵd d̂
†
σd̂σ +

∑
k

∑
σ∈{↑,↓}

ϵk⃗ ĉ
†
k⃗ ,σ
ĉk⃗ ,σ +

∑
σ∈{↑,↓}

∑
k

Vk⃗ ,σ

(
d̂†σ ĉk⃗ ,σ + ĉ

†
k⃗ ,σ
d̂σ

)
(A.58)

For the sake of simplicity, I drop the spin index.

Ĥ = ϵd d̂
†d̂ +

∑
k

ϵk⃗ ĉ
†
k⃗
ĉk⃗ +

∑
k

Vk⃗

(
d̂†ĉk⃗ + ĉ

†
k⃗
d̂
)

(A.59)

The resulting Hamiltonian describes spin-less fermions. The physics, however, is that of paired
electrons, where the spin-up electrons behave exactly like the spin-down electrons. Other names
would be that of a spin-restricted or non-spin-polarized calculation.

http://dx.doi.org/10.1016/j.crhy.2015.12.005
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The bare Green’s functions for the isolated impurity of the decoupled bath are

Ḡd(ϵ) =
1

ϵ− ϵ̄d + i0+

Ḡ
(c)

k⃗ ,k⃗ ′
(ϵ) = δk⃗ ,k⃗ ′

1

ϵ− ϵ̄(k⃗) + i0+
(A.60)

The full Green’s function are then

G(d)(ϵ) =

((
Ḡ(d)(ϵ)

)−1
− V⃗ Ḡ(c)(ϵ)V⃗︸ ︷︷ ︸

Σ(d)(ϵ)

)−1
=

(
ϵ− ϵ̄d −Σ(d)(ϵ)

)−1
G(d)(ϵ) =

(
ϵ− ϵ̄d −

∑
k⃗ ,k⃗ ′

Vk⃗ Ḡ
(c)

k⃗ ,k⃗ ′
(ϵ)Vk⃗ ′

)−1
G(c)(ϵ) =

((
Ḡ(c)(ϵ)

)−1
− V⃗ ⊗ Ḡ(d)(ϵ)⊗ V⃗︸ ︷︷ ︸

ΣΣΣ(c)(ϵ)

)−1

=

∞∑
n=0

(
Ḡ(c)ΣΣΣ(c)

)n
Ḡ(c)

= Ḡ(c) + Ḡ(c)
[∑
n=0

(
ΣΣΣ(c)Ḡ(c)

)n
ΣΣΣ(c)

]
︸ ︷︷ ︸
= T reducible self energy

Ḡ(c)

= Ḡ(c)(ϵ) + Ḡ(c)(ϵ)T (c)Ḡ(c)(ϵ)

G
(c)

k⃗ ,k⃗ ′
(ϵ) = Ḡ

(c)

k⃗
(ϵ)δk⃗ ,k⃗ ′ + Ḡ

(c)

k⃗
(ϵ)Tk⃗ ,k⃗ ′(ϵ)G

(c)

k⃗ ′
(ϵ) (A.61)

where T is the scattering T-matrix. The T-matrix is the reducible self energy for the conduction
electrons.

T = ΣΣΣ+ΣΣΣḠ(c)ΣΣΣ+ . . . = ΣΣΣ+ΣΣΣḠ(c)T (A.62)

In the present case this yields

T = ΣΣΣ+ΣΣΣḠ(c)ΣΣΣ+ . . .

= V⃗

{
Ḡ(d) + Ḡ(d) V⃗ Ḡ(c)V⃗︸ ︷︷ ︸

Σ(d)

Ḡ(d) + Ḡ(d) V⃗ Ḡ(c)V⃗︸ ︷︷ ︸
Σ(d)

Ḡ(d) V⃗ Ḡ(c)V⃗︸ ︷︷ ︸
Σ(d)

Ḡ(d) + . . .

}
︸ ︷︷ ︸

G(d)(ϵ)

V⃗

= V⃗ G(d)(ϵ)V⃗ (A.63)

I used the impurity Green’s function

G(d)(ϵ) =
1

ϵ− ϵd −Σd(ϵ) + iΓ
=

1

ϵ− ϵd − Re
[
Σd(ϵ)

]
− i
(
Im
[
Σd(ϵ)

]
− Γ
)

=

(
ϵ− ϵd − Re[Σd ]

)
+ i
(
Im[Σd ]− Γ

)
(
ϵ− ϵd − Re[Σd ]

)2
+
(
Im[Σd ]− Γ

)2 (A.64)

Scattering phase shift: The scattering phase shift δ(ω) is defined by

Tk⃗ ,k⃗ ′(ϵ) = −|Tk⃗ ,k⃗ ′(ϵ)|e
iϕ
k⃗ ,k⃗ ′ (ϵ) (A.65)
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Under the simplification, that the coupling parameters Vk⃗ are all real-valued, the phase shifts
ϕk⃗ ,k⃗ ′(ϵ) are equal to that of the bare impurity Green’s function, and thus they are equal for all scatter-
ing processes. Editor: Is this a harmless restriction, or is it central to the proof?

G(d)(ϵ) = −|G(d)(ϵ)|eiϕ(ϵ) (A.66)

Hence

ϕ(ϵ) = arg(−G(d)(ϵ)) =
π

2
+ nπ − arctan

[
Re[G(d)(ϵ)]

Im[G(d)(ϵ)]

]
tan
(
ϕ(ϵ)

)
=
Im[G(d)(ϵ)]

Re[G(d)(ϵ)]
=
Im
[
Σd(ϵ)

]
− Γ

ϵ− ϵd − Re[Σd ]
(A.67)

The factor nπ has been added, because n counts the number of states below the chosen energy.
(Number of nodes)

Spectral function: The spectral function on the impurity is

A(d)(ϵ) =
1

π
Im[G(d)(ϵ)] =

1

π

(
Im
[
Σd(ϵ)

]
− Γ
)

(
ϵ− ϵd − Re

[
Σd(ϵ)

])2
+
(
Im
[
Σd(ϵ)

]
− Γ
)2

Eq. A.67
=

1

π

(
Im[Σd ]− Γ

)
(
tan−2

(
ϕ(ϵ)

)
+ 1
)(
Im
[
Σd(ϵ)

]
− Γ
)2 = 1

π
(
Im
[
Σd(ϵ)

]
− Γ
) 1

1 + tan−2
(
ϕ(ϵ)

)
=

sin2(ϕ(ϵ))

π
(
Im
[
Σd(ϵ)

]
− Γ
) (A.68)

Occupation on the impurity: Let me integrate the bare Green’s function of the impurity to obtain
the number of d-electrons. The bare Green’s function is used as opposed to the full d-Green’s
function for the sake of simplicity.

nd ≈
∫ µ

−∞
dϵ Ād(ϵ)

=

∫ µ

−∞
dϵ
(
−
1

π
Im[Ḡd(ϵ)]

)
=

∫ µ

−∞
dϵ
1

π

Γ

(ϵ− ϵd)2 + Γ2

=
1

π

∫ µ

−∞

dϵ

Γ

1

1 +
(
ϵ−ϵd
Γ

)2
=
1

π

∫ (µ−ϵd )/Γ
−∞

dx
1

1 + x2︸ ︷︷ ︸
∂x arctan(x)

=
1

π
arctan(

µ− ϵd
Γ
) + 1/2 (A.69)

Attention! This result is for a spin-less model. In the spin-dependent model we need a factor two
for the spin degeneracy.

Thus, we obtain including the spin degeneracy

nd = 1 +
2

π
arctan

(
µ− ϵd
Γ

)
(A.70)
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Friedel sum rule At the Fermi level we exploit the quasi-particle lifetime in a Fermi-liquid becomes
infinite at the Fermi level. Hence also

Σ(d)(ϵ) = V⃗ Ḡ(c)(ϵ)V⃗

⇒ Im[Σ(d)(µ)] = V⃗ Im
[
Ḡ(c)(µ)

]︸ ︷︷ ︸
=0

V⃗ = 0 (A.71)

Thus,

tan
(
ϕ(µ)

) Eq. A.67
=

Im
[
Σd(µ)

]
− Γ

µ− ϵd − Re[Σd ]
Im[G(c)(µ)]=0
=

Γ

ϵd + Re[Σd(µ)]− µ
(A.72)

nd = 1 +
2

π
arctan

(
µ− ϵd
Γ

)
=
2

π
arctan

(
Γ

ϵd − µ

)
≈
2

π
ϕ(µ) (A.73)

FRIEDEL SUM RULE

The occupation of an orbital is given by the scattering phase shift ϕ(ϵ) at the Fermi level.

nd ≈
2

π
ϕ(µ) (A.74)

Caveat: The derivation is approximate, while Friedel sum rule is probably strictly valid.

Density of states at the Fermi level: Friedel’s sum rule links the scattering phase shift firstly to
the occupation of the orbital and secondly to the density of states

Ad(µ) Eq. A.68
=

sin2
(
ϕ(µ)

)
−πΓ

Eq. A.74
= −

1

πΓ
sin2

(π
2
nd

)
(A.75)

This result is of interest for the Kondo or Abrikosov-Suhl resonance [103, 104]. It shows that
the density of states right at the Fermi level is linked to total d-occupation of the impurity. As the
interaction is increased, which shift weight from the central quasi-particle peak to the Hubbard bands,
the width of the Abrikosov-Suhl resonance shrinks, while the maximum value of the Dos at the Fermi
level remains constant.
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Appendix B

Non-orthonormal basissets

Quantum field theory is usually formulated in an orthonormal one-particle basisset. This is because of
the enormous simplification of matrix elements in the form of the Slater-Condon rules. On the other
hand, the interaction is most important at short distances and strongest between localized orbitals
such as d- and f-orbitals. This suggests to use an atom-centered basisset.

Both properties, orthonormality and locality, can be satisfied by so-called Wannier orbitals.
However, in practical calculations, Wannier orbitals are still rather extended. In order to construct

even more localized orbitals, we need to give up the orthonormality condition. It turns out that
many-particle physics, at least on the basis of many-particle Green’s functions, can be formulated
in non-orthonormal basissets in a rather straight-forward way, without the exponential complexity of
matrix elements between many-particle states.

In this appendix, I summarize the notation of non-orthonormal basissets using projector functions.
Non-orthonormal basissets have been introduced in the main text in section 1.1.7 on p. 10.

B.1 Creation and annihilation operators for non-orthonormal or-
bitals

While it has been important to consider orthonormal orbitals for the evaluation of the Slater-Condon
rules, the operators can easily be transformed into any non-orthonormal one-particle basis set.

Non-orthonormal basissets have been described in the introduction, namely in section 1.1.7 on
p. 10.

Let us consider any non-orthonormal basisset of orbitals |χα⟩ with the overlap matrix Sα,β =
⟨χα|χβ⟩. For the basis functions, we define furthermore projector functions |πα⟩, which obey the
bi-orthogonality condition

⟨πα|χβ⟩
Eq. 1.46
= δα,β (B.1)

If the orbitals |χα⟩ and the projector functions |πα⟩ are both complete, the unity can be expressed
as

1̂ =
∑
α

|χα⟩⟨πα| (B.2)

or as

1̂ =
∑
α

|πα⟩⟨χα| . (B.3)

401
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Let us now introduce creation and annihilation operators, analogously to Eq. 3.64, with the
difference that the orbitals are no more orthonormal

ĉ†α =

∫
d4x ψ̂†(x⃗)⟨x⃗ |πα⟩

ĉα =

∫
d4x ⟨πα|x⃗⟩ψ̂(x⃗) (B.4)

With this definition the creation operator produces the projector function.

|πα⟩ = ĉ†α|O⟩ (B.5)

There is some arbitrariness regarding the choice of using the projector functions in Eq. B.4 rather
than the orbitals.1 This is analogous to co- and contra-variant vectors in geometry. Our choice gives
up the relation |χα⟩ = ĉ†α|O⟩ in favor of the form of matrix elements of operators defined later in
Eq. B.9 and Eq. B.10.

Back transform to real-space field operators: Let us work out the back transform as

ψ̂†(x⃗) =

∫
d4x ′ ψ̂†(x⃗ ′) ⟨x⃗ ′|

∑
α

|πα⟩⟨χα|︸ ︷︷ ︸
1̂

x⃗⟩

︸ ︷︷ ︸
δ(x⃗ ′−x⃗)

=
∑
α

∫
d4x ′ ψ̂†(x⃗ ′)⟨x⃗ ′|πα⟩︸ ︷︷ ︸

ĉ†α

⟨χα|x⃗⟩ =
∑
α

ĉ†α⟨χα|x⃗⟩

The back transform is

ψ̂†(x⃗) =
∑
α

ĉ†α⟨χα|x⃗⟩

ψ̂(x⃗) =
∑
α

⟨x⃗ |χα⟩ĉα (B.6)

Anticommutator relations with non-orthonormal orbitals

Special care is required with the anticommutator relations which are non-trivial.[
ĉα, ĉ

†
β

]
+

Eq. B.4
=

∫
d4x

∫
d4x ′ ⟨πα|x⃗⟩

[
ψ̂(x⃗), ψ̂†(x⃗ ′)

]
+︸ ︷︷ ︸

δ(x⃗−x⃗ ′)

⟨x⃗ ′|πβ⟩ =
∫
d4x⟨πα|x⃗⟩⟨x⃗ |πβ⟩ = ⟨πα|πβ⟩

(B.7)

Thus, we obtain the anticommutator relations for non-orthonormal orbitals as[
ĉα, ĉ

†
β

]
+
= ⟨πα|πβ⟩ = S−1α,β[

ĉ†α, ĉ
†
β

]
+
= 0[

ĉα, ĉβ

]
+
= 0 (B.8)

1Exchanging projector functions and orbitals leads again to a mathematically consistent formalism. As a result it is
not always obvious how to choose the correct one.
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B.1.1 Operators and matrix elements

In order to represent the operators by creation and annihilation operators in the non-orthonormal
basisset, we need to work out their matrix elements.

The derivation of the Slater-Condon rules in a non-orthonormal basisset is awfully cumbersome,
because each matrix element of a N-particle Slater determinant produces in general (N!)2 matrix
elements of product states. Therefore, it is more economical to take the matrix elements in a
orthonormal basisset, which has been obtained with the help of the Slater-Condon rules and transform
the result into a general basisset. We even have a later starting point, because we can start from
the real-space representation.

For a one-particle operator Â we obtain

Â
Eq. 3.66
=

∫
d4x

∫
d4x ′ A(x⃗ , x⃗ ′)ψ̂†(x⃗)ψ̂(x⃗ ′)

Eq. B.6
=

∑
α,β

(∫
d4x

∫
d4x ′ ⟨χα|x⃗⟩A(x⃗ , x⃗ ′)⟨x⃗ ′|χβ⟩

)
ĉ†αĉβ

=
∑
α,β

Aα,β ĉ
†
αĉβ (B.9)

with

Aα,β =

∫
d4x

∫
d4x ′ ⟨χα|x⃗⟩A(x⃗ , x⃗ ′)⟨x⃗ ′|χβ⟩ = ⟨χα|Â|χβ⟩ (B.10)

The derivation for the matrix elements of an interaction operator Ŵ is obtained analogously.
Take note of the order of the two annihilators in the following expressions!

Ŵ
Eq. 3.75
=

1

2

∫
d4x

∫
d4x ′ ψ̂†(x⃗)ψ̂†(x⃗ ′)

e2

4πϵ0|r⃗ − r⃗ ′|
ψ̂(x⃗ ′)ψ̂(x⃗)

Eq. B.6
=

1

2

∫
d4x

∫
d4x ′

e2

4πϵ0|r⃗ − r⃗ ′|

(∑
α

ĉ†α⟨χα|x⃗⟩
)

︸ ︷︷ ︸
ψ̂†(x⃗)

(∑
β

ĉ†β⟨χβ |x⃗ ′⟩
)

︸ ︷︷ ︸
ψ̂†(x⃗ ′)

(∑
γ

⟨x⃗ ′|χγ⟩ĉγ
)

︸ ︷︷ ︸
ψ̂(x⃗ ′)

(∑
δ

⟨x⃗ |χδ⟩ĉδ
)

︸ ︷︷ ︸
ψ̂(x⃗)

=
1

2

∑
α,β,γ,δ

(∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χδ(x⃗)χγ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

)
ĉ†αĉ

†
β ĉγ ĉδ

=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β ĉγ ĉδ (B.11)

with2

Wα,β,γ,δ =

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χγ(x⃗)χδ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(B.12)

The expression for the matrix elements maintain their simple form also in a non-orthonormal
basisset. The complication shows up again when evaluating matrix elements of operators expressed in
creation and annihilation operators, because every permutation of creation and annihilation operators
introduces an inverse overlap matrix instead of a unit matrix. A usual technique to evaluate matrix
elements is to permute the annihilators to the very right or the very left, which then blows up the
number of terms in an non-orthonormal basisset tremendously. This problem is usually avoided by an
intermediate basis transformation to an orthonormal basisset.

2Note the interchange of γ and δ!
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Summary

Let me summarize here the equations for non-orthonormal orbitals for future reference. Memorizing
these equations may be advantageous over memorizing the ones for orthonormal orbitals, because
the latter are readily derived from the more general equations.
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CREATION AND ANNIHILATION OPERATORS IN NON-ORTHONORMAL ORBITALS

Consider a set of non-orthonormal orbitals |χα⟩ having the overlap matrix

Sα,β
def
= ⟨χα|χβ⟩ (B.13)

A set of projector functions ⟨πα| is defined which obeys the bi-orthogonality condition

⟨πα|χβ⟩ = δα,β (B.14)

Thus,

⟨πα|πβ⟩ =
(
S
)−1
α,β

(B.15)

The creation and annihilation operators ĉ†α and ĉ† and obey the anticommutator relations[
ĉ†α, ĉ

†
β

]
+

Eq. ??
= 0[

ĉα, ĉβ

]
+

Eq. ??
= 0[

ĉ†α, ĉβ

]
+

Eq. ??
= ⟨πα|πβ⟩ (B.16)

The creation and annihilation operators ĉ†α and ĉ† are related to the real-space field operators by

ψ̂†(x⃗)
Eq. B.6
=

∑
α

ĉ†α⟨χα|x⃗⟩

ψ̂(x⃗)
Eq. B.6
=

∑
α

⟨x⃗ |χα⟩ĉα (B.17)

and

ĉ†α
Eq. B.4
=

∫
d4x ψ̂†(x⃗)⟨x⃗ |πα⟩

ĉα
Eq. B.4
=

∫
d4x ⟨πα|x⃗⟩ψ̂(x⃗) (B.18)

A creation operator creates the projector function |πα⟩, rather than the local orbital.

|πα⟩
Eq. B.5
= ĉ†α|O⟩ (B.19)

The Hamiltonian has the form

Ĥ =
∑
α,β

hα,β ĉ
†
αĉβ +

1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β ĉδ ĉγ (B.20)

with matrix elements

hα,β = ⟨χα|Ĥ0|χβ⟩ (B.21)

and

Wα,β,γ,δ = ⟨χαχβ |Ŵ |χγχδ⟩ =
∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χγ(x⃗)χδ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(B.22)
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Appendix C

Fermions and bosons

Editor: This is under construction and needs to be verified
The focus of these lecture notes are fermions. In this chapter, I will present the relevant expres-

sions for fermions and bosons side-by-side. The expressions for fermions and bosons differ by the
position of a sign-factor “eta” ηFB.

ηFB = +1 for bosons

ηFB = −1 for fermions (C.1)

The subscript “FB” indicates that the sign distingishes fermions and bosons.

Particle permutations

⟨x⃗1, x⃗2|Ψ⟩ = ηFB⟨x⃗2, x⃗1|Ψ⟩ (C.2)

Fermionic wave functions are antisymmetric under exchange of two particles, while bosons are sym-
metric under particle exchange.

Slater determinants and permanents

The antisymmetrized product states relevant for fermions are Slater determinants Eq. 1.88. The
symmetrized product states relevant for bosons are permanents Eq. 1.89.

• Fermions: The occupation numbers of fermions are σn ∈ {0, 1}. That is, for a specified,
ordered set of one-particle states, a Slater determinant can be specified by |σ⃗⟩, where σ⃗ is a
string of zeros and ones.

• bosons: The occupation numbers of bosons are non-negative integers σn ∈ {0, 1, 2, . . .}. That
is, for a specified, ordered set of one-particle states, a permanent can be specified by |σ⃗⟩, where
σ⃗ is a string of non-negative integers.

Grand potential of non-interacting particles

The grand potential of non-interacting particles for fermions is given in Eq. ??.

Ω
(0)
T,µ

Eq. ??
= ηFBkBT Tr

{
ln
(
1− ηFBe−β(ϵ−µ1̂)

)}
(C.3)
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Thermal occupations

The thermal occupations of non-interacting electrons are the Fermi- and Bose-distributions

fT,µ(ϵ) =
1

e+β(ϵ−µ) − ηFB
(C.4)

one-particle-reduced density matrix

ρ̂(1) =
∑
n

|ϕn⟩fn⟨ϕn| (C.5)

The occupations of fermions are fn ∈ [0, 1]. The occupations of bosons are non negative, real-valued
numbers.

Two-particle interaction

Interaction

⟨Φ|Ŵ |Φ⟩ =
1

2

∑
m,n

fmfn

[
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩+ ηFB⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

]
(C.6)

The Coulomb interaction is usually not relevant for bosons. Exchange enhances the interaction matrix
elements for bosons, in contrast to fermions.

Creation and annihilation operators

The creation and annihilation operators for fermions have been defined in Eqs. 3.15, 3.17 on p. 127.

â†i =
∑
σ⃗

∣∣∣σ1, σ2, . . . , σi + 1, . . .〉 ([ηFB∑j<i σj
]√
1 + ηFBσi

)〈
σ1, σ2, . . . , σi , . . .

∣∣∣
âi =

∑
σ⃗

∣∣∣σ1, σ2, . . . , σi − 1, . . .〉 ([ηFB∑j<i σj
]√

σi

)〈
σ1, σ2, . . . , σi , . . .

∣∣∣ (C.7)

This yields n̂i = â
†
i âi =

∑
σ |σ⃗⟩σi ⟨σ⃗|

Commutator- and anti-commutator rules

For creation and annihilation operators for an orthonormal one-particle basisset, the commutator,
respectively anticommutator rules are [

âm, â
†
n

]
−ηFB

= δm,n[
â†m, â

†
n

]
−ηFB

= 0[
âm, ân

]
−ηFB

= 0 (C.8)

For non-orthonormal basissets {|χα⟩} with projector functions {|πα⟩}, the inverse overlap operator
replaces the unit matrix [

ĉα, ĉ
†
β

]
−ηFB

= ⟨πα|πβ⟩ (C.9)

where Sα,β = ⟨χα|χβ⟩ is the overlap matrix of the orbitals and where the overlap of the projector
functions ⟨πα|πβ⟩ = S−1α,β is the inverse overlap of the orbitals
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Spectral function

Atotα,β(ϵ) =
∑
n

Pn⟨Φn|
[
ĉS,α, ĉ

†
S,β

]
−ηFB
|Φn⟩δ

(
ϵ− (Em − En)

)
=
∑
m,n

(
Pn − ηFBPm

)
⟨Φn|ĉS,α|Φm⟩⟨Φm|ĉ†S,β |Φn⟩δ

(
ϵ− (Em − En)

)
(C.10)
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Appendix D

Hubbard dimer and hydrogen
molecule

In these lecture notes, I am relying on dimer molecules with 1s orbitals to demonstrate many of
the concepts introduced. The dimer serves as minimal model for a wealth of many-particle effects.
Despite its simplicity, some of the calculations are quite involved and this distracts from the physical
effects. Therefore, I introduce here the derivations of expressions, which I will refer to in the text.
Note, that there are some repetitions in the text: In this appendix, I am using also advanced concepts
that are only introduced later in the text than its first reference.

In this chapter, I am describing first the asymmetric dimer having a basis of 1s orbitals. Later, I
will work out the matrix elements for the hydrogen molecule using atomic orbitals.1

Editor: see also Giesbertz[105] on reduced density matrix functional theory from
many-particle perturbation theory and their calculations on the hubbard dimer.

D.1 Asymmetric two-site model

The asymmetric dimer consists of two distinct sites. It prepares the ground, both, for the Hubbard-
dimer with two identical sites, and the Anderson dimer[106, 107] which describes one strongly inter-
acting site coupled to a non-interacting environment.

The naming of the two sites relates to the Anderson impurity model, where one site contains d-
or f-electrons described by the creation and annihilation operators f̂ †σ and f̂σ, while the other site has
electrons described by ĉ†σ ĉσ.

The Hamiltonian for the asymmetric dimer is

Ĥ =
∑
σ

ϵ̄f f̂
†
σ f̂σ +

1

2
Uf
∑
σ,σ′

f̂ †σ f̂
†
σ′ f̂σ′ f̂σ︸ ︷︷ ︸

atom F

+
∑
σ

ϵ̄c ĉ
†
σ ĉσ +

1

2
Uc
∑
σ,σ′

ĉ†σ ĉ
†
σ′ ĉσ′ ĉσ︸ ︷︷ ︸

atom C

−t
∑
σ

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)
︸ ︷︷ ︸

hopping

(D.1)

For the calculations, it is convenient to combine the operators, wherever possible, to particle-

1A similar derivation has been done by Pavarini in the appendix of chapter 11 “Dynamical Mean-Field Theory for
Materials” in Many-Body Methods for Real materials Schriftenreihe de Forschungszentrums Jülich, Reihe Modeling
and Simulation, Vol. 9 (2019), https://www.cond-mat.de/events/correl19/manuscripts/correl19.pdf

411

https://www.cond-mat.de/events/correl19/manuscripts/correl19.pdf


412 D HUBBARD DIMER AND HYDROGEN MOLECULE

number operators n̂f ,σ = f̂
†
σ f̂σ and n̂c,σ = ĉ

†
σ ĉσ. 2

Ĥ =

atom F︷ ︸︸ ︷∑
σ∈{↑,↓}

ϵ̄f n̂f ,σ + Uf n̂f ,↑n̂f ,↓ +
1

2
Uf

∑
σ∈{↑,↓}

n̂f ,σ
(
n̂f ,σ − 1

)︸ ︷︷ ︸
=0̂

+

atom C︷ ︸︸ ︷∑
σ∈{↑,↓}

ϵ̄c n̂c,σ + Uc n̂c,↑n̂c,↓ +
1

2
Uc

∑
σ∈{↑,↓}

n̂c,σ
(
n̂c,σ − 1

)︸ ︷︷ ︸
=0̂

−t
∑

σ∈{↑,↓}

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)
︸ ︷︷ ︸

hopping

(D.3)

Each atom has two onsite Coulomb terms. The second shows up in the mean-field approximation,
while it is exactly zero in the full description.3

D.1.1 Symmetry-adapted many-particle states

Before we determine the eigenstates for the Hamiltonian of the asymmetric dimer, I first construct
symmetry eigenstates in order to block diagonalize the Hamiltonian.

I start with setting up the basis set of Slater determinants in the local basis. These states are
given in table D.1.

2

1

2

∑
σ,σ′∈{↑,↓}

f̂ †σ f̂
†
σ′ f̂σ′ f̂σ = −

1

2

∑
σ,σ′

f̂ †σ f̂
†
σ′ f̂σ f̂σ′ = −

1

2

∑
σ,σ′

(
δσ,σ′ f̂

†
σ f̂σ′ − f̂ †σ f̂σ f̂

†
σ′ f̂σ′

)
=
1

2

∑
σ,σ′

f̂ †σ f̂σ f̂
†
σ′ f̂σ′ −

1

2

∑
σ

f̂ †σ f̂σ

= n̂f ,↑n̂f ,↓ +
1

2

∑
σ

(
n̂2f ,σ − n̂f ,σ

)
︸ ︷︷ ︸

=0

(D.2)

3n̂f ,σ(n̂f ,σ − 1) vanishes, because the occupation-number operator for fermions has eigenvalues zero and one, so
that the eigenvalues of n̂f ,σ(n̂f ,σ − 1) vanish. Hence, is the zero operator n̂f ,σ(n̂f ,σ − 1).
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Table D.1: Slater determinants, which form a basis set of many-particle wave functions for the
asymmetric dimer.

Nr. |f↑, f↓, c↑, c↓⟩ Basisstate N Sz/ℏ

1 |0, 0, 0, 0⟩ |O⟩ N = 0 Sz = 0

2 |1, 0, 0, 0⟩ f †↑ |O⟩ N = 1 Sz = +
1
2

3 |0, 1, 0, 0⟩ f †↓ |O⟩ N = 1 Sz = − 12
4 |1, 1, 0, 0⟩ f †↑ f

†
↓ |O⟩ N = 2 Sz = 0

5 |0, 0, 1, 0⟩ c†↑ |O⟩ N = 1 Sz =
1
2

6 |1, 0, 1, 0⟩ f †↑ c
†
↑ |O⟩ N = 2 Sz = +1

7 |0, 1, 1, 0⟩ f †↓ c
†
↑ |O⟩ N = 2 Sz = 0

8 |1, 1, 1, 0⟩ f †↑ f
†
↓ c
†
↑ |O⟩ N = 3 Sz = +

1
2

9 |0, 0, 0, 1⟩ c†↓ |O⟩ N = 1 Sz = − 12
10 |1, 0, 0, 1⟩ f †↑ c

†
↓ |O⟩ N = 2 Sz = 0

11 |0, 1, 0, 1⟩ f †↓ c
†
↓ |O⟩ N = 2 Sz = −1

12 |1, 1, 0, 1⟩ f †↑ f
†
↓ c
†
↓ |O⟩ N = 3 Sz = − 12

13 |0, 0, 1, 1⟩ c†↑c
†
↓ |O⟩ N = 2 Sz = 0

14 |1, 0, 1, 1⟩ f †↑ c
†
↑c
†
↓ |O⟩ N = 3 Sz = +

1
2

15 |0, 1, 1, 1⟩ f †↓ c
†
↑c
†
↓ |O⟩ N = 3 Sz = − 12

16 |1, 1, 1, 1⟩ f †↑ f
†
↓ c
†
↑c
†
↓ |O⟩ N = 4 Sz = 0

Before diagonalizing the Hamiltonian, I select common eigenstates of a set of symmetry operators
of the Hamiltonian. In the basis of symmetry eigenstates, the Hamiltonian will become block diagonal,
which simplifies the diagonalization. Alongside with the symmetry operators, I include also the particle
number into the set of operators that commutate with the Hamiltonian and the other symmetry
operators.

First, I classify the states in table D.1 according to their particle number and ŜZ eigenvalues.
Then, I will break up the blocks according to the S⃗2 eigenvalues. The states in the individual blocks
are given in table D.2.

One-particle channel

The Hamiltonian projected onto the one-particle sector (N = 1) and the eigenstates with Sz = ℏ
2σ

is

P̂1,σĤP̂1,σ =

(
f̂ †σ |O⟩
ĉ†σ|O⟩

)(
ϵ̄f −|t|
−|t| ϵ̄c

)(
⟨O|f̂σ
⟨O|ĉσ

)
(D.4)

where P̂1,σ is the corresponding projection operator onto states with N = 1 and Sz = ℏ
2σ.

The eigenvalues are

ϵ± =
ϵ̄f + ϵ̄c
2

±

√(
ϵ̄f − ϵ̄c
2

)2
+ |t|2 (D.5)
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Table D.2: Symmetry eigenstates states constructed from the Slater determinants in table D.1. The
Slater determinants can be grouped according to their eigenvalues with respect to particle number N
and Sz . Using the total spin, i.e. ˆ⃗S2, the block with N = 2 and Sz = 0 can be divided further into
one triplet state with S = 1 and a block with three states with S = 0 as decribed in section D.1.1

N Sz/ℏ S

0 0 0 |1⟩ |O⟩
1 − 12

1
2 |3⟩, |9⟩ f̂ †↓ |O⟩ ,ĉ†↓ |O⟩

1 + 12
1
2 |2⟩, |5⟩ f̂ †↑ |O⟩ ,ĉ†↑ |O⟩

2 −1 1 |11⟩ f̂ †↓ ĉ
†
↓ |O⟩

2 0 1 1√
2

(
|7⟩+ |10⟩

)
1√
2

(
f̂ †↓ ĉ

†
↑ + f̂

†
↑ ĉ
†
↓
)
|O⟩

2 0 0 |4⟩,|13⟩, 1√
2

(
|7⟩ − |10⟩

)
f̂ †↑ f̂

†
↓ |O⟩ ,ĉ†↑ ĉ

†
↓ |O⟩ , 1√

2

(
f̂ †↓ ĉ

†
↑ − f̂

†
↑ ĉ
†
↓
)
|O⟩

2 +1 1 |6⟩ f̂ †↑ ĉ
†
↑

3 − 12
1
2 |12⟩, |15⟩ f̂ †↑ f̂

†
↓ ĉ
†
↓ |O⟩ ,f̂ †↓ ĉ

†
↑ ĉ
†
↓ |O⟩

3 + 12
1
2 |8⟩, |14⟩ f̂ †↑ f̂

†
↓ ĉ
†
↑ |O⟩ ,f̂ †↑ ĉ

†
↑ ĉ
†
↓ |O⟩

4 0 0 |16⟩ f̂ †↑ f̂
†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩

The eigenstates ψ± are

|ψ−⟩ =
(
f̂ †σ cos(α1) + ĉ

†
σ sin(α1)

)
|O⟩

|ψ+⟩ =
(
f̂ †σ sin(α1)− ĉ†σ cos(α1)

)
|O⟩ (D.6)

This Ansatz guarantees that the states are orthonormal.
The angle α1 is obtained by inserting the Ansatz Eq. D.6 of |ψ−⟩ into the eigenvector equation

with Eq. D.4

(ϵ̄f − ϵ−) cos(α1)− |t| sin(α1) = 0

⇒ tan(α1) =
1

|t|

(
ϵ̄f − ϵ−

)
=
1

|t|

 ϵ̄f − ϵ̄c
2

+

√(
ϵ̄f − ϵ̄c
2

)2
+ |t|2


=
ϵ̄f − ϵ̄c
2|t| +

√
1 +

(
ϵ̄f − ϵ̄c
2|t|

)2
α1 = atan

(
q +

√
1 + q

)
with q =

ϵ̄f − ϵ̄c
2|t| (D.7)

• For the symmetric case, ϵ̄f = ϵ̄c we obtain tan(α1) = 1 and α1 = 45◦ = π/4. This describes
the bonding and antibonding orbitals.

• For the asymmetric limit |ϵ̄f − ϵ̄c | ≫ |t|, I obtain tan(α1) = ∞ or α1 = 90◦ = π/2. In this
case each wave function is localized either on one or the other site.

Three-particle channel

The three-particle channel can be worked out analogous to the one-particle channel.
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The Hamiltonian projected onto the three-particle sector and the eigenstates with Sz = ℏ
2σ is

P̂3,σĤP̂3,σ =

(
f̂ †σ̄ f̂

†
σ ĉ
†
σ|O⟩

ĉ†σ̄ f̂
†
σ ĉ
†
σ|O⟩

)(
2ϵ̄f + Uf + ϵ̄c −|t|

−|t| ϵ̄f + 2ϵ̄c + Uc

)(
⟨O|ĉσ f̂σ f̂σ̄
⟨O|ĉσ f̂σ ĉσ̄

)
(D.8)

where P̂3,σ is the projection operator on the three-particle states with Sz = ℏ
2σ. With σ̄, I denote

the spin direction opposite to σ, i.e. σ̄ =↓ for σ =↑ and vice versa.
The Slater determinants used here differ from the ones used initially by the order of the operators.

Note, that ĉσ̄ f̂σ ĉσ = +f̂σ ĉσ ĉσ̄. The order of the spin indices on the doubly occupied orbital is reversed
in both orbitals. This changes the sign of one orbital with respect to the other.

The eigenvalues are

ϵ± =
3ϵ̄f + Uf + 3ϵ̄c + Uc

2
±

√(
ϵ̄f + Uf − ϵ̄c − Uc

2

)2
+ |t|2 (D.9)

The eigenstates ψ± are

|ψ−⟩ =
(
f̂ †σ̄ cos(α2) + f̂

†
σ̄ sin(α2)

)
f̂ †σ ĉ

†
σ|O⟩

|ψ+⟩ =
(
f̂ †σ̄ sin(α2)− f̂

†
σ̄ cos(α2)

)
f̂ †σ ĉ

†
σ|O⟩ (D.10)

This Ansatz guarantees that the states are orthonormal.
The angle α1 is obtained by inserting the Ansatz of |ψ−⟩ into the eigenvector equation

(2ϵ̄f + Uf + ϵ̄c − ϵ−) cos(α2)− |t| sin(α2) = 0

⇒ tan(α2) =
1

|t|

(
2ϵ̄f + Uf + ϵ̄c − ϵ−

)
=
1

|t|

 ϵ̄f + Uf − ϵ̄c − Uc
2

+

√(
ϵ̄f + Uf − ϵ̄c − Uc

2

)2
+ |t|2


=
ϵ̄f + Uf − ϵ̄c − Uc

2|t| +

√
1 +

(
ϵ̄f + Uf − ϵ̄c − Uc

2|t|

)2
α2 = atan

(
q +

√
1 + q

)
with q =

ϵ̄f + Uf − ϵ̄c − Uc
2|t| (D.11)

• For the symmetric case, ϵ̄f + Uf = ϵ̄c + Uc , I obtain tan(α2) = 1 and α2 = 45◦ = π/4. This
describes the bonding and antibonding orbitals for the minority-spin direction and a completely
filled majority-spin direction.

• For the asymmetric limit |ϵ̄f + Uf − ϵ̄c − Uc | ≫ |t|, I obtain tan(α2) =∞ or α2 = 90◦ = π/2.
In this case one site has two electrons, while other has an occupied orbital in the majority-spin
direction.

• The three-particle case is very similar to the one-particle sector, when the atomic orbital levels
of the one-particle case are shifted up by the corresponding U-term.

Two-particle channel

In the basisset given in table D.1, the largest block of the Hamiltonian is the one with N = 2 and
Sz = 0, which contains four states. In order to break down this block further, let us exploit the
symmetry under spin rotation. ˆ⃗S2 commutates with the Hamiltonian and with the particle number
and Sz . Thus, we can break down the blocks of the Hamiltonian into subblocks which are eigenstates
of N,Sz and S2.
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This calculation is done in exercise 3.11.2 on p. 153. The eigenstates of ˆ⃗S2 in the two-particle
channel are given in Eq. 3.153 and Eq. 3.152: We obtained three states with spin quantum number
S = 1, namely

|6⟩ Eq. 3.152
= f̂ †↑ ĉ

†
↑ |O⟩ Sz = +1

|11⟩ Eq. 3.152
= f̂ †↓ ĉ

†
↓ |O⟩

1√
2

(
|7⟩+ |10⟩

)
Eq. 3.152
=

1√
2

(
f̂ †↓ ĉ

†
↑ + f̂

†
↑ ĉ
†
↓

)
|O⟩ (D.12)

and three states with S = 0, namely

|4⟩ Eq. 3.153
= f̂ †↑ f̂

†
↓ |O⟩

|13⟩ Eq. 3.153
= ĉ†↑ ĉ

†
↓ |O⟩

1√
2

(
|7⟩ − |10⟩

)
Eq. 3.153
=

1√
2

(
f̂ †↓ ĉ

†
↑ − f̂

†
↑ ĉ
†
↓

)
|O⟩ (D.13)

This splits the subblock of the Hamiltonian with the four Slater determinants {|4⟩, |7⟩, |10⟩, |13⟩}
with N = 2 and Sz = 0 into one state with S = 1 and a block of three singlet states with S = 0.
(The eigenvalues of Ŝ2 are ℏ2S(S + 1).)

The Hamiltonian projected onto the two-particle sector and the eigenstates with S = 0 is

P̂2,0ĤP̂2,0 =

 f̂ †↑ f̂
†
↓ |O⟩

ĉ†↑ ĉ
†
↓ |O⟩

1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩


2ϵ̄f + Uf 0 −

√
2|t|

0 2ϵ̄c + Uc −
√
2|t|

−
√
2|t| −

√
2|t| ϵ̄c + ϵ̄f


 ⟨O|f̂↓ f̂↑

⟨O|ĉ↓ĉ↑
⟨O| 1√

2

(
ĉ↓ f̂↑ − ĉ↑ f̂↓

)

(D.14)

where P̂2,0 is the projection operator onto the two-particle states (N = 2) with Sz = 0ℏ.
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Table D.3: Hamilton eigenstates of the asymmetric dimer.

N S Sz/ℏ |Φ⟩ ⟨Φ|Ĥ|Φ⟩

N = 0 S = 0 Sz = 0 |O⟩ E = 0

N = 1 S = 1
2 Sz = +

1
2

(
f̂ †↑ cos(α1) + ĉ

†
↑ sin(α1)

)
|O⟩ ϵ̄c+ϵ̄f

2 −
√(

ϵ̄c−ϵ̄f
2

)2
+ t2

N = 1 S = 1
2 Sz = +

1
2

(
f̂ †↑ sin(α1)− ĉ

†
↑ cos(α1)

)
|O⟩ ϵ̄c+ϵ̄f

2 +

√(
ϵ̄c−ϵ̄f
2

)2
+ t2

N = 1 S = 1
2 Sz = − 12

(
f̂ †↓ cos(α1) + ĉ

†
↓ sin(α1)

)
|O⟩ ϵ̄c+ϵ̄f

2 −
√(

ϵ̄c−ϵ̄f
2

)2
+ t2

N = 1 S = 1
2 Sz = − 12

(
f̂ †↓ sin(α1) + ĉ

†
↓ cos(α1)

)
|O⟩ ϵ̄c+ϵ̄f

2 +

√(
ϵ̄c−ϵ̄f
2

)2
+ t2

N = 2 S = 0 Sz = 0 ≈ f̂ †↑ f̂
†
↓ |O⟩ ≈ 2ϵ̄f + Uf +O(t, 1/U)

N = 2 S = 0 Sz = 0 ≈ ĉ†↑ ĉ
†
↓ |O⟩ ≈ 2ϵ̄c + Uc +O(t, 1/U)

N = 2 S = 0 Sz = 0 ≈ 1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩ ≈ ϵ̄f + ϵ̄c +O(t, 1/U)

N = 2 S = 1 Sz = 1 f̂ †↑ ĉ
†
↑ |O⟩ E = ϵ̄f + ϵ̄c

N = 2 S = 1 Sz = 0
1√
2

(
f̂ †↑ ĉ

†
↓ + f̂

†
↓ ĉ
†
↑
)
|O⟩ E = ϵ̄f + ϵ̄c

N = 2 S = 1 Sz = −1 f̂ †↓ ĉ
†
↓ |O⟩ E = ϵ̄f + ϵ̄c

N = 3 S = 1
2 Sz = +

1
2 f̂ †↑ ĉ

†
↑

(
f̂ †↓ cos(α2) + ĉ

†
↓ sin(α2)

)
|O⟩ 3ϵ̄c+Uc+3ϵ̄f+Uf

2 −
√(

ϵ̄f+Uf−ϵ̄c−Uc
2

)2
+ t2

N = 3 S = 1
2 Sz = +

1
2 f̂ †↑ ĉ

†
↑

(
f̂ †↓ sin(α2)− ĉ

†
↓ cos(α2)

)
|O⟩ 3ϵ̄c+Uc+3ϵ̄f+Uf

2 +

√(
ϵ̄f+U−ϵ̄c−Uc

2

)2
+ t2

N = 3 S = 1
2 Sz = − 12 f̂ †↓ ĉ

†
↓

(
f̂ †↑ cos(α2) + ĉ

†
↑ sin(α2)

)
|O⟩ 3ϵ̄c+Uc+3ϵ̄f+Uf

2 −
√(

ϵ̄f+Uf−ϵ̄c−Uc
2

)2
+ t2

N = 3 S = 1
2 Sz = − 12 f̂ †↓ ĉ

†
↓

(
f̂ †↑ sin(α2)− ĉ

†
↑ cos(α2)

)
|O⟩ 3ϵ̄c+Uc+3ϵ̄f+Uf

2 +

√(
ϵ̄f+Uf−ϵ̄c−Uc

2

)2
+ t2

N = 4 S = 0 Sz = 0 f̂ †↑ f̂
†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ E = 2ϵ̄c + 2ϵ̄f + Uf + Uc
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D.2 Hubbard dimer

Let me now study the Hubbard dimer, which is the symmetric case of the asymmetric dimer studied
in the previous section D.1.

The physics of the Hubbard dimer is described in section ?? on p. ??.
The difference to the asymmetric dimer is that the atomic orbital energies, named ϵ̄, are equal,

i.e. ϵ̄c = ϵ̄f = ϵ̄, and that the Coulomb repulsion parameters, named U, are equal too, i.e. Uc = Uf .
We adhere to the notation naming the atoms F and C and their creators f̂ †σ and ĉ†σ. The letters
simply stand for left and right atom.

Ĥ =
∑
σ

ϵ̄f̂ †σ f̂σ +
1

2
U
∑
σ,σ′

f̂ †σ f̂
†
σ′ f̂σ′ f̂σ︸ ︷︷ ︸

atom F

+
∑
σ

ϵ̄ĉ†σ ĉσ +
1

2
U
∑
σ,σ′

ĉ†σ ĉ
†
σ′ ĉσ′ ĉσ︸ ︷︷ ︸

atom C

−|t|
∑
σ

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)
︸ ︷︷ ︸

hopping

=

atom F︷ ︸︸ ︷∑
σ

ϵ̄n̂f ,σ + Un̂f ,↑n̂f ,↓ + U
∑
σ

n̂f ,σ
(
n̂f ,σ − 1

)
︸ ︷︷ ︸

=0

+

atom C︷ ︸︸ ︷∑
σ

ϵ̄n̂c,σ + Un̂c,↑n̂c,↓ + U
∑
σ

n̂c,σ
(
n̂c,σ − 1

)
︸ ︷︷ ︸

=0

−|t|
∑
σ

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)
︸ ︷︷ ︸

hopping

(D.15)
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Table D.4: Symmetry adapted orbitals for the Hubbard dimer. The states are classified according
to particle number, spin quantum numbers S and Sz and spatial inversion with eigenvalue P = ±1.
The total spin eigenvalues are ℏ2s(s+1). The spin in z-direction is ℏsz . The energies are the energy
expectation values of the symmetry adapted states rather than the eigenvalues of the Hamiltonian.
For the 2× 2 block with N = 2, S = 0 and P = +1, they are not eigenstates of the Hamiltonian.

N S Sz P |Φ⟩ ⟨Φ|Ĥ|Φ⟩

N = 0 S = 0 Sz = 0 P = 1 |O⟩ 0

N = 1 S = 1
2 Sz = +

1
2 P = +1 1√

2

(
f̂ †↑ + ĉ

†
↑

)
|O⟩ ϵ̄− |t|

N = 1 S = 1
2 Sz = +

1
2 P = −1 1√

2

(
f̂ †↑ − ĉ

†
↑

)
|O⟩ ϵ̄+ |t|

N = 1 S = 1
2 Sz = − 12 P = +1 1√

2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ ϵ̄− |t|

N = 1 S = 1
2 Sz = − 12 P = −1 1√

2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ ϵ̄+ |t|

N = 2 S = 0 Sz = 0 P = −1 1√
2

(
f̂ †↑ f̂

†
↓ − ĉ

†
↑ ĉ
†
↓
)
|O⟩ 2ϵ̄+ U

N = 2 S = 0 Sz = 0 P = +1 1√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
|O⟩ 2ϵ̄+ U

N = 2 S = 0 Sz = 0 P = +1 1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩ 2ϵ̄

N = 2 S = 1 Sz = 1 P = −1 f̂ †↑ ĉ
†
↑ |O⟩ 2ϵ̄

N = 2 S = 1 Sz = 0 P = −1 1√
2

(
f̂ †↑ ĉ

†
↓ + f̂

†
↓ ĉ
†
↑
)
|O⟩ 2ϵ̄

N = 2 S = 1 Sz = −1 P = −1 f̂ †↓ ĉ
†
↓ |O⟩ 2ϵ̄

N = 3 S = 1
2 Sz = +

1
2 P = −1 f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓)
)
|O⟩ 3ϵ̄+ U − |t|

N = 3 S = 1
2 Sz = +

1
2 P = +1 f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ 3ϵ̄+ U + |t|

N = 3 S = 1
2 Sz = − 12 P = −1 f̂ †↓ ĉ

†
↓
1√
2

(
f̂ †↑ + ĉ

†
↑

)
|O⟩ 3ϵ̄+ U − |t|

N = 3 S = 1
2 Sz = − 12 P = +1 f̂ †↓ ĉ

†
↓
1√
2

(
f̂ †↑ − ĉ

†
↑

)
|O⟩ 3ϵ̄+ U + |t|

N = 4 S = 0 Sz = 0 P = +1 f̂ †↑ f̂
†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ 4ϵ̄+ 2U

D.2.1 Symmetry-adapted many-particle states

We start from the symmetry adapted states of the asymmetric dimer and include the spatial inversion
with eigenvalue P ∈ {+,−} as additional symmetry.

The symmetry-adapted many-particle states are given in table D.4. All states are eigenstates
except for the 2× 2 block in the 2-particle channel.

For a non-interacting system, the two states combine into a Slater determinant formed by two
bonding orbitals or one with two antibonding orbitals.

1√
2

[
1√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
+
1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)]
|O⟩ =

1

2

(
f̂ †↑ + ĉ

†
↑

)(
f̂ †↓ + ĉ

†
↓

)
|O⟩

1√
2

[
1√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
−
1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)]
|O⟩ =

1

2

(
f̂ †↑ − ĉ

†
↑

)(
f̂ †↓ − ĉ

†
↓

)
|O⟩ (D.16)
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2-particle channel

The Hamiltonian in the 2× 2 sub-block with N = 2, S = 0, P = 1 is

P̂N=2,S=0,P=1ĤP̂N=2,S=0,P=1 =

(
1√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
|O⟩

1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩

)(
2ϵ̄+ U −2|t|
−2|t| 2ϵ̄

)(
⟨O| 1√

2

(
f̂↓ f̂↑ + ĉ↓ĉ↑

)
⟨O| 1√

2

(
ĉ↓ f̂↑ − ĉ↑ f̂↓

))
(D.17)

The energy eigenvalues are

E± = 2ϵ̄+
1

2
U ±

√(
1

2
U

)2
+ 4t2

= 2ϵ̄+ 2|t|

 U

4|t| ±

√
1 +

(
U

4|t|

)2
=

{
2ϵ̄− ∆st for ± = −
2ϵ̄+ U + ∆st for ± = +

(D.18)

with the singlet-triplet splitting

∆st = 2|t|
(√
1 + q2 − q

)
with q =

U

4|t| (D.19)

The eigenstates are

|Ψ−⟩ =
cos(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
|O⟩︸ ︷︷ ︸

double occupancy

+
sin(γ)√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩︸ ︷︷ ︸

left-right correlated

|Ψ+⟩ =
sin(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
|O⟩ −

cos(γ)√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩ (D.20)

The ansatz with cosine and sine of an angle for the eigenstates guarantee that the two states are
orthonormal.

The angle is obtained by inserting the Ansatz for |Ψ−⟩ into the Schrödinger equation.

0 = (2ϵ̄+ U − E−) cos(γ)− 2|t| sin(γ)

⇒ tan(γ) =
1

2|t|(2ϵ̄+ U − E−)

=
1

2|t|

(
2ϵ̄+ U − 2ϵ̄−

1

2
U +

√
(
1

2
U)2 + 4t2

)
=
1

2|t|

(1
2
U +

√
U2 + 4t2

)
=

U

4|t| +

√
1 +

(
U

4|t|

)2
γ = atan

(
q +

√
1 + q2

)
with q =

U

4|t| (D.21)
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2-PARTICLE GROUND STATE OF THE HUBBARD DIMER

The ground state energy of the Hubbard dimer in the two-particle sector

|Ψ−⟩ =
cos(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓
)
|O⟩︸ ︷︷ ︸

double occupancy

+
sin(γ)√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩︸ ︷︷ ︸

left-right correlated

(D.22)

and has the energy

E− = 2ϵ̄− 2|t|
(√
1 + q2 − q

)
︸ ︷︷ ︸

=:∆st

= 2ϵ̄− ∆st (D.23)

with

γ = atan
(
q +

√
1 + q2

)
and q def

=
U

4|t| (D.24)

• In the non-interacting limit, q = 0, we obtain γ = π/4 = 45◦, for which cos(γ) = sin(γ) = 1√
2
.

The single-triplet splitting is ∆st = 2|t|, which corresponds to the energy to transfer one-
electron from the bonding to the antibonding orbital. In order to flip the spin of one of the two
electrons, it must be lifted into the antibonding state.

• In the strongly interacting limit, q →∞, we can approximate γ ≈ atan(2q)→ π/2 = 90◦. In
this limit, we obtain a lower, exactly left-right-correlated state |Ψ−⟩ with energy E− = 2ϵ̄−∆st
and an upper state |Ψ+⟩ with double occupancy with energy E+ = 2ϵ̄+ U +∆st . The singlet-
triplet splitting is

∆st = 2|t|
(√
1 + q2 − q

)
= 2|t|q

(√
1 + (1/q)2 − 1

)
= 2|t|q

(
1 +

1

2q2
+O(q−4)− 1

)
=
|t|
q
+ |t|O(q−4

)
=
4|t|2

U
+ |t|O

((
4|t|
U

)4)
(D.25)
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Table D.5: One-particle excitations of the Hubbard dimer between 0-particle, 1-particle and 2-
particle states. Note that the symbol ĉ is overloaded and used once as a generic field operator
ĉα ∈ {ĉ↑, ĉ↓, f̂↑, f̂↓} and once as the field operator at one of the sites ĉσ. The quasi-particle wave
function is |ψDyson

f ,i ⟩ =
∑

α ĉ
†
αqα|O⟩ with qα = ⟨Ψi |ĉα|Ψf ⟩.

|Ψi ⟩ |Ψf ⟩ ĉ†α ⟨Ψi |ĉα|Ψf ⟩ ∆E − ϵ̄

0→ 1 with final Sz = −ℏ/2

|O⟩ 1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↓

1√
2

−|t|

|O⟩ 1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ ĉ†↓

1√
2

−|t|

|O⟩ 1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↓

1√
2

+|t|

|O⟩ 1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ ĉ†↓ − 1√

2
+|t|

1→ 2 with initial Sz = −ℏ/2
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↓ ĉ

†
↓ |O⟩ f̂ †↓

1√
2

+|t|
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↓ ĉ

†
↓ |O⟩ ĉ†↓ − 1√

2
+|t|

1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ 1√

2

(
f̂ †↑ f̂

†
↓ − ĉ

†
↑ ĉ
†
↓

)
|O⟩ f̂ †↑

1
2 +|t|+ U

1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ 1√

2

(
f̂ †↑ f̂

†
↓ − ĉ

†
↑ ĉ
†
↓

)
|O⟩ ĉ†↑ − 12 +|t|+ U

1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ cos(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑

cos(γ)+sin(γ)
2 +|t| − ∆st

1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ cos(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ ĉ†↑

sin(γ)+cos(γ)
2 +|t| − ∆st

1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ sin(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
− cos(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑

sin(γ)−cos(γ)
2 +|t|+ U + ∆st

1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ sin(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
− cos(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ ĉ†↑

sin(γ)−cos(γ)
2 +|t|+ U + ∆st

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↓ ĉ

†
↓ |O⟩ f̂ †↓ − 1√

2
−|t|

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↓ ĉ

†
↓ |O⟩ ĉ†↓ − 1√

2
−|t|

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ 1√

2

(
f̂ †↑ f̂

†
↓ − ĉ

†
↑ ĉ
†
↓

)
|O⟩ f̂ †↑

1
2 −|t|+ U

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ 1√

2

(
f̂ †↑ f̂

†
↓ − ĉ

†
↑ ĉ
†
↓

)
|O⟩ ĉ†↑

1
2 −|t|+ U

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ cos(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑

cos(γ)−sin(γ)
2 −|t| − ∆st

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ cos(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ ĉ†↑

sin(γ)−cos(γ)
2 −|t| − ∆st

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ sin(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
− cos(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑

sin(γ)+cos(γ)
2 −|t|+ U + ∆st

1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ sin(γ)√

2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
− cos(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ ĉ†↑

sin(γ)+cos(γ)
2 −|t|+ U + ∆st

D.2.2 Spectral function of the Hubbard dimer

The quasi-particle states and energies are obtained within the Lehman representation.
We use the many-particle energies and states from table D.4 and Eq. D.20 Eq. D.18
The one-particle excitations of the Hubbard dimer are listed in table D.5 and table D.6
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Table D.6: One-particle excitations of the Hubbard dimer between 2-particle, 3-particle and 4-particle
states. For additional details see caption of table D.5

|Ψi ⟩ |Ψf ⟩ ĉ†α ⟨Ψi |ĉα|Ψf ⟩ ∆E − ϵ̄

2→ 3 with final Sz = ℏ/2

f̂ †↑ ĉ
†
↑ |O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↑

1√
2

U − |t|

f̂ †↑ ĉ
†
↑ |O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ ĉ†↑

1√
2

U − |t|

f̂ †↑ ĉ
†
↑ |O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↑

1√
2

U + |t|

f̂ †↑ ĉ
†
↑ |O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ ĉ†↑ − 1√

2
U + |t|

cos(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↑

cos(γ)+sin(γ)
2 U − |t|+ ∆st

cos(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ ĉ†↑

− cos(γ)+sin(γ)
2 U − |t|+ ∆st

cos(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↑

cos(γ)+sin(γ)
2 U + |t|+ ∆st

cos(γ)√
2

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

)
+ sin(γ)√

2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
|O⟩ f̂ †↑ ĉ

†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ ĉ†↑

− cos(γ)+sin(γ)
2 U + |t|+ ∆st

3→ 4 with initial Sz = ℏ/2

f̂ †↑ ĉ
†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↑ f̂

†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ f̂ †↓ − 1√

2
U + |t|

f̂ †↑ ĉ
†
↑
1√
2

(
f̂ †↓ + ĉ

†
↓

)
|O⟩ f̂ †↑ f̂

†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ ĉ†↓

1√
2

U + |t|

f̂ †↑ ĉ
†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↑ f̂

†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ f̂ †↓

1√
2

U − |t|

f̂ †↑ ĉ
†
↑
1√
2

(
f̂ †↓ − ĉ

†
↓

)
|O⟩ f̂ †↑ f̂

†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ ĉ†↓

1√
2

U − |t|
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D.3 Anderson dimer

The Anderson dimer is the dimer version for the Anderson model. The Anderson model describes
a single site with strong interaction in contact with a metal. In the Anderson dimer the metal
environment is replaced by a single site. Thus, there are two distinct atoms, of which only one has
an Coulomb repulsion.

The Andersen dimer has been studied previously by Fulde et al.[106, 107].
The physics of the Anderson model is discussed in section ?? on p. ??. This chapter describes

the analytical calculations of the Anderson dimer.
This is not finished. It only contains notes after a talk.
This section is inspired by section 12.1 of Fulde’s book “Electron Correlation in Molecules and

Solids”, Springer 1995.
Editor: Check Figs/Codes/src
The model for the Kondo effect is a two-site model, where one represents an impurity orbital with

strong Coulomb interaction and the second orbital represents the bath.

The Hamiltonian is 4

Ĥ =
∑
σ

ϵf f̂
†
σ f̂σ +

1

2
U
∑
σ,σ′

f̂ †σ f̂
†
σ′ f̂σ′ f̂σ︸ ︷︷ ︸

Anderson impurity

+
∑
σ

ϵc ĉ
†
σ ĉσ︸ ︷︷ ︸

bath

−|t|
∑
σ

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)
︸ ︷︷ ︸

hopping

=
∑
σ

ϵf f̂
†
σ f̂σ + Uf̂

†
↑ f̂↑ f̂

†
↓ f̂↓ +

1

2
U
∑
σ

f̂ †σ f̂σ

(
f̂ †σ f̂σ − 1

)
︸ ︷︷ ︸

self-interaction

+
∑
σ

ϵc ĉ
†
σ ĉσ − t

∑
σ

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)

=
∑
σ

ϵf n̂f ,σ + Un̂f ,↑n̂f ,↓ +
1

2
U
∑
σ

n̂f ,σ

(
n̂f ,σ − 1

)
︸ ︷︷ ︸

self-interaction

+
∑
σ

ϵc n̂c,σ − t
∑
σ

(
f̂ †σ ĉσ + ĉ

†
σ f̂σ

)
(D.27)

The self-interaction term is often ignored, because it contributes nothing when applied to a Slater
determinant. Therefore it is also no more mentioned in the following discussion. Nevertheless, it
gives a non-vanishing contribution in the mean-field approximation.

The interesting case is ϵf < ϵc and ϵf + U > ϵc with N = 2 particles. We consider all states
because the states N = 1 and N = 3 will be required to evaluate the spectral properties.

4

1

2

∑
σ,σ′

f̂ †σ f̂
†
σ′ f̂σ′ f̂σ = −

1

2

∑
σ,σ′

f̂ †σ f̂
†
σ′ f̂σ f̂σ′ = −

1

2

∑
σ,σ′

(
δσ,σ′ f̂

†
σ f̂σ′ − f̂ †σ f̂σ f̂

†
σ′ f̂σ′

)
=
1

2

∑
σ,σ′

f̂ †σ f̂σ f̂
†
σ′ f̂σ′ −

1

2

∑
σ

f̂ †σ f̂σ

= n̂↑n̂↓ +
∑
σ

(
n̂2σ − n̂σ

)
(D.26)

Figs/Codes/src
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D.3.1 Many-particle eigenstates

The symmetry adapted many-particle states, which I will use as a basisset are provided in table D.1
on p. 413. From the symmetry-adapted wave functions, the eigenstates of the Hamiltonian are
constructed. They are listed in table D.3.

Table D.7: Energy eigenstates of the Andersen dimer.

N S Sz eigenstate energy

N = 0 S = 0 Sz = 0 |O⟩ E = 0

N = 1 S = 1
2 Sz = +

1
2

(
f̂ †↑ cos(α1) + ĉ

†
↑ sin(α1)

)
|O⟩ ϵc+ϵf

2 −
√(

ϵc−ϵf
2

)2
+ t2

N = 1 S = 1
2 Sz = +

1
2

(
f̂ †↑ sin(α1)− ĉ

†
↑ cos(α1)

)
|O⟩ ϵc+ϵf

2 +

√(
ϵc−ϵf
2

)2
+ t2

N = 1 S = 1
2 Sz = − 12

(
f̂ †↓ cos(α1) + ĉ

†
↓ sin(α1)

)
|O⟩ ϵc+ϵf

2 −
√(

ϵc−ϵf
2

)2
+ t2

N = 1 S = 1
2 Sz = − 12

(
f̂ †↓ sin(α1) + ĉ

†
↓ cos(α1)

)
|O⟩ ϵc+ϵf

2 +

√(
ϵc−ϵf
2

)2
+ t2

N = 2 S = 0 Sz = 0 ≈ f̂ †↑ f̂
†
↓ |O⟩ ≈ 2ϵf + U +O(t, 1/U)

N = 2 S = 0 Sz = 0 ≈ ĉ†↑ ĉ
†
↓ |O⟩ ≈ 2ϵc +O(t, 1/U)

N = 2 S = 0 Sz = 0 ≈ 1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩ ≈ ϵf + ϵc +O(t, 1/U)

N = 2 S = 1 Sz = 1 f̂ †↑ ĉ
†
↑ |O⟩ E = ϵf + ϵc

N = 2 S = 1 Sz = 0
1√
2

(
f̂ †↑ ĉ

†
↓ + f̂

†
↓ ĉ
†
↑
)
|O⟩ E = ϵf + ϵc

N = 2 S = 1 Sz = −1 f̂ †↓ ĉ
†
↓ |O⟩ E = ϵf + ϵc

N = 3 S = 1
2 Sz = +

1
2 f̂ †↑ ĉ

†
↑

(
f̂ †↓ cos(α2) + ĉ

†
↓ sin(α2)

)
|O⟩ 3ϵc+3ϵf+U

2 −
√(

ϵf+U−ϵc
2

)2
+ t2

N = 3 S = 1
2 Sz = +

1
2 f̂ †↑ ĉ

†
↑

(
f̂ †↓ sin(α2)− ĉ

†
↓ cos(α2)

)
|O⟩ 3ϵc+3ϵf+U

2 +

√(
ϵf+U−ϵc
2

)2
+ t2

N = 3 S = 1
2 Sz = − 12 f̂ †↓ ĉ

†
↓

(
f̂ †↑ cos(α2) + ĉ

†
↑ sin(α2)

)
|O⟩ 3ϵc+3ϵf+U

2 −
√(

ϵf+U−ϵc
2

)2
+ t2

N = 3 S = 1
2 Sz = − 12 f̂ †↓ ĉ

†
↓

(
f̂ †↑ sin(α2)− ĉ

†
↑ cos(α2)

)
|O⟩ 3ϵc+3ϵf+U

2 +

√(
ϵf+U−ϵc
2

)2
+ t2

N = 4 S = 0 Sz = 0 f̂ †↑ f̂
†
↓ ĉ
†
↑ ĉ
†
↓ |O⟩ E = 2ϵc + 2ϵf + U

The singlet states in the two-particle sector require special attention. From Eq. D.14 on p. 416,
we obtain

P̂2,0ĤP̂2,0 =

 f̂ †↑ f̂
†
↓ |O⟩

ĉ†↑ ĉ
†
↓ |O⟩

1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑
)
|O⟩


2ϵf + Uf 0 −

√
2|t|

0 2ϵc −
√
2|t|

−
√
2|t| −

√
2|t| ϵc + ϵf


 ⟨O|f̂↓ f̂↑

⟨O|ĉ↓ĉ↑
⟨O| 1√

2

(
ĉ↓ f̂↑ − ĉ↑ f̂↓

)

(D.28)

Of interest is the case where ϵf < ϵc < ϵf + U, which is the case with one electron on the
impurity. In that case the ground state has one electron in the impurity and a spin-paired state in the
bath-site. The spin coupling is determined by the singlet-triplet splitting. The singlet-triplet splitting
defines the Kondo temperature.

In the limit of large U and small t, the Hamiltonian is diagonal and we obtain (1) a state with
two electrons in the bath site, and another one (2), with energy ϵc + ϵf , which is equally distributed
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over the bath and the impurity. The third state lies at high energies and has two electrons on the
impurity.

We can diagonalize the Hamiltonian approximately using down-folding as described in chapter 5
and specifically in Eq. 5.18 on p. 184.

In order to obtain an accurate description in the limit of large interaction, we down-fold the wave
function with a doubly occupied impurity. The self energy due to the down-folded orbital is5

ΣΣΣ(E)
Eq. 5.14
=

2|t|2

E − 2ϵf − Uf

(
0 0

0 1

)
(D.29)

The self energy is added to the subblock of the two other orbitals

M(E) =

(
2ϵc − E −t

√
2

−t
√
2 ϵc + ϵf +

2|t|2
E−2ϵf−U − E

)

=

(
2ϵc − Eν −t

√
2

−t
√
2 ϵc + ϵf − 2t2

2ϵf+U−Eν − Eν

)
−

(
1 0

0 1 + 2t2

(2ϵf+U−Eν)2

)
(E − Eν) +O

(
(E − Eν)2

)
=

(
2ϵc −t

√
2

−t
√
2 ϵc + ϵf − 2t2

2ϵf+U−Eν +
2t2Eν

(2ϵf+U−Eν)2

)
︸ ︷︷ ︸

H̃(Eν)

−

(
1 0

0 1 + 2t2

(2ϵf+U−Eν)2

)
︸ ︷︷ ︸

Õ(Eν)

E +O
(
(E − Eν)2

)

(D.30)

We can orthonormalize the states and obtain a new Hamiltonian

Õ−
1
2 H̃Õ−

1
2 =

(
2ϵc −t

√
2

−t
√
2 Ē

)

with Ē =

(
ϵc + ϵf −

2t2

2ϵf + U − Eν
+

2t2Eν
(2ϵf + U − Eν)2

)(
1 +

2t2

(2ϵf + U − Eν)2

)−1
(D.31)

This yields the energies

E± =
2ϵc + Ē

2
±

√(
2ϵc − Ē
2

)2
+ 2t2 (D.32)

For the state near ϵf + ϵc , one chooses Eν = ϵf + ϵc .

Ē =

(
ϵc + ϵf −

2t2

ϵf + U − ϵc
+
2t2(ϵc + ϵf )

(ϵf + U − ϵc)2

)(
1 +

2t2

(ϵf + U − ϵc)2

)−1
=

(
ϵc + ϵf −

2t2

ϵf + U − ϵc
+

4t4

(ϵf + U − ϵc)3

)
+O

((
2t2

(ϵf + U − ϵc)2

)2)
(D.33)

In the limit of large U, we obtain a bonding and an antibonding state. For the bonding state the
energy is below ϵc +min(ϵf , ϵc) for the antibonding state it is at ϵc +max(ϵf , ϵc)

For large U, there lowest state with N = 2 is a singlet state, for which one electron is in the
non-interacting orbital, and the other is delocalized over both sites. This state is lower than the
triplet state, irrespective of ϵf − ϵc .

We see that the singlet two-particle state lies below the triplet state, because only the singlet
state can hybridize with higher lying states, when t is switched on. A simplification the infinite-U
limit, in which case we may exclude any states with two electrons on the impurity. The stabilization
is mainly due to the delocalization of the electron in one spin direction between impurity and bath.
The Coulomb repulsion is a secondary effect.

5We use the symbol E for the many-particle energies, rather than the symbol ϵ which is used for one-particle
energies.
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D.3.2 Spectrum

e
c

e
d

e
d
+U

Fig. D.1: Schematic diagrams of the spectral function of the Kondo dimer. Scheme of the one-particle
orbitals of the Kondo singlet. It represents only one of the two Slater determinants contributing to
the two-particle ground state.

When we investigate the spectra for adding and removing electrons, we can use Lehman repre-
sentation. Let me use the ground singlet ground state

|Φs⟩ =
[
f̂ †↑ f̂

†
↓ A+ ĉ

†
↑ ĉ
†
↓B +

1√
2

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)
C

]
|O⟩ (D.34)

with energy Es .
For ϵc = 0, ϵf = −1, U = 2, t = 1

2 , I obtain (without full diagonalization of the N = 2, S = 0
channel)

ϵ ψqp

-1.048 |f , σ⟩0.68 + |c, σ⟩0.06 f 1 → f 0

-0.029 |f , σ⟩0.20 + |c, σ⟩0.70 f 1 → f 0

+0.029 |f , σ⟩0.20− |c, σ⟩0.70 f 0 → f 1

+1.048 |f , σ⟩0.68− |c, σ⟩0.06 f 0 → f 1

f̂ †↑ |Ψs⟩ =
[
f̂ †↑ ĉ

†
↑ ĉ
†
↓b −

1√
2
f̂ †↑ f̂

†
↓ ĉ
†
↑c

]
|O⟩

f̂ †↓ |Ψs⟩ =
[
f̂ †↓ ĉ

†
↑ ĉ
†
↓b −

1√
2
f̂ †↑ f̂

†
↓ ĉ
†
↓c

]
|O⟩

ĉ†↑ |Φs⟩ =
[
f̂ †↑ f̂

†
↓ ĉ
†
↑a − f̂

†
↑ ĉ
†
↑ ĉ
†
↓
c√
2

]
|O⟩

ĉ†↓ |Ψs⟩ =
[
f̂ †↑ f̂

†
↓ ĉ
†
↑a − f̂

†
↓ ĉ
†
↑ ĉ
†
↑
c√
2

]
|O⟩ (D.35)

Increasing the temperature reduces the singlet occupation which results in larger resistance.
Kondo Resonance=Abrikosov-Suhl resonance.

D.3.3 Andersen dimer and the Hartree-Fock method

In this section I want to explore how well the broken symmetry states obtained with a single Slater
determinant are able to capture the Kondo physics. This is of relevance to understand the limitations
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of conventional density-functional calculations. The Anderson dimer is a system where exact and
Hartree-Fock calculations should be, firstly, feasible and, secondly, intelligible.

The following is an attempt to describe the two-particle state in terms of two Slater determinants.
The singlet state is |Ψs⟩ and the triplet state is |Ψt⟩. In the singlet state, we can use the bonding
state with the filled majority-spin f-orbital and the bonding state with the empty minority-spin f
orbital. In contrast, the triplet state has to use bonding and antibonding states with the majority
spin orbital. This is the origin of the singlet-triplet splitting.

|Ψs⟩ =
1

2

[(
f̂ †↑ cos(α) + ĉ

†
↑ sin(α)

)(
f̂ †↓ sin(β) + ĉ

†
↓ cos(β)

)
+
(
f̂ †↑ sin(β) + ĉ

†
↑ cos(β)

)(
f̂ †↓ cos(α) + ĉ

†
↓ sin(α)

)]
|O⟩

=

[
f̂ †↑ f̂

†
↓ cos(α) sin(β) + ĉ

†
↑ ĉ
†
↓ sin(α) cos(β)

+f̂ †↑ ĉ
†
↓
cos(α) cos(β) + sin(α) sin(β)

2
+ ĉ†↑ f̂

†
↓
sin(α) sin(β) + cos(α) cos(β)

2

]
|O⟩

=

[
f̂ †↑ f̂

†
↓ cos(α) sin(β) + ĉ

†
↑ ĉ
†
↓ sin(α) cos(β) +

(
f̂ †↑ ĉ

†
↓ − f̂

†
↓ ĉ
†
↑

)cos(α) cos(β) + sin(α) sin(β)
2

]
|O⟩

|Ψt⟩ =
(
f̂ †↑ cos(α) + ĉ

†
↑ sin(α)

)(
f̂ †↑ sin(α)− ĉ

†
↑ cos(α)

)
|O⟩

=
[
−f̂ †↑ ĉ

†
↑ cos

2(α) + ĉ†↑ f̂
†
↑ sin

2(α)
]
|O⟩

= −f̂ †↑ ĉ
†
↑ |O⟩ (D.36)

Without coupling to the environment, one obtains the solution with α = β = 0. We find, that all the
three Slater determinants contributing to the S = 0, N = 2 ground state contribute with independent
parameters. (The three coefficients are constrained by the norm to two parameters, which can be
expressed in terms of α and β.) This tells us that the Ansatz given above is able to capture the
ground state wave function.

Broken-symmetry Slater determinants

Here, I want to explore the limits of the Hartree-Fock method.6 I consider two broken-symmetry
Slater-determinants, which are related by a global spin inversion. The two Slater determinants
have Sz = 0, so that we may recover singlet and triplet state, when both Slater determinants are
superimposed. We use two one-particle orbitals that are polarized individually along the dimer axis.

|Φ1⟩ =
(
f̂ †↑ cos(α) + ĉ

†
↑ sin(α)

)(
f̂ †↓ sin(β) + ĉ

†
↓ cos(β)

)
|O⟩

|Φ2⟩ =
(
f̂ †↑ sin(β) + ĉ

†
↑ cos(β)

)(
f̂ †↓ cos(α) + ĉ

†
↓ sin(α)

)
|O⟩ (D.37)

Now we work out Hamilton and overlap matrices in this two-dimensional sub-space {|Φ1(α, β)⟩, |Φ2(α, β)⟩}
of the Fock space. The one-particle orbitals of the two states can be varied in a two-dimensional
space.

Overlap matrix elements of the broken-symmetry Slater determinants: The wave functions
|Φ1⟩, |Φ2⟩ are, per construction, normalized, i.e.

⟨Φj |Φj⟩ = 1 for j ∈ {1, 2} (D.38)

The overlap is obtained as follows

⟨Φ1|Φ2⟩ = cos2(α) sin2(β) + 2 cos(α) sin(α) cos(β) sin(β) + sin2(α) cos2(β)

=
(
cos(α) sin(β) + sin(α) cos(β)

)2
= sin2(α+ β) (D.39)

6A similar analysis has been performed by Kamil et al.[108] for the symmetric dimer.
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Note, that orthonormality between the two Slater determinants is not required.

Hamilton matrix elements of the Slater determinants:

Ĥ|Φ1⟩ = Ĥ
[
f̂ †↑ f̂

†
↓ cos(α) sin(β) + f̂

†
↑ ĉ
†
↓ cos(α) cos(β) + ĉ

†
↑ f̂
†
↓ sin(α) sin(β) + ĉ

†
↑ ĉ
†
↓ sin(α) cos(β)

]
O⟩

=

[(
(2ϵf + U)f̂

†
↑ f̂
†
↓ − 2t

(
ĉ†↑ f̂

†
↓ + f̂

†
↑ ĉ
†
↓

))
cos(α) sin(β)

+

(
(ϵf + ϵc)f̂

†
↑ ĉ
†
↓ − 2t

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

))
cos(α) cos(β)

+

(
(ϵf + ϵc)ĉ

†
↑ f̂
†
↓ − 2t

(
f̂ †↑ f̂

†
↓ + ĉ

†
↑ ĉ
†
↓

))
sin(α) sin(β)

+

(
2ϵc ĉ

†
↑ ĉ
†
↓ − 2t

(
f̂ †↑ ĉ

†
↓ + ĉ

†
↑ f̂
†
↓

))
sin(α) cos(β)

]
|O⟩

=

[
f̂ †↑ f̂

†
↓

(
(2ϵf + U) cos(α) sin(β)− 2t

(
cos(α) cos(β) + sin(α) sin(β)

))
+f̂ †↑ ĉ

†
↓

(
(ϵf + ϵc) cos(α) cos(β)− 2t

(
cos(α) sin(β) + sin(α) cos(β)

))
+ĉ†↑ f̂

†
↓

(
(ϵf + ϵc) sin(α) sin(β)− 2t

(
cos(α) sin(β) + sin(α) cos(β)

))
+ĉ†↑ ĉ

†
↓

(
2ϵc sin(α) cos(β)− 2t

(
cos(α) cos(β) + sin(α) sin(β)

))]
|O⟩

(D.40)
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⟨Φ1|Ĥ|Φ1⟩ =
[
cos(α) sin(β)

(
(2ϵf + U) cos(α) sin(β)− 2t

(
cos(α) cos(β) + sin(α) sin(β)

))
+cos(α) cos(β)

(
(ϵf + ϵc) cos(α) cos(β)− 2t

(
cos(α) sin(β) + sin(α) cos(β)

))
+sin(α) sin)β)

(
(ϵf + ϵc) sin(α) sin(β)− 2t

(
cos(α) sin(β) + sin(α) cos(β)

))
+sin(α) cos(β)

(
2ϵc sin(α) cos(β)− 2t

(
cos(α) cos(β) + sin(α) sin(β)

))]
= cos2(α) sin2(β)

(
2ϵf + U

)
+ sin2(α) cos2(β)2ϵc

+(ϵf + ϵc)
(
cos2(α) sin2(β) + sin2(α) cos2(β)

)
−2t

(
2 cos(β) sin(β) + 2 cos(α) sin(α)

)
︸ ︷︷ ︸

2 cos2(α) cos(β) sin(β)+2 cos(α) sin(α) sin2(β)+2 cos(α) sin(α) cos2(β)+2 sin2(α) cos(β) sin(β)

= cos2(α) sin2(β)
(
ϵf + U − ϵc

)
+ sin2(α) cos2(β)

(
ϵc − ϵf

)
+(ϵf + ϵc)

(
(cos2(α) + sin2(α))(cos2(β) + sin2(β))

)
︸ ︷︷ ︸

=1

−2t
(
2 cos(β) sin(β) + 2 cos(α) sin(α)

)

= (ϵf + ϵc) +

sin2(α) cos2(β)−cos2(α) sin2(β)︷ ︸︸ ︷
1

2

(
cos(2β)− cos(2α)

)(
ϵc − ϵf

)
+ cos2(α) sin2(β)U

−2t
(
sin(2α) + sin(2β)

)
(D.41)

cos2(x) sin2(y) + sin2(x) cos2(y) =
1

4

(
2− cos(2(x + y))− 2 cos(2(x − y))

)
2 sin(x) cos(x) = sin(2x)

(D.42)
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⟨Φ2|Ĥ|Φ1⟩ =
[
cos(α) sin(β)

(
(2ϵf + U) cos(α) sin(β)− 2t

(
cos(α) cos(β) + sin(α) sin(β)

))
+sin(α) sin(β)

(
(ϵf + ϵc) cos(α) cos(β)− 2t

(
cos(α) sin(β) + sin(α) cos(β)

))
+cos(α) cos(β)

(
(ϵf + ϵc) sin(α) sin(β)− 2t

(
cos(α) sin(β) + sin(α) cos(β)

))
+sin(α) cos(β)

(
2ϵc sin(α) cos(β)− 2t

(
cos(α) cos(β) + sin(α) sin(β)

))]
=

(
(2ϵf + U) cos

2(α) sin2(β) + 2(ϵf + ϵc) cos(α) sin(α) cos(β) sin(β)

+2ϵc sin
2(α) cos2(β)

−2t
(
sin(2β) + sin(2α)

)
(D.43)

Minimum for the broken-symmetry Slater determinants

⟨Φj |Ĥ|Φj⟩ = (ϵf + ϵc) +
1

2

(
cos(2β)− cos(2α)

)(
ϵc − ϵf

)
+ cos2(α) sin2(β)U

−2t
(
sin(2α) + sin(2β)

)

∂⟨Φj |Ĥ|Φj⟩
∂α

= +sin(2α)
(
ϵc − ϵf

)
−
2 cos(α) sin(α)︷ ︸︸ ︷
sin(2α)

sin2(β)︷ ︸︸ ︷(
1

2
−
1

2
cos(2β)

)
U − 4t cos(2α)

= + sin(2α)

(
ϵc − ϵf −

[
1

2
−
1

2
cos(2β)

]
U

)
− 4t cos(2α) != 0

4t cot(2α) =

(
ϵc − ϵf −

[
1

2
−
1

2
cos(2β)

]
U

)

∂⟨Φj |Ĥ|Φj⟩
∂β

= − sin(2β)
(
ϵc − ϵf

)
+

cos2(α)︷ ︸︸ ︷(
1

2
+
1

2
cos(2α)

) 2 sin(β) cos(β)︷ ︸︸ ︷
sin(2β) U − 4t cos(2β)

= − sin(2β)
(
ϵc − ϵf −

[
1

2
+
1

2
cos(2α)

]
U

)
− 4t cos(2β) != 0

4t cot(2β) = −
(
ϵc − ϵf −

[
1

2
+
1

2
cos(2α)

]
U

)
(D.44)
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∆/t U/t α/π β/π

0 0 1/4 1/4

0 ∞ 1
4 0

0 ∞ 1
2 0

0 ∞ 1
2

1
4

0 0 1
2 −

1
4

1
4

4 0 1
2 −

1
8

1
8

9 0 1
2 −

1
15

1
15

25 0 1
2 −

1
40

1
40

100 0 (8/100)2 1
2 −

(
8
100

)2
∞ 0 1

2 0
10 100 1

2 −
1
20

1
20

Symmetric solution: There is one series of solutions with α + β = π
2 . With β = π

2 − α the two
Slater determinants |Φ1⟩ and |Φ2⟩ are identical and equal to

|Φ1⟩ = |Φ2⟩ =
(
f̂ †↑ cos(α) + ĉ

†
↑ sin(α)

)(
f̂ †↓ cos(α) + ĉ

†
↓ sin(α)

)
|O⟩ (D.45)
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For this series of solutions both one-particle orbitals polarize in one direction to account for the
asymmetry of the two sites. The strength of the polarization is described by γ = α− π

4

4t cot(2α) =

(
ϵc − ϵf −

[
1

2
−
1

2
cos(π − 2α)

]
U

)
=

(
ϵc − ϵf −

[
1

2
+
1

2
cos(2α)

]
U

)
4t
cos(π2 + 2γ)

sin(π2 − 2γ)
= −

(
ϵc − ϵf −

[
1

2
+
1

2
cos(

π

2
+ 2γ)

]
U

)
−4t

sin(2γ)

cos(2γ)
= −

(
ϵc − ϵf −

[
1

2
−
1

2
sin(2γ)

]
U

)
4 sin(2γ) = −

(
ϵf − ϵc
t

+
U

2t

)
cos(2γ) + sin(2γ) cos(2γ)

U

2t(
4− cos(2γ)

U

2t

)
sin(2γ) = −

(
ϵf − ϵc
t

+
U

2t

)
cos(2γ)

4 sin(2γ) = −
(
ϵf − ϵc
t

+
U

2t

)
cos(2γ) + sin(2γ) cos(2γ)

U

2t

sin2(2γ)︷ ︸︸ ︷
1− cos2(2γ) =

−
(
ϵf−ϵc
t + U

2t

)
cos(2γ)

4− cos(2γ) U2t


2

x=cos(2γ)⇒ 1− x2 =

−
(
ϵf−ϵc
t + U

2t

)
x

4− x U2t


2

0 = 4− 8x
U

2t
+ x2

(
U

2t

)2
− 4x2 + 8x3

U

2t
− x4

(
U

2t

)2
−
(
ϵf − ϵc
t

+
U

2t

)2
x2

= 4− 8
U

2t
x +

[(
U

2t

)2
− 4−

(
ϵf − ϵc
t

+
U

2t

)2]
x2 + 8x3

U

2t
− x4

(
U

2t

)2
= 4− 8

U

2t
x −

[
4 +

(
ϵf − ϵc
t

)2
+ 2

(
ϵf − ϵc
t

) U
2t

]
x2 + 8x3

U

2t
− x4

(
U

2t

)2
= 4− 8

U

2t

(
1− x2)x −

[
4 +

(
ϵf − ϵc
t

)2
+ 2

(
ϵf − ϵc
t

) U
2t

]
x2 − x4

(
U

2t

)2
(D.46)

This is a polynomial of fourth order.

Broken symmetry states: When the interaction is increased, this solution splits into three. For
the symmetric case this is probably the transition into the antiferromagnetic broken-symmetry state.
The solution with α + β = π

2 becomes the unstable solution, while the two other states are stable
solutions. For the symmetric solution we obtain

D.4 Hydrogen atom

This appendix shall provide the matrix elements for the hydrogen molecule using atomic orbitals as ba-
sis set. Many matrix elements can be evaluated analytically, which makes this a convenient system for
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benchmarks.Editor: This is taken from the paw_lmto report of the PAW code on May 11,
2020. The text is thus duplicated. The PAW data have been removed in this version.

The Hartree-Fock energy of the hydrogen atom is

Etot = ⟨ψ|
ˆ⃗p2

2me
|ψ⟩︸ ︷︷ ︸

Ekin

−
∫
d3r

e2n(r⃗)

4πϵ0|r⃗ − R⃗|︸ ︷︷ ︸
Ene

+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EH

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EX

(D.47)

The expression serves to define the energy terms evaluated below.
The exact energies of the hydrogen atom derived below are listed in table D.8.

Table D.8: Exact energies of the hydrogen atom. Eself is the electrostatic self energy of the electron
density. Eself+Epot is the Hartree energy including electron-electron and electron-proton interactions.
The energies in eV are approximate.

Etot Ekin Epot ϵ1s

− 12 H 1
2 H -1 H − 12 H

-13.606 eV 13.606 eV -27.211 eV -13.606 eV

ϵ2s − ϵ1s Eself + Epot Eself EX
3
8 H -11/16 H=-0.6875 H 5/16 H=+0.3125 H -5/16 H=-0.3125 H

10.204 eV -18.707 eV 8.503 eV -8.503 eV

Wave function and density of the H-atom

The wave functions ψ(r⃗) of the hydrogen atom and its electron density n(r⃗) are7

ψ(r⃗) =
1√
πa30
e−|r⃗ |/a0 (D.50)

n(r⃗) =
1

πa30
e−2|r⃗ |/a0 (D.51)

7The wave functions of the hydrogen atom are taken from ΦSX: Quantum Physics. The Coulomb potential of the
charge density is obtained with the help of Eq. 5.42 of PhiSX:Elektrodynamik. Furthermore, the following equations
from Bronstein are used: ∫ x

0
dx xeax = eax

(
x

a
−
1

a2

)
Bronstein p.61 Sec. 1.1.3.3 Eq.448∫ x

0
dx x2eax = eax

(
x2

a
−
2x

a2
+
2

a3

)
Bronstein p.61 Sec. 1.1.3.3 Eq.449 (D.48)

∫ ∞
0
dxxne−ax =

n!

an+1
Bronstein p65 Sec. 1.1.3.4 Eq.1 (D.49)
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Kinetic energy of the H-atom

Ekin =

∫
d3r ψ∗(r⃗)

−ℏ2∇⃗2

2me
ψ(r⃗)

=
−ℏ2

2me
4π

∫
dr r2

1√
πa30
e−|r⃗ |/a0︸ ︷︷ ︸

=ψ∗(r)

1

r
∂2r r

1√
πa30
e−|r⃗ |/a0︸ ︷︷ ︸

=ψ(r)

=
−ℏ2

2me

1

πa30
4π

∫
dr r2e−r/a0

1

r
∂2r re

−|r⃗ |/a0︸ ︷︷ ︸
1
r
∂r

(
e−r/a0− r

a0
e−r/a0

)
︸ ︷︷ ︸
− 2
ra0
e−r/a0+ 1

a20
e−r/a0

=
−ℏ2

2me

1

πa30

2

a20
4π

∫
dr r2e−2r/a0

(
−
a0
r
+
1

2

)
=
−ℏ2

2me

2

a20

(
a04πϵ0
e2

∫
d3r

1

πa30
e−2r/a0

−e2

4πϵ0r︸ ︷︷ ︸
Ene=−1 H

+
1

2

∫
d3r

1

πa30
e−2r/a0︸ ︷︷ ︸

=1

)

= +
1

2
H (D.52)

Coulomb potential of the electrons of the H-atom

The Coulomb potential ve(r⃗) of the electronic charge density n(r⃗) Eq. D.51 of the H-atom can be
evaluated using the radial Green’s function of the Poisson equation. (see ΦSX: Elektrodynamik.)

ve(r⃗) =

∫
d3r ′

e2n(r⃗ ′)

4πϵ|r⃗ − r⃗ ′|

=
e2

4πϵ0
4π

[
1

|r⃗ |

∫ |r⃗ |
0

dr ′ (r ′)2n(r ′) +

∫ ∞
|r⃗ |
dr ′ r ′n(r ′)

]
=

e2

4πϵ0
4π
1

πa30

[
1

|r⃗ |

∫ |r⃗ |
0

dr ′ (r ′)2e−2r
′/a0 +

∫ ∞
|r⃗ |
dr ′ r ′e−2r

′/a0

]
=

e2

4πϵ0
4π
1

πa30

{
1

|r⃗ |
a30
4

[
1−

(
2

(
r

a0

)2
+ 2

(
r

a0

)
+ 1

)
e−2r/a0

]
+
a30
4

1

a0

(
2
r

a0
+ 1

)
e−2r/a0

}

=
e2

4πϵ0

{
1

|r⃗ |

[
1−

(
2

(
r

a0

)2
+ 2

(
r

a0

)
+ 1

)
e−2r/a0

]
+
1

r

(
2

(
r

a0

)2
+

(
r

a0

))
e−2r/a0

}
=

e2

4πϵ0|r⃗ |

{[
1−

((
r

a0

)
+ 1

)
e−2r/a0

]}
(D.53)

Electron-proton interaction energy

The Coulomb interaction Ene between the electron and the proton is evaluated using the Coulomb
potential ve of the electronic density

Ene =

∫
d3r

−e2n(r⃗)
4πϵ0|r⃗ − R⃗|

= −ve(R⃗)
Eq. D.53
= −

e2

4πϵ0a0
= −1 H (D.54)
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Electronic Hartree energy

The electronic Hartree energy is the Coulomb self energy of the electronic charge density.

Eself =
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(D.55)

The self energy is the Coulomb interaction energy of the electron density with itself. This energy
is canceled by the exchange energy. Thus, the self energy can be used to obtain, independently, the
Hartree energy and the exchange energy.

Eself =
1

2

∫
d3r n(r⃗)v(r⃗)

=
1

2

(
1

πa30

)(
e2

4πϵ0

)
4π

∫ ∞
0

dr r2e−2r/a0
1

r

[
1−

((
r

a0

)
+ 1

)
e−2r/a0

]
=
1

2

(
1

πa30

)(
e2

4πϵ0

)
4πa20

∫ ∞
0

dx xe−2x
[
1− (x + 1) e−2x

]
=
1

2

1

πa30

e2

4πϵ0a0
4πa30

∫ ∞
0

dx
[
xe−2x − x2e−4x − xe−4x

]
= 2

e2

4πϵ0a0︸ ︷︷ ︸
1H

[
1!

22
−
2!

43
−
1!

42

]
︸ ︷︷ ︸

1/4−1/32−1/16=(8−1−2)/32=5/32

=
5

16

e2

4πϵ0a0
= 0.3125 H (exact) (D.56)

Exchange energy of the H-atom

The exchange energy of a one-electron system cancels the electronic Hartree energy precisely. Thus,
the exchange energy is

EX = −EH = −
5

16

e2

4πϵ0a0
= −0.3125 H (exact) (D.57)

U-tensor of the H-atom

The U-tensor is twice the self energy, Eq. D.56, i.e.

U = 2Eself = 2EX =
5

8

e2

4πϵ0a0
(D.58)

The energy Ee−nuc is the complete electrostatic energy including Hartree energy Epot + Eself
and exchange energy EX . This tells us that EX = −Eself This result for the exchange energy
EX = −0.3125 is also given in [P.M.W. Gill and J.A. Pople, Phys Rev. A 47, 2383 (1993)][109].

D.5 Hydrogen molecule

Etot =
∑

σ∈{↑,↓}

fb,σ⟨ψb,σ|
ˆ⃗p2

2me
|ψb,σ⟩︸ ︷︷ ︸

Ekin

−
∑

R∈{R1,R2}

∫
d3r

e2
(
n(r⃗) + Z(r⃗)

)(
n(r⃗ ′) + Z(r⃗ ′)

)
4πϵ0|r⃗ − R⃗|︸ ︷︷ ︸

EH+Ene+Enn

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EX

(D.59)
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All matrix elements are evaluated using atomic orbitals

⟨r⃗ , σ|χj,σ′⟩ =
1√
πa30
e−|r⃗−R⃗j |/a0δσ,σ′ (D.60)

The bound state wave function |ψb,σ⟩ expressed in normalized atomic orbitals |χj,σ⟩ is

|ψb,σ⟩ =
(
|χ1,σ⟩+ |χ2,σ⟩

) 1√
2(1 + S)

(D.61)

with the off-site overlap matrix elements

S = ⟨χ1,σ|χ2,σ⟩ (D.62)

which are obtained below in Eq. D.68.
Editor: continue here!
The matrix elements of the hydrogen atom have been worked out by van Leeuwen[105].

D.5.1 Two-center integral of spherical functions

The integrations of interest are of the form of a two-center integral of two spherical functions with
centers that are separated by the distance d .

⟨f |g⟩ =
∫
d3r f (|r⃗ |)g(|e⃗zd − r⃗ |)

=

∫ ∞
0

dr r2
∫ 2π
0

dφ

∫ π

0

dθ sin(θ)f (r)g(
√
(d − r cos(θ))2 + (r sin(θ))2)

= 2π

∫ ∞
0

dr r2f (r)

∫ π

0

dθ sin(θ)g(
√
d2 − 2dr cos(θ)) + r2)

= 2π

∫ ∞
0

dr r2f (r)
1

dr

∫ |d+r |
|d−r |

dy yg(y)

=
2π

d

∫ ∞
0

dr r f (r)

∫ |d+r |
|d−r |

dy yg(y)

=
2π

d

[∫ d

0

dr r f (r)

∫ r+d

d−r
dy yg(y) +

∫ ∞
d

dr r f (r)

∫ r+d

r−d
dy yg(y)

]
(D.63)

We used

y(θ) =
√
d2 − 2dr cos(θ) + r2 ⇒ dy =

1

2y
2dr sin(θ)dθ

y(θ = 0) = |d − r | and y(θ = π) = d + r (D.64)

D.5.2 Overlap

Let me evaluate the overlap of two hydrogen orbitals S(d) at centers separated by the distance d .

S(d) =
1

πa30

∫
d3r e−|r⃗ |/a0e−|r⃗−e⃗zd |/a0 (D.65)
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In the following, I will use the undetermined integrals from Bronstein,∫
dx e−ax = −

1

a
e−ax∫

dx xe−ax = −
ax + 1

a2
e−ax∫

dx x2e−ax = −
(ax)2 + 2ax + 2

a3
e−ax∫

dx xne−ax =
−n!
an+1

e−ax
n∑
j=0

1

j!
(ax)j (D.66)

The parameter a is unrelated to the Bohr radius a0.
Let be introduce a dimensionless parameter x⃗ = r⃗

a0
and z = d

a0
. With e⃗z , I denote the unit vector

pointing along the z-axis. Caution: Here, the symbol x⃗ is unrelated to the combined position-and-spin
variable x⃗ = (r⃗ , σ).

S(d = za0) =
1

π

∫
d3x e−|x⃗ |e−|x⃗−ze⃗z |

Eq. D.63
=

2

z

[∫ z

0

dx xe−x
∫ x+z

z−x
dy ye−y +

∫ ∞
z

dx xe−x
∫ x+z

x−z
dy ye−y

]
=

2

z

{∫ z

0

dx xe−x
[
−(1 + y)e−y

]x+z
z−x
+

∫ ∞
z

dx xe−x
[
−(1 + y)e−y

]x+z
x−z

}
=

2

z

{∫ z

0

dx xe−x
[
− (1 + x + z) e−(x+z) + (1 + z − x) e−(z−x)

]
+

∫ ∞
z

dx xe−x
[
− (1 + x + z) e−(x+z) + (1 + x − z) e−(x−z)

]}
=

2

z

{
e−z

∫ z

0

dx

[
− (1 + z) xe−2x − x2e−2x + (1− z) x + x2

]
+

∫ ∞
z

dx

[(
e+z (1− z)− e−z (1 + z)

)
xe−2x +

(
e+z − e−z

)
x2e−2x

]}
=

2

z

{
e−z
[
− (1 + z)

−2x − 1
4

e−2x −
(−2x)2 − 2(−2x) + 2

−8 e−2x +
1 + z

2
x2 −

1

3
x3
]z
0

+

[(
e+z (1− z)− e−z (1 + z)

)−2x − 1
4

e−2x +
(
e+z − e−z

)(−2x)2 − 2(−2x) + 2
−8 e−2x

]∞
z

}
=

2

z

{
e−z
[
(1 + z)

2z + 1

4
e−2z −

2z2 + 2z + 1

4
e−2z +

1 + z

2
z2 −

1

3
z3 + (1 + z)

−1
4
−
1

4

]
−
[(
e+z (1− z)− e−z (1 + z)

)−2z − 1
4

e−2z +
(
e+z − e−z

)2z2 + 2z + 1
−4 e−2z

]}
=

(1
3
z2 + z + 1

)
e−z (D.67)

Thus, the overlap matrix element of two hydrogen 1s-orbitals is

OVERLAP OF TWO HYDROGEN 1S ORBITALS

S(d) =

[
1

3

(
d

a0

)2
+

(
d

a0

)
+ 1

]
e
− d
a0 (D.68)
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D.5.3 Coulomb repulsion between the protons

Enn(d) =
e2

4πϵ0d
(D.69)

D.5.4 Electron-proton interaction matrix elements

The electrostatic energy between electron density on one site with a proton on the other side is
obtained from the electrostatic potential vw (r⃗) of the atomic density at the distance of the nucleus

Exx = −
∫
d3r

e2n1(r⃗)

4πϵ0|r⃗ − R⃗2|
= −ve(de⃗z)

Eq. D.53
= −

e2

4πϵ0a0

{(
d

a0

)−1 [
1−

((
d

a0

)
+ 1

)
e−2d/a0

]}
(D.70)

D.5.5 Electron-nucleus Coulomb matrix elements

The matrix elements from this subsection are copied from the internet and they are not
verified. http://www.pci.tu-bs.de/aggericke/PC4e/Kap_II/H2-Ion.htm

The Coulomb integral J is the Coulomb interaction of one atom with the nucleus of the other
atom.

J =
e2

4πϵ0d
−
∫
d3r ψ1s(r⃗)ψ1s(r⃗)

e2

4πϵ0|r⃗ − e⃗zd |
=

(
1 +
1

d

)
e−2d/a0 (D.71)

The resonance integral K describes the overlap density of two orbitals on different sites with
the nucleus of one site

K =
e2S(d)

4πϵ0d
−
∫
d3r

e2ψ1s(r⃗ − e⃗zd)ψ1s(r⃗)
4πϵ0|r⃗ − e⃗zd |

=
e2

4πϵ0

(
a0
d
−
2

3

d

a0

)
e−d/a0 (D.72)

D.5.6 U-tensor

The 31 matrix elements are those with three orbitals on one site and one on the other. The 22
matrix elements are those with one density on one site and another density on the other.

The U-tensor can be constructed from the following basic matrix elements. For the sake of
simplicity we refer here only to the spatial part of the wave functions and ignore the spin part. The
matrix elements Wα,β,γ,δ, which also account of the spin indices, can be calculated from these matrix
elements U. The indices refer to the two sites of the H2-molecule.

U1111 =

∫
d3r

∫
d3r ′

e2χ∗1(r⃗)χ
∗
1(r⃗
′)χ1(r⃗)χ1(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

U1112 =

∫
d3r

∫
d3r ′

e2χ∗1(r⃗)χ
∗
1(r⃗
′)χ1(r⃗)χ2(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
=

∫
d3r

(
ve(r⃗)χ(r⃗)

)
χ(r⃗ − e⃗zd)

U1212 =

∫
d3r

∫
d3r ′

e2χ∗1(r⃗)χ
∗
2(r⃗
′)χ1(r⃗)χ2(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
=

∫
d3r

(
ve(r⃗)

)
χ2(r⃗ − e⃗zd)

U1221 =

∫
d3r

∫
d3r ′

e2χ∗1(r⃗)χ
∗
2(r⃗
′)χ2(r⃗)χ1(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(D.73)

The Coulomb potential ve from the electrons of one hydrogen atom is Eq. D.53

ve(r⃗) =
e2

4πϵ0|r⃗ |

[
1−

(
1 +

r

a0

)
e−2r/a0

]
(D.74)

http://www.pci.tu-bs.de/aggericke/PC4e/Kap_II/H2-Ion.htm
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1. The element U1111 has four orbitals on one site, and can be identified with the U-parameter
Eq. D.58 of the hydrogen atom.

2. The element U1112 describes the interaction of the electrons on one site with a bond charge
density, i.e. the density from the overlap of orbitals from both sites.

3. The matrix element U1212 is the Coulomb interaction of the electronic charge density from one
atom with that of the other.

4. The matrix element U1221 is the Coulomb interaction of the bond charge density with it-
self.Editor: I do not have an analytical expression for this matrix element yet.

Editor: Caution! The following derivation is not carried through to the end and
need to be tested. At the end a Maple result is introduced! See Appendix A of [105].

The integrations for two matrix elements are of a similar form, namely U1112 = I(3, 1) and
U1212 = I(2, 2) with

e2

4πϵ0a0
I2+m,n(d = za0)

def
=

∫
d3r ve(r⃗)ψ

n
1s(r⃗)ψ

m
1s(r⃗ − e⃗zd)

=
e2

4πϵ0a0

1

πa30

∫
d3r

a0
|r⃗ |

[
1−

(
1 +
|r⃗ |
a0

)
e
−2 |r⃗ |

a0

]
e
−m |r⃗ |

a0 e
−n |r⃗−e⃗z d |

a0

=
e2

4πϵ0a0

1

π

∫
d3r

1

|x⃗ |

[
1− (1 + |x⃗ |) e−2|x⃗ |

]
e−m|r⃗ |e−n|x⃗−e⃗zz | (D.75)

with z = d/a0.
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I4−n,n(z) =
1

π

∫
d3r

1

|x⃗ |

[
1− (1 + |x⃗ |) e−2|x⃗ |

]
e−(2−n)|r⃗ |e−n|x⃗−e⃗zz |

=
1

π

2π

z

{∫ z

0

dx x
1

x

[
1− (1 + x) e−2x

]
e−(2−n)x︸ ︷︷ ︸

f (x)

∫ x+z

z−x
dy y e−ny︸︷︷︸

g(y)

+

∫ ∞
z

dx x
1

x

[
1− (1 + x) e−2x

]
e−(2−n)x︸ ︷︷ ︸

f (x)

∫ x+z

x−z
dy y e−ny︸︷︷︸

g(y)

}

=
2

z

{∫ z

0

dx
[
1− (1 + x) e−2x

]
e−(2−n)x

[
−ny − 1
n2

e−ny
]x+z
z−x

+

∫ ∞
z

dx
[
1− (1 + x) e−2x

]
e−(2−n)x

[
−ny − 1
n2

e−ny
]x+z
x−z

}
=
−2
n2z

{∫ z

0

dx
[
1− (1 + x) e−2x

]
e−(2−n)x

×
[
(1 + n(z + x))e−nze−nx − (1 + nz − nx)e−nze+nx

]
+

∫ ∞
z

dx
[
1− (1 + x) e−2x

]
e−(2−n)x

×
[
(1 + nz + nx)e−nz − (1− nz + nx)e+nz

]
e−nx

}
=
−2
n2z

{∫ z

0

dx
[
1− (1 + x) e−2x

]
×e−nz

[
(1 + nz + nx)e−2x − (1 + nz − nx)e−(2−2n)x

]
+

∫ ∞
z

dx
[
1− (1 + x) e−2x

]
×
[(
(1 + nz + nx)e−nz − (1− nz + nx)e+nz

)]
e−2x

}
(D.76)
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I22 =
−2
4z

{∫ z

0

dx
[
1− (1 + x) e−2x

]
×e−2z

[
(1 + 2z + 2x)e−2x − (1 + 2z − 2x)e+2x

]
+

∫ ∞
z

dx
[
1− (1 + x) e−2x

]
×
[(
(1 + 2z + 2x)e−2z − (1− 2z + 2x)e+2z

)]
e−2x

}
=
−1
2z

{∫ z

0

dx e−2z
[
(1 + 2z + 2x)e−2x − (1 + 2z − 2x)e+2x

]
+

∫ ∞
z

dx

[(
(1 + 2z + 2x)e−2z − (1− 2z + 2x)e+2z

)]
e−2x

−
∫ z

0

dx e−2z
[
(1 + 2z + 2x)e−4x − (1 + 2z − 2x)

]
−
∫ ∞
z

dx

[(
(1 + 2z + 2x)e−2z − (1− 2z + 2x)e+2z

)]
e−4x

−
∫ z

0

dx e−2z
[
(1 + 2z + 2x)e−4x − (1 + 2z − 2x)

]
x

−
∫ ∞
z

dx

[(
(1 + 2z + 2x)e−2z − (1− 2z + 2x)e+2z

)]
xe−4x

}
=
−1
2z

{[(
1 + 2z

−2 − 2
1 + 2x

4

)
e−2(x+z) −

(1 + 2z
+2

+ 2
1− 2x
4

)
e+2(x−z)

]z
0

+

[(
1 + 2z

−2 − 2
2x + 1

4

)
e−2(x+z) −

(
1− 2z
2

+ 2
1− 2x
4

)
e+2(z−x)

)]∞
z

−
[(
1 + 2z

−4 − 2
1 + 4x

16

)
e−4x−2z −

(
x + 2xz − x2

)
e−2z

]z
0

−
[(
1 + 2z

−4 − 2
1 + 4x

16

)
e−2z−4x −

(
1− 2z
−4 − 2

1 + 4x

16

)
e+2z−4x

]∞
z

−
[(
(1 + 2z)(1 + 4z)

16
+ 2
16x2 + 8x + 2

(−4)3

)
e−4x−2z −

(
1 + 2z

2
x2 −

2

3
x3
)
e−2z

]z
0

−
[(
−
(1 + 2z)(1 + 4x)

16
+ 2
16x2 + 8x + 2

−43

)
e−2z−4x

−
(
−
(1− 2z)(1 + 4x)

16
+ 2
16x2 + 8x + 2

−43

)
e+2z−4x

]∞
z

}
(D.77)

This calculation is not finished. I am continuing with the Result from Maple.
Maple:

I31(z) =
(
z2 +

1

8
z +

5

16

)1
z
e−z −

(1
8
z +

5

16

)1
z
e−3z

= ze−z +
(1
8
z +

5

16

)1
z

(
e−z − e−3z

)
I22 =

1

z
−
(1
6
z3 +

3

4
z2 +

11

8
z + 1

)1
z
e−2z (D.78)
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OFFSITE U-TENSOR MATRIX ELEMENTS

The offsite U-tensor matrix elements U31 = W1,1,1,2 and U22 = W1,2,1,2 are

U31(d = za0) =
e2

4πϵ0a0
I31 =

e2

4πϵ0a0

[
ze−z +

(1
8
z +

5

16

)1
z

(
e−z − e−3z

)]
U22(d = za0) =

e2

4πϵ0a0
I22 =

e2

4πϵ0a0

[
1

z
−
(1
6
z3 +

3

4
z2 +

11

8
z + 1

)1
z
e−2z

]
(D.79)

• Both terms approach at short distances

I33(z) =
5

8
+O(x2)

I22(z) =
5

8
+O(x2) (D.80)

The limit x → 0 is equal to the onsite U-tensor, because in this limit, all four orbitals are
centered on a single site. The electrostatic self energy Eself of the hydrogen atom calculated
above is 5/16, which is 12U.

• at long distances the integrals approach

I22(z)
z→∞→

1

z

I33(z)
z→∞→ ze−z (D.81)

In order to remove the long-ranged part, I subtracted the multipole expansion of the 22 term.
This, however, introduces singularities of the remaining term at the origin. A better strategy would
be to replace 1/r by

1

z
→
1

z
−
(
1−
1

2
(λz)2

)
e−λz

z
·

1

z2
→
1

z2
−
(
1 + (λz)−

1

3
(λz)3

)
e−λz

z2

1

z3
→
1

z3
−
(
1 + (λz) +

1

2
(λz)2 −

1

8
(λz)4

)
e−λz

z3

e−λz → (1 + λz)e−λz (D.82)

For a finite screening we need to multiply the right hand side with (1+γz)e−γz , so that the slope
at the origin remains zero.

1

z
e−γz →

(
1

z
−
(
1−
1

2
((λ+ γ)z)2

)
e−λz

z
·
)
e−γz

1

z2
→
1

z2
−
(
1 + (λz)−

1

3
λ2
)
e−λz

z2

1

z3
→
1

z3
−
(
1 + (λz) +

1

2
λ2 −

1

8
(λx)4

)
e−λz

z3

e−λz → (1 + λz)e−λz (D.83)
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D.6 Dihydrogen cation

The H+2 ion is another one-electron system. It will not be treated exactly, but rather in the basisset
of the wave functions of atomic hydrogen. The goal of this is to benchmark the matrix elements for
the off-site exchange.

With the knowledge of the matrix elements the individual contributions of the dihydrogen cation
can be calculated in the basis of atomic orbitals.

Data are in Testsimplelmto/Calc/H2cation
The wave function is

|ψ⟩ = |χ1⟩c1 + |χ1⟩c2 = (|χ1⟩+ |χ1⟩)
1√
2 + 2S

(D.84)

where S = ⟨χ1|χ2⟩ is the offsite overlap matrix element.
Thus, the density matrix elements all have the same value

ρα,β = cαcβ =
1

2 + 2S
(D.85)

The number of electrons on a single site Non,i and that Nof f in the off-site terms is thus

Non,i = c
2
α =

1

2 + 2S

Nof f = c1Sc2S + c2Sc1 =
2S

2 + 2S

1 = Non,1 + Non,1 + Nof f (D.86)

The onsite Hartree and the onsite exchange energy is

EH,on,i =
1

2
U1111ρ11ρ11

Eq. D.58
=

1

2

5

8

1

(2 + 2S)2
=
5

16

1

(2 + 2S)2

EX,on,i = −EH,on,i (D.87)

The energy related to the offsite exchange terms are

EX,22 = −
1

2

∑
R ̸=R′

∑
α,γ∈R

∑
β,δ∈R

Wα,β,γ,δρδ,αργ,β

= −
1

2

(
W1,2,1,2ρ2,1ρ1,2 +W2,1,2,1ρ2,1ρ1,2

)
= −

U22
(2 + 2S)2

EX,31 = −
1

2

∑
R ̸=R′

4
∑

α,β,γ∈R

∑
δ∈R′

Wα,β,γ,δρδ,αργ,β

= −
1

2
4
(
W1,1,1,2ρ2,1ρ1,1 +W2,2,2,1ρ1,2ρ2,2

)
= −

4U31
(2 + 2S)2

(D.88)
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Appendix E

Homogeneous electron gas

In this chapter, I am including material on the homogeneous electron gas, which does not fit into the
main text.

E.1 Energy contributions of the homogeneous electron gas

In figure E.1, the individual energy contributions per electron are shown as function of the density.
One observes that the Coulomb energy dominates in the low-density region. This is the region

where one can expect the electron interaction to be dominant. In the ultra-low density region, the
electrons even undergo a phase transition to a Wigner crystal.

In the low-density region, the simple box model provides a fairly good description of the exchange-
correlation energy. This is anticipated because the exchange hole with a box-like shape minimizes
the Coulomb repulsion between the electrons. Thus, it is best suited in strongly-interacting limit.

In the high-density region, the kinetic energy dominates over the Coulomb energy. As a conse-
quence, the exchange-correlation hole is similar to that of a non-interacting electron gas, which is
obtained in the Hartree-Fock approximation.

Both models, the Hartree-Fock approximation of the homogeneous electron gas and the box
model, use a fixed shape of the exchange-correlation hole. The hole for different densities is only
scaled in value and distance. As a result, the corresponding exchange-correlation energy per electron
scales like n

1
3 . The corresponding prefactor of the exchange-correlation energy of is determined by

the different shapes. The exchange-correlation hole of interacting electron gas changes from the
compact hole in the low-density region to a more dilute hole in the high-density region.

E.2 Non-interacting homogeneous electron gas

On p. 45, we calculated the kinetic energy of a non-interacting homogeneous electron gas with a
specified total density and spin density. The result is

445
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Fig. E.1: Energies of the free electron gas as function of the density. The grey dashed line is, up
to a sign change, the kinetic energy per electron. The black line is the exchange-correlation energy
per electron of the interacting electron gas, the orange line is from the Hartree Fock approximation
and the green line is from the box model discussed in section 2.8.5 on p. 116. The box model
replaces the exchange-correlation hole for each spin direction by a homogeneously charged sphere.
The valence-electron density of bulk aluminium is 0.18 Å−3.

KINETIC ENERGY OF THE NON-INTERACTING FREE ELECTRON GAS

This is the Thomas-Fermi expression for the kinetic energy of a non-interacting homogeneous electron
gas at zero Kelvin.

1

L3
Ekin(nt , ns)

Eq. 1.149
=

3

10

(
3π2

) 2
3 ℏ2

me
n
5
3
t︸ ︷︷ ︸

E(nt ,0)/L3

·
1

2

[(
1 +

ns
nt

) 5
3

+

(
1−

ns
nt

) 5
3

]
︸ ︷︷ ︸

≈1+(2
2
3−1)

(
ns
nt

)2
(E.1)

where nt
def
= 1

L3N (µ) = n↑ + n↓ is the total electron density (both spin directions)and ns = n↑ − n↓
is the spin density .
The spin dependence of the kinetic energy is shown in Fig. 1.11. The dependence of the spin
polarization can fairly well be approximated by a simple parabola.
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E.2.1 Gradient correction of the kinetic energy

Von Weizsäcker[110] contributed a gradient correction to the kinetic energy 1

GRADIENT CORRECTION FOR THE KINETIC ENERGY

The kinetic energy of a homogeneous electron gas can be be improved further by a gradient correction
developed by von Weizsäcker.[110]

1

Ω
TW

Eq. E.16
=

ℏ2

m

1

8

|∇⃗nt |2

nt
(E.3)

where Ω is the probe volume and nt is the total electron density.
As shown below in Eq. E.16, the gradient correction is independent of the spin polarization factor
ζ = ns

nt
, if ζ is a constant. (Siehe auch: https://en.wikipedia.org/wiki/Thomas-Fermi_model)

The von Weizsäcker formula for the kinetic energy is important for orbital-free density-functional
theory . Historically it also played a role to improve on the Thomas-Fermi approximation, which is
a predecessor of Density functional theory.

Derivation of v. Weizsäcker

In the following, I reproduce the derivation of Weizsäcker in order generalize the result to spin-
polarized electron densities. While I follow the original proof closely in spirit, I hope that I could
streamline it a bit.

I start with the density, the density gradient and the kinetic energy density ekin. I only consider
a specific spin direction σ ∈ {↑, ↓}. The spin index is omitted until the results for the two spin
directions are combined.

n(r⃗) =
∑
n

fnψ
∗
n(r⃗)ψn(r⃗)

∇⃗n(r⃗) =
∑
n

fn2Re
(
ψ∗n(r⃗)∇⃗ψn(r⃗)

)
=
∑
n

fnψ
∗
n(r⃗)ψn(r⃗) · 2Re

(∇⃗ψn(r⃗)
ψn(r⃗)

)
Ekin =

∫
d3r ekin with ekin =

∑
n

fn
ℏ2

2m

∣∣∇⃗ψn(r⃗)∣∣2 (E.4)

Note that we used the kinetic energy expression using the product of wave function gradients rather
than the expression with the Laplacian. The form used here produces the kinetic energy density
locally, while the other form requires the Gauss theorem, which relies on a global property, the
boundary conditions.

v. Weizsäcker introduces an amplitute variation2 in the wave functions of the free electron gas,

1Siehe Weizsäcker[110]-Gl.9 für die Energie pro Volumeneinheit (die Weizsäcker mit Ekin bezeichnet, wir jedoch
mit 1

Ω
Ekin.)

1

Ω
Ekin =

4π(

h︷︸︸︷
2πℏ)2

5m

(
3ρ

8π

) 5
3

+
(

h︷︸︸︷
2πℏ)2

32π2m

|∇⃗ρ|2

ρ
=
ℏ2

m

3

10

(
3π2

) 2
3 ρ

5
3 +

ℏ2

m

1

8

|∇⃗ρ|2

ρ︸ ︷︷ ︸
1
Ω TW

(E.2)

2The form used by v. Weizsäcker differs slightly from the one used here, namely

ψn(r⃗) =
1√
Ω

(
1 + a⃗n r⃗

)
ei k⃗n r⃗ (E.5)

https://en.wikipedia.org/wiki/Thomas-Fermi_model
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which is governed by a state dependent, real-valued vector a⃗n.

ψn(r⃗) =
1√
Ω
e(a⃗n+i k⃗n)r⃗ (E.6)

so that

∇⃗ψn(r⃗) = (a⃗n + i k⃗n)ψn(r⃗) (E.7)

These wave functions correspond to damped plane waves that fall off exponentially. Note, that these
functions are not normalized nor normalizable. For a⃗n = 0⃗, the wave functions of the homogeneous
electron gas are recovered.

The kinetic energy density is

ekin =
∑
n

fn
ℏ2

2m

∣∣∇⃗ψn(r⃗)∣∣2 Eq. E.6
=

∑
n

fn
ℏ2

2m
ψ∗n(r⃗)ψn(r⃗)

(
a⃗2n + k⃗

2
n

)
=

∑
n

fn
ℏ2k⃗2n
2m

ψ∗n(r⃗)ψn(r⃗)︸ ︷︷ ︸
Ekin/Ω of the homogenous electron gas

+
ℏ2

2m

∑
n

fnψ
∗
n(r⃗)ψn(r⃗) · a⃗2n︸ ︷︷ ︸

⇝TW /Ω

(E.8)

which produces two terms. One term is the the kinetic energy density for a⃗ = 0⃗, which is the kinetic
energy for a homogeneous electron gas. The other will result in the correction TW of v. Weizsäcker.

The density gradient is related to the vectors a⃗n

∇⃗n Eq. E.6
=

∑
n

fnψ
∗
n(r⃗)ψn(r⃗)2a⃗n (E.9)

Now comes an ingenious3 trick: v. Weizsäcker imposes Eq. E.9 for a specified density gradient
as constraint on the values for a⃗n. Then he minimizes the kinetic energy under that constraint.

ekin =
∑
n

fn
ℏ2k⃗2n
2m

ψ∗n(r⃗)ψn(r⃗) + min
a⃗n
stat
λ

{
ℏ2

2m

∑
n

fnψ
∗
n(r⃗)ψn(r⃗) · a⃗2n

−
ℏ2

2m
λ⃗
(∑

n

fnψ
∗
n(r⃗)ψn(r⃗)2a⃗n − ∇⃗n(r⃗)

)}
(E.10)

The minimum condition for the variation of a⃗n yields

a⃗n = λ⃗ (E.11)

which implies that the optimum set of vectors an is state independent.
The value of λ is determined so that the constraint is satisfied.

∇⃗n a⃗n=λ⃗=
∑
n

fnψ
∗
n(r⃗)ψn(r⃗)︸ ︷︷ ︸
n

2λ⃗ ⇒ λ = a⃗n =
∇⃗n
2n

(E.12)

Finally, we insert this expression for a⃗n into the expression for the kinetic energy Eq. E.8 obtained

3I am not yet sure, whether this is physics or number-magic. Given the local ansatz for the wave function, I have
some doubts whether such a variational principle for the local density is justified. It serves the purpose to remove the
freedom of choice of the Ansatz.
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earlier

ekin
Eq. E.8
=

∑
n

fn
ℏ2k⃗2n
2m

ψ∗n(r⃗)ψn(r⃗)︸ ︷︷ ︸
Ekin/Ω of the homogenous electron gas

+
ℏ2

2m

∑
n

fnψ
∗
n(r⃗)ψn(r⃗)︸ ︷︷ ︸
n

·

(
∇⃗n
2n

)2
︸ ︷︷ ︸

a⃗2n

=
∑
n

fn
ℏ2k⃗2

2m
ψ∗n(r⃗)ψn(r⃗)︸ ︷︷ ︸

Ekin/Ω of the homogenous electron gas

+
ℏ2

8m

(
∇⃗n
)2

n︸ ︷︷ ︸
TW /Ω

(E.13)

When we include both spin contributions, we obtain for the gradient correction of Weizsäcker

TW =
ℏ2

8m

∑
σ∈{↑,↓}

(
∇⃗nσ

)2
nσ

(E.14)

For electrons with a fixed spin-polarization factor ζ

ζ
def
=
ns
nt

⇒ n↑ =
1 + ζ

2
nt and n↓ =

1− ζ
2

nt (E.15)

the result depends only on the total density and not on the spin-polarization factor ζ.

TW =
ℏ2

8m

∑
σ∈{↑,↓}

(
∇⃗nσ

)2
nσ

=
ℏ2

8m

(
∇⃗nt

)2
nt

(( 1+ζ
2

)2
1+ζ
2

+

(
1−ζ
2

)2
1−ζ
2

)
=
ℏ2

8m

(
∇⃗nt

)2
nt

(E.16)

This confirms the gradient correction Eq. E.3 for the kinetic energy.

E.3 Hartree-Fock description of the free-electron gas

Here, we derive the changes in the dispersion relation ϵ(k⃗) of the free-electron gas due to the exchange
potential discussed in section 2.5.8 on p. 87.

Because of the translation symmetry, we can assume that the charge density is spatially constant.4

Since the problem is translation invariant, we can furthermore deduce that the eigenstates are plane
waves.

E.3.1 Exchange potential as non-local potential

Let us evaluate the non-local exchange potential Eq. 2.41 using plane waves

ϕk⃗ ,σ(r⃗ , σ
′) = ⟨r⃗ , σ′|ϕk⃗ ,σ⟩ =

1√
Ω
ei k⃗ r⃗δσ,σ′ (E.17)

as defined in Eq. 1.36 as basis functions.
The exchange potential V̂X has been expressed in terms of the one-particle-reduced density matrix

ρ̂(1) as

VX(x⃗ , x⃗ ′)
Eq. 2.41
= −

N∑
j=1

e2ρ(1)(x⃗ , x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(E.18)

4We assume that there is no symmetry breaking.
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with the one-particle-reduced density matrix Eq. 2.19

ρ(1)(x⃗ , x⃗ ′)
Eq. 2.19
=

∞∑
n=1

⟨x⃗ |ϕn⟩fn⟨ϕn|x⃗ ′⟩

Eq. 1.36
=

∑
k⃗

θ(kF − |k⃗ |)

1︷ ︸︸ ︷
(2π)3

Ω︸ ︷︷ ︸
→d3k

Ω

(2π)3
δσ,σ′

Ω
ei k⃗(r⃗

′−r⃗)

=
δσ,σ′

(2π)3

∫
d3k θ(kF − |k⃗ |)ei k⃗(r⃗

′−r⃗) (E.19)

where θ(x) is the Heaviside step function and kF is the Fermi momentum. The Fermi momentum
is defined for a free-electron gas and specifies the maximum wave vector of all occupied states. In
other words, it is the radius of the so-called Fermi sphere. The electron density n is obtained as

n(r⃗) =
∑
σ

ρ(1)(r⃗ , σ, r⃗ , σ)
Eq. E.19
=

2

(2π)3
4π

3
k3F

kF = 2π
3

√
1

2

3n

4π
(E.20)

This relation5 is used to obtain the Fermi momentum from a given electron density.
The integral in Eq. E.19 is isotropic in r⃗ ′ − r⃗ . Thus, we can assume, without loss of generality,

that the distance vector r⃗ ′ − r⃗ points in z-direction, that is r⃗ ′ − r⃗ = e⃗zs with s = |r⃗ ′ − r⃗ |. e⃗z is the
unit vector pointing in z-direction.
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5The factor 1/2 stems from the spin degeneracy for a paramagnetic free-electron gas.
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Let us resolve the integral without the factors.

∫
d3k θ(kF − |k⃗ |)ei k⃗ e⃗z s =

∫
k⃗≤kF

d3k eikz s =

∫ kF

−kF
dkz e

ikz s

∫
k2x+k

2
y<k

2
F−k2z

dkxdky︸ ︷︷ ︸
π(k2F−k2z )

=

∫ kF

−kF
dkz π(k

2
F − k2z )eikz s

= πk2F

∫ kF

−kF
dkz e

ikz s − π
∫ kF

−kF
dkz k

2
z e
ikz s

= πk2F

∫ kF

−kF
dkz e

ikz s + π
d2

ds2

∫ kF

−kF
dkz e

ikz s

= π

[
k2F +

d2

ds2

] [
1

i s
eikz s

]kF
−kF

= π

[
k2F +

d2

ds2

]
eikF s − e−ikF s

i s

= 2πk3F

[
1 +

d2

d(kF s)2

]
sin(kF s)

kF s

= 2πk3F

[(
1 +

d2

dx2

)
sin(x)

x

]
x=kF s

= 2πk3F

[
sin(x)

x
−
sin(x)

x
−
2 cos(x)

x2
+
2 sin(x)

x3

]
x=kF s

=
4π

3
k3F

[
−3
cos(kF s)

(kF s)2
+ 3
sin(kF s)

(kF s)3

]
(E.21)

Now we insert the integral Eq. E.21 into the one-particle-reduced density matrix Eq. E.19

ρ(1)(x⃗ , x⃗ ′)
Eq. E.19
=

δσ,σ′

(2π)3

∫
d3k θ(kF − |k⃗ |)ei k⃗(r⃗

′−r⃗)

Eq. E.21
=

δσ,σ′

(2π)3
4π

3
k3F

[
−3
cos(kF |r⃗ − r⃗ ′|)
(kF |r⃗ − r⃗ ′|)2

+ 3
sin(kF |r⃗ − r⃗ ′|)
(kF |r⃗ − r⃗ ′|)3

]
(E.22)

Finally, I insert the one-particle-reduced density matrix Eq. E.22 into the expression for the non-
local potential. With s def

= |r⃗ − r⃗ ′|, we obtain

VX(x⃗ , x⃗ ′)
Eqs. E.18,E.22

=
−e2δσ,σ′
4πϵ0|r⃗ − r⃗ ′|

1

(2π)3
4πk3F

[
−
cos(kF s)

(kF s)2
+
sin(kF s)

(kF s)3

]
︸ ︷︷ ︸∫

d3k θ(kF−|k⃗|)ei k⃗(r⃗ ′−r⃗)

=
e2δσ,σ′

4πϵ0s

1

(2π)3
4π

3
k3F

[
3
(kF s) cos(kF s)− sin(kF s)

(kF s)3

]
(E.23)

The exchange potential acts only between electrons of the same spin. It is important to realize
that this non-local potential is not an interaction potential between two electrons, but it is a one-
particle potential acting on each electron individually.
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kF|r-r'|

-1

0

0 5 10
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V
X

Fig. E.2: Non-local exchange potential VX(r⃗ , σ, r⃗ ′, σ) Eq. E.23 as function of distance (right) for a
free-electron gas as calculated in the Hartree-Fock method. The horizontal axis is kF |r⃗ − r⃗ ′|. The
dashed line corresponds to a Coulomb interaction. On the left-hand side, the function 3 x cos(x)−sin(x)x3

is shown.

E.3.2 Exchange energy of the homogeneous electron gas

The exchange energy of the nonmagnetic homogeneous electron gas is obtained as

EPX = −
1

2

∫
d4x

∫
d4x ′

e2ρ(x⃗ , x⃗ ′)ρ(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|

Eq. E.22
= −

1

2

∫
d4x

∫
d4x ′

e2

4πϵ0|r⃗ − r⃗ ′|

{
δσ,σ′

(2π)3
4π

3
k3F

[
−3
cos(kF |r⃗ − r⃗ ′|)
(kF |r⃗ − r⃗ ′|)2

+ 3
sin(kF |r⃗ − r⃗ ′|)
(kF |r⃗ − r⃗ ′|)3

]}2
= −

1

2

∫
d3r

∑
σ

4π

∫ ∞
0

ds s2
e2

4πϵ0s

{
1

(2π)3
4π

3
k3F

[
−3
cos(kF s)

(kF s)2
+ 3
sin(kF s)

(kF s)3

]}2
= −

1

2

∫
d3r

∑
σ

e2

4πϵ0

4π

k2F

{
1

(2π)3
4π

3
k3F

}2 ∫ ∞
0

d(kF s) (kF s)
2 1

kF s

{[
−3
cos(kF s)

(kF s)2
+ 3
sin(kF s)

(kF s)3

]}2
= −

1

2

∫
d3r

∑
σ

e2

4πϵ0

9 · 4π
k2F︸ ︷︷ ︸
9·4π

(3π2nt )
2
3

{
1

(2π)3
4π

3
k3F

}2
︸ ︷︷ ︸
( 1
2
nt)2 Eq. E.20

∫ ∞
0

dx

(
sin(x)− x cos(x)

)2
x5︸ ︷︷ ︸

1
4

= −

1
2

∑
σ∈{↑,↓}

 e2

4πϵ0

9 · 4π 14
1
4

(3π2)
2
3

∫
d3r n

4
3
t = −

1
2

∑
σ∈{↑,↓}

 e2

4πϵ0

3

4

(
33π3

32π4

) 1
3
∫
d3r n

4
3
t

= −

1
2

∑
σ∈{↑,↓}


︸ ︷︷ ︸

=1

e2

4πϵ0︸ ︷︷ ︸
1H

3

4

(
3

π

) 1
3
∫
d3r n

4
3
t (E.24)
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The integral over x = kF s is solved in the footnote.6

The spin polarization dependence can be included when we exploit that the exchange consists of
two independent spin contributions.

EX(n↑, n↓) =
1

2

∑
σ∈{↑,↓}

EPX(2nσ)

= −
3

4

(
3

π

) 1
3 e2

4πϵ0︸ ︷︷ ︸
1H

∫
d3r
(2n↑)

4
3 + (2n↓)

4
3

2

= −
3

4

(
3

π

) 1
3 e2

4πϵ0︸ ︷︷ ︸
1H

∫
d3r n

4
3
t

(1 + ζ)
4
3 + (1− ζ) 43
2

with nt = n↑ + n↓ and ζ =
n↑ − n↓
nt

(E.27)

E.3.3 Energy-level shifts by the exchange potential

In order to obtain the change of the band structure by the interaction, we need to evaluate the
expectation values of this potential.

dϵn = ⟨ϕn|V̂X |ϕ⟩ =
∫
d4x

∫
d4x ′ ϕ∗n(x⃗)VX(x⃗ , x⃗

′)ϕ(x⃗ ′)

dϵk⃗ ,σ
Eq. E.17
=

1

Ω

∫
d3r

∫
d3r ′ VX(r⃗ , σ, r⃗ ′, σ)e

i k⃗(r⃗−r⃗ ′)

=

∫
d3s VX(s)e

i k⃗ s⃗ (E.28)

whee I introduced the short-hand notation VX(s) for Eq. E.23, which makes evident that the exchange
potential of the free-electron gas depends only on the distance between the two electron coordinates
(and the relative spin orientation).

Now, we decompose the plane wave into spherical harmonics(see appendix “Distributionen, d-

6Solve the integral∫ b

a
dx
[sin(x)− x cos(x)]2

x5
=

∫ b

a
dx

(
sin2(x)

x5
− 2
sin(x) cos(x)

x4
+
cos2(x)

x3

)
=
1

2

∫ b

a
d(2x)

(
25
1
2
(1− cos2(2x))
(2x)5

− 25
1
2
sin(2x)

(2x)4
+ 23

1
2
(1 + cos(2x))

(2x)3

)
= 2

∫ 2b
2a

dy

(
4
1− cos(y)

y5
− 4
sin(y)

y4
+
1 + cos(y)

y3

)
= 2

[
−
1

x4
−
1

2x2
+
cos(x)

x4
+
sin(x)

x3

]2b
2a∫ ∞

0
dx
[sin(x)− x cos(x)]2

x5
=
1

4
(E.25)

Let me now use

∂xx
−4 cos(x) = −4x−5 cos(x)− x−4 sin(x)

∂xx
−3 sin(x) = −3x−4 sin(x) + x−3 cos(x)

∂x

(
−
cos(x)

x4
−
sin(x)

x3

)
= 4
cos(x)

x5
+
sin(x)

x4
+ 3
sin(x)

x4
−
cos(x)

x4

cos(x)

x4
+
sin(x)

x3

∣∣∣∣2b
2a

=

∫ 2b
2a

dx

(
−4
cos(x)

x5
− 4
sin(x)

x4
+
cos(x)

x4

)
(E.26)
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Funktionen und Fourier transformationen in the text book of Messiah[111])

ei k⃗ r⃗ = 4π

∞∑
ℓ=1

ℓ∑
m=−ℓ

i ℓjℓ(|k⃗ ||r⃗ |)Y ∗ℓ,m(k⃗)Y ∗ℓ,m(r⃗) (E.29)

Insertion yields

dϵk⃗ ,σ =

∫
d3s Vx(s)4π

∞∑
ℓ=1

ℓ∑
m=−ℓ

i ℓjℓ(|k⃗ ||s⃗|)Y ∗ℓ,m(k⃗)Y ∗ℓ,m(s⃗)

= 4π

∞∑
ℓ=1

ℓ∑
m=−ℓ

i ℓY ∗ℓ,m(k⃗)

∫
d3s Vx(s)jℓ(|k⃗ ||s⃗|)Y ∗ℓ,m(s⃗) (E.30)

Because the non-local potential is isotropic, only the term with ℓ = 0 contributes.

dϵk⃗ ,σ = 4π Y ∗0,0(k⃗)︸ ︷︷ ︸
1√
4π

∫
d3s Vx(s) j0(|k⃗ ||s⃗|)︸ ︷︷ ︸

j0(x)=
sin(x)
x

Y ∗0,0(s⃗)︸ ︷︷ ︸
1√
4π

=

∫
d3s Vx(s)

sin(|k⃗ ||s⃗|)
|k⃗ ||s⃗|

s
def
=|s⃗|
= 4π

∫ ∞
0

ds s2Vx(s)
sin(|k⃗ |s)
|k⃗ |s

=
4π

|k⃗ |

∫ ∞
0

ds VX(s)s sin(|k⃗ |s)

Eq. E.23
=

4π

|k⃗ |

∫ ∞
0

ds
e2

4πϵ0s

1

(2π)3
4π

3
k3F

[
3
kF s cos(kF s)− sin(kF s)

(kF s)
3

]
s sin(|k⃗ |s)

=
4π

|k⃗ |
e2

4πϵ0

1

(2π)3
4π

3
k3F

∫ ∞
0

ds

[
3
kF s cos(kF s)− sin(kF s)

(kF s)
3

]
sin(|k⃗ |s)

x
def
=kF s
=

4π

kF |k⃗ |
e2

4πϵ0

1

(2π)3
4π

3
k3F

∫ ∞
0

dx

[
3
x cos(x)− sin(x)

x3

]
sin

(
|k⃗ |
kF
x

)
(E.31)

Now we need to solve the integral

I =

∫ ∞
0

dx

[
3
x cos(x)− sin(x)

x3

]
sin(ax) (E.32)

where a = |k⃗ |/kF . The difficulty with this integral is that we cannot take the two terms apart,
because the individual parts of the integrand diverge at the origin. Thus, during the derivation, we
have to deal with divergent expressions.
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∂x
sin(x)

xn−1
= −(n − 1)

sin(x)

xn
+
cos(x)

xn−1

⇒
sin(x)

xn
=

1

(n − 1)

[
cos(x)

xn−1
− ∂x

sin(x)

xn−1

]
(E.33)

Eq. E.33⇒
∫ ∞
0

dx
sin(x)

x3
sin(ax) =

1

2

∫ ∞
0

dx
cos(x)

x2
sin(ax)−

1

2

∫ ∞
0

dx sin(ax)∂x
sin(x)

x2

=
1

2

∫ ∞
0

dx
cos(x)

x2
sin(ax)

−
1

2

[
sin(ax)

sin(x)

x2

]∞
0

+
a

2

∫ ∞
0

dx
sin(x)

x2
cos(ax)

=
a

2
+
1

2

∫ ∞
0

dx
cos(x) sin(ax) + a sin(x) cos(ax)

x2
(E.34)

Eq. E.33⇒
∫ ∞
0

dx
sin(x)

x2
cos(ax) =

∫ ∞
0

dx
cos(x)

x
cos(ax)−

∫ ∞
0

dx cos(ax)∂x
sin(x)

x

=

∫ ∞
0

dx
cos(x)

x
cos(ax)

−
[
cos(ax)

sin(x)

x

]∞
0

− a
∫ ∞
0

dx
sin(x)

x
sin(ax)

= 1 +

∫ ∞
0

dx
cos(x) cos(ax)− a sin(x) sin(ax)

x
(E.35)

Thus, we obtain

I = 3

∫ ∞
0

dx
x cos(x)− sin(x)

x3
sin(ax)

= 3

∫ ∞
0

dx
cos(x) sin(ax)

x2
− 3

∫ ∞
0

dx
sin(x) sin(ax)

x3

Eq. E.34
= 3

∫ ∞
0

dx
cos(x) sin(ax)

x2
−
3a

2
−
3

2

∫ ∞
0

dx
cos(x) sin(ax) + a sin(x) cos(ax)

x2

= −
3a

2
+
3

2

∫ ∞
0

dx
cos(x) sin(ax)

x2
−
3a

2

∫ ∞
0

dx
sin(x) cos(ax)

x2

= −
3a

2
+
3a

2

∫ ∞
0

dy
cos( 1a y) sin(y)

y2
−
3a

2

∫ ∞
0

dx
sin(x) cos(ax)

x2

Eq. E.35
= −

3a

2
+
3a

2

[
1 +

∫ ∞
0

dy
cos( 1a y) cos(y)−

1
a sin(

1
a y) sin(y)

y

]

−
3a

2

[
1 +

∫ ∞
0

dx
cos(ax) cos(x)− a sin(ax) sin(x)

x

]
= −

3a

2
+
3a

2

[∫ ∞
0

dx
cos(x) cos(ax)− 1a sin(x) sin(ax)

x

]

−
3a

2

[∫ ∞
0

dx
cos(ax) cos(x)− a sin(ax) sin(x)

x

]
= −

3a

2
+
3a

2
(−
1

a
+ a)

[∫ ∞
0

dx
sin(x) sin(ax)

x

]
= −

3a

2
+
3

2
(a2 − 1)

[∫ ∞
0

dx
sin(x) sin(ax)

x

]
We recognize that the integral is the Fourier transform of sin(x)x . From the Fourier transform tables
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of Bronstein[63] we take√
2

π

∫ ∞
0

dx sin(xy)
sin(ax)

x

Bronstein
=

1√
2π
ln

∣∣∣∣y + ay − a

∣∣∣∣
a→1;y→a⇒

∫ ∞
0

dx sin(ax)
sin(x)

x
=

1

2
ln

∣∣∣∣a + 1a − 1

∣∣∣∣ = 12 ln
∣∣∣∣1 + a1− a

∣∣∣∣
Thus, we obtain

I = −
3a

2
+
3

4
(a2 − 1) ln

∣∣∣∣1 + a1− a

∣∣∣∣
with a = |k⃗ |/kF as defined below Eq. E.32. We are done with the Integral.

We insert the result into the correction for the energy eigenvalues Eq. E.31

dϵk⃗ ,σ
Eq. E.31
=

4π

kF |k⃗ |
e2

4πϵ0

1

(2π)3
4π

3
k3F

[
−
3a

2
+
3(a2 − 1)
4

ln

∣∣∣∣a + 1a − 1

∣∣∣∣]
=

4π

k2F

e2

4πϵ0

1

(2π)3
4π

3
k3F

[
−
3

2
+
3(a2 − 1)
4a

ln

∣∣∣∣a + 1a − 1

∣∣∣∣]
= −

e2

4πϵ0

2kF
π

[
1

2
+
1− a2

4a
ln

∣∣∣∣1 + a1− a

∣∣∣∣] (E.36)

The function in parenthesis is shown in Fig. E.3 and the resulting dispersion relation is discussed in
section 2.5.8 on p. 87.

0 1 20.0

0.5

1.0

Fig. E.3: Lindhard function f (a) =
(
1
2 +

1−a2
4a ln

∣∣ 1+a
1−a
∣∣) as function of a = k/kF . The slope for

k = kF is infinite. For k ≫ kF the function approaches zero.

E.3.4 Density of states of the free-electron gas

The one-particle density of states of a non-interacting electrons has several physical meanings, which
need to be differentiated when dealing with interacting electrons.

• The density of states is closely related to the thermodynamic properties of the system. Thus,
the density of states can be obtained as the derivative of the number of electrons with respect
to the Fermi level at zero temperature.

D(ϵ) =
dN

dµ

∣∣∣∣
µ=ϵ

(E.37)

• The density of states summarizes the optical excitation spectrum. (It does not reflect matrix
elements, though.) Thus, it reflects the spectral function.

The two definitions are different and need not produce the same result. Thus, we need to be careful
when discussing the spectrum of the Hartree-Fock method or interacting systems in general.
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non−interacting

Hartree−Fock

screened Hartree Fock

infinite slope

Fig. E.4: Dispersion relation ϵ(k) of the free-electron gas as calculated with Hartree-Fock (black),
screened Hartree-Fock (red) and and without interactions (blue). The Fermi momentum has been
chosen as kF = 1/a0 and the screening length for the screened Hartree-Fock calculation has been
6 a0, where a0 is the Bohr radius. The red, dashed line is the difference between the bands obtained
with screened and unscreened Hartree-Fock. Only the bands of unscreened Hartree-Fock exhibit an
infinite slope at the Fermi level. The Fermi level is at ϵ(kF ).

Density of states of the free-electron gas from the energy levels of the Hartree-Fock approxi-
mation

In this section, I describe how the density of states for the Hartree-Fock spectrum in Fig. E.5 on
p. 458 has been evaluated.

Let me extract the density of states from the dispersion relation obtained from the Hartree-Fock
approximation.

ϵk⃗ ,σ
Eq. ??
=
ℏ2k⃗2

2me
−

e2

4πϵ0

2kF
π

[
1

2
+
1− a2

4a
ln

∣∣∣∣1 + a1− a

∣∣∣∣] (E.38)

with a = |k⃗ |/kF as defined below Eq. E.32
The number of states in a volume Ω for a given Fermi level µ at zero temperature is

N(µ) = Ω

∫
d3k

(2π)3
θ
(
µ− ϵ(k⃗)

)
(E.39)

The density of states is its derivative with respect to the Fermi level.

D(ϵ) =
dN(ϵ)

dϵ
(E.40)

For the dispersion relation of the free-electron gas in the Hartree-Fock approximation, we obtain

N(ϵ(kF )) =
∑
σ∈↑,↓

4π
3 k
3
F

( 2πL )
3
= Ω

∑
σ∈↑,↓

k3F
6π2

(E.41)

When doing the derivative we need to distinguish k def
= |k⃗ | and kF . The band structure ϵ(k)

depends on the Fermi momentum kF . This is considered as a fixed parameter. The derivative is
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taken not with respect to kF but with respect to k , which plays the role of the Fermi wave vector
albeit in a rigid band structure.

Thus,

D(ϵ(k)) = Ω
∑
σ∈↑,↓

k2

2π2

(
dϵ

dk

)−1
= Ω

∑
σ∈↑,↓

k2

2π2

(
ℏ2k⃗
me
−

e2

4πϵ0

2kF
π

[−2a
4a
ln

∣∣∣∣1 + a1− a

∣∣∣∣− 1− a24a2
ln

∣∣∣∣1 + a1− a

∣∣∣∣
+
1− a2

4a

(
1 + a

1− a

)−1 ( 1

1− a +
1 + a

(1− a)2
)] 1
kF

)−1
= Ω

∑
σ∈↑,↓

k2

2π2

(
ℏ2k⃗
me
−

e2

4πϵ0

2

π

[
−
1 + a2

4a2
ln

∣∣∣∣1 + a1− a

∣∣∣∣+ 12a]
)−1

(E.42)

The density of states here is given as function of the wave vector. By plotting the energy as
function of wave vector versus the density of state as function of wave vector, the density of states
as function of energy is obtained.

ε

D
oS

ε

D
oS

0 ε

D
oS

Fig. E.5: Density of states in the Hartree-Fock approximation (solid black) as compared to the free-
electron gas (dashed blue) for different electron densities. The density of states is obtained from
the energy dispersion of the Fock operator, and not from the thermodynamic properties, i.e. the
total energies. The electron density increases from top to bottom. The density of states for the
Hartree-Fock calculation drops to zero at the Fermi level. The energy of the bottom of the band is
independent of the electron density and depends only on the strength of the interaction.

We observe that the density of states of the free-electron gas vanishes at the Fermi level, i.e.
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for a = 1 due to the singularity of the logarithm. This behavior is nonphysical and it is healed by
including electron correlation.

E.3.5 Exchange hole of the free-electron gas

The exchange hole can be expressed by the one-particle-reduced density matrix. The two-particle
density can be extracted from the expression for the interaction energy of a Slater determinant.

n(2)(r⃗ , r⃗ ′) = n(r⃗)n(r⃗ ′)−
∑
σ,σ′

ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗) (E.43)

h(r⃗ , r⃗ ′) =
n(2)(r⃗ , r⃗ ′)− n(1)(r⃗)n(1)(r⃗ ′)

n(1)(r⃗)

= −
∑

σ,σ′

∣∣ρ(1)(r⃗ , σ, r⃗ ′, σ′)∣∣2∑
σ′′ ρ

(1)(r⃗ , σ, r⃗ , σ′′)

=
1

(2π)3
4π

3
k3F

(
−3
cos(kF |r⃗ − r⃗ ′|)
(kF |r⃗ − r⃗ ′|)2

+ 3
sin(kF |r⃗ − r⃗ ′|)
(kF |r⃗ − r⃗ ′|)3

)2
(E.44)

Because of the Coulomb singularity, the behavior of the exchange hole at the origin is important.
To explore the behavior at the origin, I use the Taylor expansion

−3
cos(x)

x2
+ 3
sin(x)

x3
= −6

∞∑
k=1

(−1)k · k
(2k + 1)!

x2k−2

= 1−
1

10
x2 +

1

280
x4 +O(x6) (E.45)

To approximate exchange-correlation hole, one could consider a Gaussian

h(r⃗ , r⃗ ′) ≈
1

(2π)3
4π

3
k3F exp

(
−
1

5

(
kF |r⃗ − r⃗ ′|

)2)
(E.46)

The approximate form reproduces the Taylor expansion near r⃗ = r⃗ ′ up to third order in the distance,
and it has a reasonable overall agreement.

As expected, the on-top value of the exchange hole is exactly one-half the electron density. The
radius of the exchange hole is proportional to kF , respectively n

1
3 .

E.4 Polarization insertion

Editor: This section is under construction. Do not read!
In this section, I am evaluating the polarization insertion of the homogeneous electron gas in

lowest order. A polarization insertion is a diagram with two external vertices that can be inserted
into an interaction line. Specifically, I am limiting myself the most simple and therefore prototypical
polarization integral, the ring diagram.

The polarization is at the origin of screening and of life-time broadening. It will provide an ap-
proximate expression for the momentum and frequency dependent dielectric constant. Furthermore,
it underpins Fermi-liquid theory by demonstrating that the lifetime broadening near the Fermi level
is smaller than the quasi-particle energy ϵ− µ. Furthermore the polarization insertion is the starting
point for plasmons.

A derivation of the polarization insertion can be found in the textbook of Fetter and Walecka on
p. 158, “Evaluation of Π0”.Editor: See also Caruso et al.[46].



460 E HOMOGENEOUS ELECTRON GAS

I redid the derivation myself in a slightly different manner and with a lot of detail in order to make
the underlying principles evident and to understand, if and how the result can be carried beyond the
free electron gas. Most importantly, I had to ensure that the result is compatible with a contour in
the complex-time plane of the non-equilibrium Greens function. I will start from the fairly general
expressions and I will become increasingly more specific as seems reasonable to keep the calculation
managable. The reason is twofold. Once, the implications of the individual approximations shall
become clear. Secondly, the more general equations may provide a suitable starting point for the
implementation as computer code to obtain results for real materials.

The lowest order of the polarization insertion is the ring diagram, which is a product of two
non-interacting Green’s functions.

Π(0)(r⃗1, t1, r⃗2, t2)
def
= iℏ (−1)︸ ︷︷ ︸

Fermi loop

∑
σ1,σ2∈{↑,↓}

GC,(0)(x⃗1, t1, x⃗2, t2)G
C,(0)(x⃗2, t2, x⃗1, t1) (E.47)

After considering the different normalization definitions.7, this equation is equivalent to Eq.12.27 of
Fetter-Walecka, The reason to connect the polarization insertion to two positions, rather than four
orbitals, is that the interaction connects two, rather than four positions. Because the interaction is
spin-independent, we perform the sum over the sum over spin degrees of freedom already inside the
polarization insertion.

E.4.1 Polarisation insertion for homogeneous systems

The derivation is limited to the homogeneous systems with plane waves as Hamilton eigenstates

⟨r⃗ , σ′|k⃗ , σ⟩ =
1√
L3
ei k⃗ r⃗δσ,σ′ (E.48)

I am considering a normalization volume L3 and periodic boundary conditions for a cubic box with
side-length L. This results in a discrete grid of k-points with spacing 2π

L .
Initially, I do not limit the band structure ϵk⃗ ,σ to the free-electron parabola.
The derivation is based on the contour Green’s function for a time-independent Hamiltonian. The

zeroth-order polarization diagram, requires only the non-interacting Green’s function as input. The
bare contour Green’s function is given in Eq. 7.53 on p. 252, respectively from Eq. 7.28 on p. 247.

ĜC,(0)(t, t ′)
Eq. 7.53
=

1

iℏ
∑
k⃗

∑
σ∈{↑,↓}

|k⃗ , σ⟩
{
θC(t − t ′)

(
1− fT,µ(ϵk⃗ ,σ)

)
− θC(t ′ − t)fT,µ(ϵk⃗ ,σ)

}
×e−

i
ℏ ϵk⃗ ,σ(t−t

′)⟨k⃗ , σ| (E.49)

In position-and-spin representation this is

Eq. E.48⇒ GC,(0)(x⃗1, t1, x⃗2, t2) =
1

iℏL3
∑
k⃗

∑
σ∈{↑,↓}

δσ1,σδσ2,σe
i k⃗(r⃗1−r⃗2)e−

i
ℏ ϵk⃗ ,σ(t1−t2)

×
{
θC(t1 − t2)

(
1− fT,µ(ϵk⃗ ,σ1)

)
− θC(t2 − t1)fT,µ(ϵk⃗ ,σ)

}
(E.50)

7The polarization insertion has been defined in FW-Eq.-9.39, where FW stands for the textbook of Fetter and
Walecka.[3]. Eq. E.47 compares to FW-Eq. 12.27.[3]. The convention for the Green’s function is obtained by the
comparison in FW-Eq. 7.1, i.e. GΦSX = 1

ℏG
FW . The factor 2 in the FW-Eq. 12.27 is absorbed in the sum over spin

orbitals of our Eq. E.47
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The corresponding zeroth order polarization insertion Eq. E.47 is

Π(0)(r⃗1, t1, r⃗2, t2)
Eq. E.47
= iℏ (−1)︸ ︷︷ ︸

Fermi loop

∑
σ1,σ2∈{↑,↓}

GC,(0)(x⃗1, t1, x⃗2, t2)G
C,(0)(x⃗2, t2, x⃗1, t1)

Eq. E.50
= iℏ (−1)︸ ︷︷ ︸

Fermi loop

∑
σ1,σ2∈{↑,↓}

×
1

iℏL3
∑
k⃗

∑
σ∈{↑,↓}

δσ1,σδσ2,σe
i k⃗(r⃗1−r⃗2)e−

i
ℏ ϵk⃗ ,σ(t1−t2)

{
θC(t1 − t2)

(
1− fT,µ(ϵk⃗ ,σ)

)
− θC(t2 − t1)fT,µ(ϵk⃗ ,σ)

}
︸ ︷︷ ︸

GC,(0)(x⃗1,t1,x⃗2,t2)

×
1

iℏL3
∑
k⃗ ′

∑
σ′∈{↑,↓}

δσ1,σ′δσ2,σ′e
i k⃗ ′(r⃗2−r⃗1)e−

i
ℏ ϵk⃗ ′ ,σ′ (t2−t1)

{
θC(t2 − t1)

(
1− fT,µ(ϵk⃗ ′,σ′)

)
− θC(t1 − t2)fT,µ(ϵk⃗ ′,σ′)

}
︸ ︷︷ ︸

GC,(0)(x⃗2,t2,x⃗1,t1)

=
1

iℏ
(−1)︸ ︷︷ ︸

Fermi loop

∑
σ∈{↑,↓}

∼
∫

d3k

(2π)3

∫
d3k ′
(2π)3︷ ︸︸ ︷

1

L6

∑
k⃗ ,k⃗ ′

ei(k⃗−k⃗
′)(r⃗1−r⃗2)e−

i
ℏ

(
ϵk⃗ ,σ−ϵk⃗ ′ ,σ

)
(t1−t2)

×
{
θC(t1 − t2)

(
1− fT,µ(ϵk⃗ ,σ)

)
− θC(t2 − t1)fT,µ(ϵk⃗ ,σ)

}
×

{
θC(t2 − t1)

(
1− fT,µ(ϵk⃗ ′,σ)

)
− θC(t1 − t2)fT,µ(ϵk⃗ ′,σ)

}
=

1

iℏ
(−1)︸ ︷︷ ︸

Fermi loop

∑
σ∈{↑,↓}

1

L6

∑
k⃗ ,k⃗ ′

ei(k⃗−k⃗
′)(r⃗1−r⃗2)e−

i
ℏ

(
ϵk⃗ ,σ−ϵk⃗ ′ ,σ

)
(t1−t2)

×
{
−θC(t1 − t2)

(
1− fT,µ(ϵk⃗ ,σ)

)
fT,µ(ϵk⃗ ′,σ)− θC(t2 − t1)fT,µ(ϵk⃗ ,σ)

(
1− fT,µ(ϵk⃗ ′,σ)

)}
= A(r⃗1, t1, r⃗2, t2) + A(r⃗2, t2, r⃗1, t1) (E.51)

with

A(r⃗1, t1, r⃗2, t2)
def
=

−θC(t2−t1) 1iℏ︷ ︸︸ ︷
i

ℏ
θC(t2 − t1) (−1)︸ ︷︷ ︸

Fermi loop

∑
σ∈{↑,↓}

∼
∫

d3k

(2π)3
d3k ′
(2π)3︷ ︸︸ ︷

1

L6

∑
k⃗ ,k⃗ ′

ei(k⃗−k⃗
′)(r⃗1−r⃗2)e−

i
ℏ

(
ϵk⃗ ,σ−ϵk⃗ ′ ,σ

)
(t1−t2)

× fT,µ(ϵk⃗ ,σ)
(
1− fT,µ(ϵk⃗ ′,σ)

)
(E.52)

The function A(x1, t1, x2, t2) contains the complete information of the polarization insertion. It is
valid on the entire complex-valued-time contour.

Let me now work on A(r⃗1, t1, r⃗2, t2): I introduce new variables q⃗ = k⃗ ′− k⃗ and ℏω = ϵk⃗ ′,σ− ϵk⃗ ,σ =
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ϵk⃗+q⃗,σ − ϵk⃗ ,σ.

A(r⃗1, t1, r⃗2, t2) = θC(t2 − t1)
i

ℏ

Fermi loop︷ ︸︸ ︷
(−1)

∑
σ∈{↑,↓}

∼
∫

d3q

(2π)3︷ ︸︸ ︷
1

L3

∑
q⃗

e−i q⃗(r⃗1−r⃗2)

∼
∫

d3k

(2π)3︷ ︸︸ ︷
1

L3

∑
k⃗

fT,µ(ϵk⃗ ,σ)
(
1− fT,µ(ϵk⃗+q⃗,σ

)
×
∫
dϵ δ(ϵ− ϵk⃗ ,σ)︸ ︷︷ ︸

=1

∫
dϵ′ δ(ϵ′ − ϵk⃗+q⃗,σ)︸ ︷︷ ︸

=1

∫
d(ℏω) δ(ϵk⃗+q⃗,σ − ϵk⃗ ,σ − ℏω)e

iω(t1−t2)︸ ︷︷ ︸
=e
− i
ℏ (ϵk⃗,σ−ϵk⃗+q⃗,σ )(t1−t2)

= θC(t2 − t1)
i

ℏ

∫
d(ℏω)

∼
∫

d3q

(2π)3︷ ︸︸ ︷
1

L3

∑
q⃗

e−i [q⃗(r⃗1−r⃗2)−ω(t1−t2)]

×
Fermi loop︷ ︸︸ ︷
(−1)

∑
σ∈{↑,↓}

∫
dϵ

∫
dϵ′ δ(ϵ′ − ϵ− ℏω)fT,µ(ϵ)

(
1− fT,µ(ϵ′)

) Kq⃗(ϵ,ϵ′)︷ ︸︸ ︷
1

L3

∑
k⃗

δ(ϵ− ϵk⃗ ,σ) δ(ϵ
′ − ϵk⃗+q⃗,σ)︸ ︷︷ ︸

F̄q⃗(ℏω)

= θC(t2 − t1)
i

ℏ

∫
d(ℏω)

∼
∫

d3q

(2π)3︷ ︸︸ ︷
1

L3

∑
q⃗

e−i [q⃗(r⃗1−r⃗2)−ω(t1−t2)]F̄q⃗(ℏω) (E.53)

with

F̄q⃗(ℏω)
def
= (−1)︸ ︷︷ ︸

Fermi loop

∑
σ∈{↑,↓}

∫
dϵ

∫
dϵ′ δ(ϵ′ − ϵ− ℏω)Kq⃗(ϵ, ϵ′)fT,µ(ϵ)

(
1− fT,µ(ϵ′)

)
= (−1)︸ ︷︷ ︸

Fermi loop

∑
σ∈{↑,↓}

∫
dϵ fT,µ(ϵ)Kq⃗,σ(ϵ, ϵ+ ℏω)

(
1− fT,µ(ϵ+ ℏω)

)
(E.54)

and

Kq⃗,σ(ϵ, ϵ
′)

def
=
1

L3

∑
k⃗

δ(ϵ− ϵk⃗ ,σ)δ(ϵ
′ − ϵk⃗+q⃗,σ) (E.55)

• Eq. E.51 for the polarization insertion is valid for complex-valued time arguments. It is limited
to non-interacting systems that are translationally invariant in space and time. This enforces
that the one-particle energies are time-independent and that the one-particle states are plane
waves in real space. The dispersion relation ϵk⃗ ,σ, is given in the extended zone scheme but
otherwiese not restricted.

• The function F̄q⃗(ℏω) is a real-valued quantity.

• For zero-temperature, the F̄q⃗(ℏω) vanishes for negative ℏω.

• We can use the symmetry Fq⃗(ℏω) = F−q⃗(−ℏω). It uses the symmetry Kq⃗(ϵ, ϵ′) = K−q⃗(ϵ′, ϵ).

• Kq⃗,σ(ϵ, ϵ
′) is the one-dimensional intersection of two energy iso-surfaces of the band structure

ϵk⃗ ,σ. One of the iso-surfaces is displaced in k-space by q⃗.

• It must not be forgotten that F̄q⃗(ℏω) is not a Fourier transform of A(r⃗ , t, r⃗ ′, t ′), because we
work on a complex time contour. Therefore, it cannot directly be compared to similar expres-
sions in the literature. Thus, the Fourier transform must be recovered from “our” F̄ (q⃗, ℏω′) by
a complicated frequency integration.
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• In the expression above, the wave vectors are taken from a discrete grid. The discrete sum
over k-points can be turned into into an integral using

∑
k⃗ → L3

∫
d3k
(2π)3 . I exploit that the

reciprocal-space volume per k-point is (2π/L)3.

The infinities resulting from the factor L3 are balanced by the norm of the basisfunctions, which
are themselfes normalized on a volume of size L3.

With the transition to continuous momenta, the Kronecker for the momentum transfer q⃗ must
be converted into a delta-function δq⃗,q⃗′ = (2π/L)

3δ(q⃗ − q⃗′) = d3q δ(q⃗ − q⃗′). The volume
element d3q is used later to convert the integral for the discrete mesh of momentum transfers
into a density of continous values.

E.4.2 Material-specific term Kq⃗(ϵ, ϵ
′)

The term Kq⃗(ϵ, ϵ
′) defined in Eq. E.54 contains all material-specific information. It is the intersection

of the iso-energy surfaces at ϵ, ϵ′, which are displaced in k-space by the vector q⃗.
The expression for Kq⃗(ϵ, ϵ′) can be expressed in terms of derivatives of a volume integral by

exploiting δ(x) = ∂xθ(x) = −∂xθ(−x).

Kq⃗,σ(ϵ, ϵ
′)

Eq. E.55
=

1

L3

∑
k⃗

δ(ϵ− ϵk⃗ ,σ)δ(ϵ
′ − ϵk⃗+q⃗,σ)

=
d

dϵ

d

dϵ′

{
1

L3

∑
k⃗︸ ︷︷ ︸

∼
∫

d3k

(2π)3

θ(ϵk⃗ ,σ − ϵ)θ(ϵk⃗+q⃗,σ − ϵ
′)

}
(E.56)

Isotropic systems: I introduce the assumption that the system is isotropic. Isotropy implies that
the energy levels ϵk⃗ ,σ depend only on the length of the reciprocal lattice vector |k⃗ | but not on its
direction. With this assumption the calculation of Kq⃗,σ(ϵ, ϵ′) can be reduced to a geometric problem,
namely to evaluate the common volume of two spheres, each with its own radius, which are displaced
by a vector q⃗.

The factor K is obtained via the lens-shaped intersection of two spheres.

Kq⃗,σ(ϵ, ϵ
′) =

d

dϵ

d

dϵ′

{
1

L3

∑
k⃗︸ ︷︷ ︸

∼
∫

d3k

(2π)3

θ(ϵk⃗ ,σ − ϵ)θ(ϵk⃗+q⃗,σ − ϵ
′)

}
(E.57)

R R’

d

h’h

z’z

Volume of a spherical segment: Consider a spherical segment, i.e. the part of a sphere, which
is cut off from the sphere by a plane. The radius of the sphere shall be r . The plane cuts through
the sphere at distance z from the sphere center. The width of the spherical segment is h = r − z ,
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h ∈ [0, 2r ].

V =
1

2

4πr3

3︸ ︷︷ ︸
half sphere

−
∫ r−h

0

dz π(r2 − z2)︸ ︷︷ ︸
circle area

=
2πr3

3
− π

[
r2z −

1

3
z3
]r−h
0

=
2πr3

3
− π

(
r2(r − h)−

1

3
(r − h)3

)
=
2πr3

3
−
π

3

(
3r3 − 3r2h − r3 + 3r2h − 3rh2 + h3

)
=
2πr3

3
−
π

3

(
2r3 − 3rh2 + h3

)
=
π

3

(
3rh2 − h3

)
for h ∈ [0, 2r ] (E.58)

For h > 2r , the formula above is meaningless and the volume is instead that of the sphere, namely
V = 4πr3/3. The radius must be positive.

Sphere overlap: For the lens-shaped object made from the two spherical segments, we obtain

z2 + a2 = R2 and (d − z)2 + a2 = (R′)2

⇒ (d − z)2 − z2 = (R′)2 − R2

⇒ d2 − 2dz = (R′)2 − R2

⇒ z =
d

2
−
(R′)2 − R2

2d

h(R,R′, d)
def
= R′ − (d − z) = R′ −

1

2
d −
(R′)2 − R2

2d
= −
(R′ − d)2 − R2

2d

h′(R,R′, d)
def
= R − z = R −

d

2
+
(R′)2 − R2

2d
=
(R′)2 − (R − d)2

2d
(E.59)

The overlapping volume of the two spheres is therefore

V + V ′
Eq. E.58
=

π

3

(
h2(3R′ − h) + (h′)2(3R − h′)

)
for R + R′ > d and |R − R′| < d (E.60)

with h(R,R′, d) and h′(R,R′, d) from Eq. E.59. The requirement is that R,R′, d > 0.

Intersection of sphere surfaces: Let me now do the second derivative with respect to the radii R
and R′

d2(V + V ′)

dRdR′
Eq. E.60
=

d

dR′
d

dR

π

3

(
3R′h2 − h3 + 3R(h′)2 − (h′)3

)
(E.61)
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where h and h′ are themselfes functions of R,R′, d given in Eq. E.59.

d2(V + V ′)

dRdR′
=

d

dR′
d

dR

π

3

(
3R′h2 − h3 + 3R(h′)2 − (h′)3

)
=

d

dR′
π

3

[(
6R′h − 3h2

) ∂h
∂R
+ 3(h′)2 +

(
6Rh′ − 3(h′)2

)∂h′
∂R

]
=
π

3

[
6h

∂h

∂R︸︷︷︸
R/d

+
(
6R′ − 6h

) ∂h

∂R′︸︷︷︸
(d−R′)/d

∂h

∂R︸︷︷︸
R/d

+
(
6R′h − 3h2

) ∂2h

∂R∂R′︸ ︷︷ ︸
=0

+6h′
∂h′

∂R′︸︷︷︸
R′/d

+
(
6R − 6h′

) ∂h′
∂R′︸︷︷︸
R′/d

∂h′

∂R︸︷︷︸
(d−R)/d

+
(
6Rh′ − 3(h′)2

) ∂2h′

∂R′∂R︸ ︷︷ ︸
=0

]

= 2π

[
h
R

d
+
(
R′ − h

)(d − R′)R
d2

+ h′
R′

d
+
(
R − h′

)R′(d − R)
d2

]
=
2π

d2

[
hRd + RR′d − R(R′)2 − hRd + hRR′︸ ︷︷ ︸

(d−R′+h)RR′

+ h′R′d + R′Rd − R2R′ − h′R′d + h′RR′︸ ︷︷ ︸
(d−R+h′)RR′

]

=
2πRR′

d2

(
2d − (R + R′) + (h + h′)

)
=
2πRR′

d2

(
2d − (R + R′) + (R + R′)− d

)
=
2πRR′

d
θ(R′ − |d − R|)θ(d + R − R′) (E.62)

Back to the polarization integral

Kq⃗,σ(ϵ, ϵ
′)

Eq. E.56
=

d

dϵ︸︷︷︸
( dϵdk )

−1 d
dk

d

dϵ′︸︷︷︸
( dϵ

′
dk ′ )

−1 d
dk ′

{
1

L3

∑
k⃗︸ ︷︷ ︸

∼
∫

d3k

(2π)3

θ(ϵk⃗ ,σ − ϵ)θ(ϵk⃗+q⃗,σ − ϵ
′)

}

Eq. E.62
=

(
dϵ

dk

∣∣∣∣
kσ(ϵ)

)−1(
dϵ

dk

∣∣∣∣
kσ(ϵ′)

)−1
1

(2π)3
2πkσ(ϵ)kσ(ϵ

′)

|q⃗|

×θ
(
kσ(ϵ

′)−
∣∣kσ(ϵ)− |q⃗|∣∣) θ(|q⃗|+ kσ(ϵ)− kσ(ϵ′)) (E.63)

where kσ(ϵ) is the radius of the iso-energy surface with energy ϵ.
The two step functions limit the result to regions with intersection spheres, i.e. with

|kσ(ϵ)− |q⃗|| < kσ(ϵ
′) < kσ(ϵ) + |q⃗| (E.64)

E.4.3 F̄q⃗(ℏω)

The bounds for the k-integration region are determined in wave vectors, while the integrand is given
by the energies. However for a (monotonic) isotropic system the integration can be mapped onto a
two-dimensional integral in k-space.
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(hq)2

2m

(hq)2

2m

ε’

µ

µ ε

f’(1−f)=1

f(1−f’)=1

ωh

ωh
C

A

B

Fig. E.6: Integration region for the double energy integral in the ϵ, ϵ′-plane. The yellow and green
regions select the electron-hole-pair excitations and are given by the occupations f = fT,µ(ϵ) and
f ′ = fT,µ(ϵ

′). The straight red line implements the energy conservation ℏω = |ϵ′ − ϵ|. The grey
region indicates the values for two quasi-particle energies, where the iso-energy surfaces intersect.
Outside the grey region the contribution to the integral vanishes. In this graph the shape of grey
region is taken from a free-electron-gas. It touches the axis at a point related to the momentum
transfer. With increasing momentum transfer, the parabola grows wider, and its bottom shift upward
along the main diagonal.

F̄q⃗(ℏω)
Eq. E.54
= (−1)︸ ︷︷ ︸

F.L.

∑
σ∈{↑,↓}

∫
dϵ

∫
dϵ′ δ(ϵ′ − ϵ− ℏω)fT,µ(ϵ)Kq⃗,σ(ϵ, ϵ′)

(
1− fT,µ(ϵ′)

)
Eq. E.63
= (−1)︸ ︷︷ ︸

F.L.

∑
σ∈{↑,↓}

1

(2π)3
2π

|q⃗|

∫
dϵ

∫
dϵ′ δ(ϵ′ − ϵ− ℏω)fT,µ(ϵ)

(
1− fT,µ(ϵ′)

)

×

(
dϵ

dk

∣∣∣∣
kσ(ϵ)

)−1(
dϵ

dk

∣∣∣∣
kσ(ϵ′)

)−1
kσ(ϵ)kσ(ϵ

′)︸ ︷︷ ︸
free-electron gas:

(
m

ℏ2

)2
× θ

(
kσ(ϵ

′)−
∣∣kσ(ϵ)− |q⃗|∣∣)︸ ︷︷ ︸

free-electron gas: θ
(
ϵ′ − (

√
ϵ− ℏ|q⃗|√

2m
)2
)

θ
(
|q⃗|+ kσ(ϵ)− kσ(ϵ′)

)
︸ ︷︷ ︸

free-electron gas: θ
(
(
√
ϵ+ ℏ|q⃗|√

2m
)2 − ϵ′

)
(E.65)

E.4.4 free-electron gas at zero temperature

The result Eq. E.65 obtained so far has been valid for any isotropic dispersion relation. Now we
become more specific: Le me drop temperature effects and let me choose the free-electron parabola
as dispersion relation.

Let me now do the step to the homogeneous electron gas at zero temperature. This implies

ϵ(k⃗ , σ) =
ℏ2k2

2m
and

1

k

dϵ

dk
=
ℏ2

m
and k(ϵ, σ) =

1

ℏ
√
2mϵ . (E.66)
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I obtain for T = 0

F̄q⃗(ℏω)
Eq. E.65
= (−1)︸ ︷︷ ︸

F.L.

∑
σ∈{↑,↓}

( m

2πℏ2
)2 1
|q⃗|

∫
dϵ

∫
dϵ′ δ(ϵ′ − ϵ− ℏω)

× θ(µ− ϵ)︸ ︷︷ ︸
fT,µ(ϵ)

θ(ϵ′ − µ)︸ ︷︷ ︸
1−fT,µ(ϵ′)

θ

(
ϵ′ −

(√
ϵ−

ℏ|q⃗|√
2m

)2)
θ

((√
ϵ+

ℏ|q⃗|√
2m

)2
− ϵ′

)

= (−1)︸ ︷︷ ︸
F.L.

∑
σ∈{↑,↓}

( m

2πℏ2
)2 1
|q⃗|

×
∫ µ

µ−ℏω
dϵ θ

(
ϵ+ ℏω −

(√
ϵ−

ℏ|q⃗|√
2m

)2)
θ

((√
ϵ+

ℏ|q⃗|√
2m

)2
− ϵ− ℏω

)
(E.67)

Domains The step functions in Eq. E.67 limit the range of the remaining ϵ-integration to(√
ϵ+

ℏ|q⃗|√
2m

)2
− ϵ− ℏω > 0 and ϵ+ ℏω −

(√
ϵ−

ℏ|q⃗|√
2m

)2
> 0

⇒
(√

ϵ+
ℏ|q⃗|√
2m

)2
> ϵ+ ℏω >

(√
ϵ−

ℏ|q⃗|√
2m

)2
⇒ ϵ+ 2

√
ϵ
ℏ|q⃗|√
2m
+

(
ℏ|q⃗|√
2m

)2
> ϵ+ ℏω > ϵ− 2

√
ϵ
ℏ|q⃗|√
2m
+

(
ℏ|q⃗|√
2m

)2
⇒ 2

√
ϵ
ℏ|q⃗|√
2m

> ℏω − ℏ
2q⃗2

2m > −2
√
ϵ
ℏ|q⃗|√
2m

⇒
√
ϵ > 1

2

(√
2m
ℏ|q⃗|

)(
ℏω − ℏ

2q⃗2

2m

)
> −
√
ϵ

⇒ ϵ > 1
4
2m
ℏ2q⃗2

(
ℏω − ℏ

2q⃗2

2m

)2
(E.68)

Thus, the ϵ-integration is limited to

µ− ℏω < ϵ < µ and ϵ >
1

4

2m

ℏ2q⃗2
(
ℏω −

ℏ2q⃗2

2m

)2
(E.69)

This results in different regions in the q, ω plane that are treated differently. In the following,
Let me determine the lines where the boundary of the gray region in figure E.6 touches the points
A,B, C indicated in the same figure.

A = (ϵ, ϵ′) = (µ, µ+ ℏω)
B = (ϵ, ϵ′) = (µ− ℏω, µ)
C = (ϵ, ϵ′) = (0, ℏω) (E.70)

A:

µ+ ℏω︸ ︷︷ ︸
ϵ′

=
(√

µ︸︷︷︸√
ϵ

±
ℏ|q⃗|√
2m

)2
⇒ ℏ|q⃗| = ∓

√
2mµ+

√
2m(µ+ ℏω) (E.71)

Only the solution with the positive square root
√
2m(µ+ ℏω) is related to positive ℏq and

positive ℏω. Therefore the branch with the negative square root is excluded. The two branches
bounded by the point A denote the region of momenta and frequency with a non-vanishing
contribution to the polarization diagram.
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Fig. E.7: Region with finite polarization insertion for non-interacting electrons as function of
momentum transfer ℏ|q⃗| and energy transfer ℏω. The contribution vanishes outside the colored
regions. The lines denoted A,B, C indicate values where the boundary of the gray region in figure E.6
touches the points A,B, C. The bottom image shows F̄q⃗(ℏω) as function of the energy transfer ℏω
for several values of ℏ|q⃗|

B:

µ︸︷︷︸
ϵ′

=
(√

µ− ℏω︸ ︷︷ ︸√
ϵ

±
ℏ|q⃗|√
2m

)2
⇒ ℏ|q⃗| = ∓

√
2m(µ− ℏω) +

√
2mµ (E.72)

The region enclosed by the line B is the region where the line segment from A to B is not
constrained by the theta functions.

C:

ℏω︸︷︷︸
ϵ′

=
(
0︸︷︷︸√
ϵ

±
ℏ|q⃗|√
2m

)2
⇒ ℏ|q⃗| = ∓

√
2m(µ− ℏω) +

√
2mµ (E.73)
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Back to the F̄ : Thus, I obtain

F̄q⃗(ℏω)
Eq. E.67
= (−1)︸ ︷︷ ︸

F.L.

∑
σ∈{↑,↓}

( m

2πℏ2
)2 1
|q⃗|

×
{∫ µ

µ−ℏω
dϵ θ

(
ϵ+ ℏω︸ ︷︷ ︸

ϵ′

−(
√
ϵ−

ℏ|q⃗|√
2m
)2
)
θ
(
(
√
ϵ+

ℏ|q⃗|√
2m
)2 − ϵ− ℏω︸ ︷︷ ︸

ϵ′

)
= (−1)︸ ︷︷ ︸

F.L.

∑
σ∈{↑,↓}

( m

2πℏ2
)2 1
|q⃗| max

[
0,min

(
ℏω, µ−

1

4

2m

ℏ2q⃗2
(
ℏω −

ℏ2q⃗2

2m

)2)
︸ ︷︷ ︸{

µ−max
(
µ−ℏω, 1

4
2m

ℏ2 q⃗2

(
ℏω− ℏ2 q⃗2

2m

)2)}
]

(E.74)

I chose the maximum of zero and the calculated value to make the result defined, albeit zero, in the
regions where the contribution vanishes.

The resulting function is shown in figure E.7.
It is evident that the dominant contribution comes from a ridge at small values of q and ω. This

feature is specific to the lowest order polarization insertion. Editor: Caution! This need to
be checked! It reminds of bosonic dispersion relation for a mass-less particle. Upon
renormalization (necklace of ring diagrams), this feature disappears and a plasmon
dispersion relation appears, which has a minimum frequency, the plasmon frequency.
It seems that the mass-less polarin acquired mass upon renormalization.

From F̄ to the polarization insertion: Note that F̄ is not the polarization insertion itself.
The polarization insertion is

Π(0)(r⃗1, t1, r⃗2, t2)
Eq. E.51
= A(r⃗1, t1, r⃗2, t2) + A(r⃗2, t2, r⃗1, t1) (E.75)

where

A(r⃗1, t1, r⃗2, t2)
Eq. E.53
= θC(t2 − t1)

i

ℏ

∫
d(ℏω)

∼
∫

d3q

(2π)3︷ ︸︸ ︷
1

L3

∑
q⃗

e−i [q⃗(r⃗1−r⃗2)−ω(t1−t2)]F̄q⃗(ℏω) (E.76)

Thus

Π(0)(r⃗1, t1, r⃗2, t2) =

∫
d(ℏω)

∼
∫

d3q

(2π)3︷ ︸︸ ︷
1

L3

∑
q⃗

F̄q⃗(ℏω)

×
i

ℏ

{
θC(t2 − t1)e−i [q⃗(r⃗1−r⃗2)−ω(t1−t2)] + θC(t1 − t2)e+i [q⃗(r⃗1−r⃗2)−ω(t1−t2)]

}
(E.77)

Editor: check here the symmetries of F̄

Discussion of the lowest-order polarization insertion Editor: The following is a set of
personal notes for the author. They have not been verified!

The polarization insertion in lowest order is shown in figure E.7. If the polarization insertion is
renormalized by considering all chains of ring diagrams connected by interactions, a plasmon branch
splits off from the continuum.
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In lowest order we find a pronounced ridge for small energy- and momentum-transfer. It reminds
of the dispersion relation of a boson with velocity equal to the Fermi velocity. Editor: Will this
feature turn into the plasmon band, when interaction is switched on? When this feature
is considered as a spectral function of bosons, they move marginally slower (line
B in figure E.7) than the electrons (line A). (check this!) Hence an interacting
system will transfer kinetic energy to this boson. This may be one possible explanation
for the finite lifetime of the electrons.

At ℏω = µ, this ridge disappears in the continuum of electron-hole excitations. Editor: What
is special at the Fermi energy? Is it that the excitation energy can reach the (flat)
bottom of the free-electron band?

E.4.5 Screened interaction and dielectric constant

Editor: Sketch: do not read!!!

ΠRPA = Π(0) +Π(0)V Π(0) +Π(0)V Π(0)V Π(0) + . . .

= Π(0) +Π(0)V ΠRPA

ΠRPA =
(
1− Π(0)V

)−1
Π(0) (E.78)

V scr,RPA = V (0) + V (0)Π(0)V (0) + V (0)Π(0)V (0)Π(0)V (0) + . . .

= V (0) + V (0)Π(0)V (scr,RPA)

=
(
1− V (0)Π(0)

)−1
︸ ︷︷ ︸

1

ϵRPAr

V (0) (E.79)

ϵRPAr = 1− V (0)Π(0) (E.80)

Of particular interest are the zeros of the dielectric constant. For those momenta ℏq⃗ and energies
ℏω, the screened potential does not become smaller than the bare potential, but it becomes infinite. A
charge fluctuation with these momenta and frequencies can occur spontaneously. It can be considered
a quasi-particle, which is called a plasmon.

Four-center integrals in a plane-wave basis:

When the interaction matrix elements for the interaction are expressed in terms of plane waves, there
are selection rules which require certain matric elements to be zero. Let me therefore analyze these
four center integrals.

For our basisset the four-center integrals are

Wk⃗1,σ1,k⃗2,σ2,k⃗3,σ3,k⃗4,σ4
=

e2

4πϵ0
δσ1,σ3δσ2,σ4

∫
d3r

∫
d3r ′

1

L6
ei(k⃗3−k⃗1)r⃗ei(k⃗4−k⃗2)r⃗

′

|r⃗ − r⃗ ′|

=
e2

4πϵ0
δσ1,σ3δσ2,σ4

∫
d3r

1

L3
ei(k⃗3−k⃗1+k⃗4−k⃗2)r⃗︸ ︷︷ ︸

δk⃗3−k⃗1+k⃗4−k⃗2 ,0

1

L3

∫
d3r ′

ei(k⃗4−k⃗2)
(
r⃗ ′−r⃗
)

|r⃗ − r⃗ ′|

=
e2

4πϵ0
δσ1,σ3δσ2,σ4δk⃗3−k⃗1+k⃗4−k⃗2 ,⃗0

4π

|k⃗4 − k⃗2|2
(E.81)
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I introduce q⃗ def
= k⃗4 − k⃗2 and q⃗′ def

= k⃗1 − k⃗3. The four-center matrix elements are

Wk⃗1,σ1,k⃗2,σ2,k⃗1−q⃗′,σ3,k⃗2+q⃗,σ4 =
4πe2

4πϵ0|q⃗|2
δσ1,σ3δσ2,σ4δq⃗,q⃗′ (E.82)

The four-center matrix elements do not depend on k⃗1 nor on k⃗2. More importantly it only depends
on the difference of the two wave vectors and spins on each of the two vertices.
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Appendix F

Hartree-Fock approximation

F.1 Hartree-Fock equations in the zero-temperature case

F.1.1 Prologue to this section

This section contains a chapter on the Hartree-Fock equations, which I lifted from the main course
before I decided to get into finite temperature description right away. It may be used by the novice
to get a direct entry to the Hartree-Fock method without the obstructions of the finite temperature
formalism. It has the advantage that the formulation is closer to the wave function notation used in
first-principles electronic structure methods. The zero-temperature formalism suffers from conceptual
problems related to degenerate ground states and symmetry breaking.

F.1.2 Hartree-Fock equations

To first-order perturbation theory in the interaction Ŵ , we can use the many-particle eigenstates
of the non-interacting Hamiltonian ĥ to estimate the energies of the interacting system. The wave
functions of a non-interacting Hamiltonian are Slater determinants. Slater determinants are much
simpler to handle than general many-particle wave functions. However, the eigenstates of the non-
interacting Hamiltonian ĥ may not be the best choice. Instead, one could also search for the “best
possible” non-interacting system.

What is the best non-interacting system? Because the ground state of the system is the minimum
of the energy ⟨Φ|ĥ+Ŵ |Φ⟩ for all fermionic many-particle wave functions, any restriction of the wave
function to Slater determinants leads to an upper bound of the ground-state energy. We consider
the Slater determinant with the lowest energy as the best approximation of the ground state wave
function by a Slater determinant.

To obtain this “best” Slater determinant, we start with the total energy Eq. 2.44 and determine
its minimum with respect to the permitted variations of the one-particle reduced density matrix.
The one-particle-reduced density matrix is expressed by its natural orbitals |ϕn⟩ and occupations fn.
Therefore, we need to minimize the total energy with respect to the one-particle orbitals |ϕn⟩ and
the occupations fn. The orbitals must be kept orthonormal and this constraint is enforced using the
method of Lagrange multipliers. The occupations are kept in the allowed range by expressing it as
the fn = sin2(γn), where γn can have any real value. 1

1The careful reader may notice that for the problem at hand, we may set the occupations to either zero or one and
keep them frozen. This implies a restriction of the search to Slater determinants. This is no problem, because we are
only looking for solutions that are Slater determinants. Keeping general occupations, the results are readily generalized
to finite temperatures and the search can be extended to arbitrary many-particle wave functions or their ensembles.
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HARTREE-FOCK ENERGY FUNCTIONAL

In the Hartree-Fock approximation, the ground-state total energy for a given particle number N is
the minimum of a functional of one-particle wave functions |ϕn⟩ and occupations fn ∈ [0, 1], which
encode the one-particle-reduced density matrix

ρ̂(1)
Eq. 2.19
=

∞∑
n=0

|ϕn⟩fn⟨ϕn| (F.1)

and the electron density n(r⃗) =
∑

σ∈{↑,↓} ρ
(1)(x⃗ , x⃗).

EGS−HFN

Eq. 2.44
= min

{|ϕn⟩,fn∈[0,1]}
stat
ΛΛΛ,µ

{
Tr
[
ρ̂(1)ĥ

]
︸ ︷︷ ︸

E1P

+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree energy EH

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
exchange energy EX

−
∑
i ,j

Λj,i

(
⟨ϕi |ϕj⟩ − δi ,j

)
︸ ︷︷ ︸

orthogonality constraint

−µ
(
Tr
[
ρ̂(1)
]
− N

)
︸ ︷︷ ︸

particle-number constraint

}
(F.2)

The N-representability constraint 0 ≤ fn ≤ 1 can, for example, be enforced by representing the
occupation by fn = sin2(γn). Then the unrestricted variables γn are varied to scan the occupations
in the permitted range.
Because the energy expression is valid only for single Slater determinants, the final occupations must
be either zero or one. This implies, that the variation of the occupations should be suppressed.
Allowing fractional occupations fn /∈ {0, 1} implies to impose an additional approximation, the mean-
field approximation. This is a subtle point, that is discussed in section 2.4 below.

The matrix ΛΛΛ are the Lagrange multipliers for the orthogonality constraint of the natural orbitals.
We will see later that the eigenvalues of ΛΛΛ are related to the one-particle energies.

The chemical potential µ is the Lagrange multiplier for the particle-number constraint. Note that
Tr[ρ̂(1)] =

∑
n fn.

Minimum condition: Let me denote the term in the curly brackets of Eq. F.2 as EHFN [{|ϕj⟩, fj}].
As elaborated below, the minimum condition of EHFN . with respect to a variation of the one-particle
orbitals |ϕn⟩ is

0
!
=
1

fn

∂EHF

∂⟨ϕn|
=

[
ĥ + V̂H + V̂X

]
︸ ︷︷ ︸

Fock operator F̂

|ϕn⟩ − |ϕn⟩µ−
∑
m

|ϕm⟩Λm,n
1

fn
(F.3)

where F̂ is the Fock operator.
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FOCK OPERATOR

F̂
def
= ĥ + V̂H + V̂X

= ĥ +

V̂H︷ ︸︸ ︷∫
d4x

∣∣∣x⃗〉∫ d3r ′
e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
vH(r⃗)

〈
x⃗
∣∣∣

V̂X︷ ︸︸ ︷
−
∫
d4x

∫
d4x ′

∣∣∣x⃗〉 e2ρ(1)(x⃗ , x⃗ ′)
4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
−vX(x⃗ ,x⃗ ′)

〈
x⃗ ′
∣∣∣ (F.4)

The Fock operator is a one-particle operator, which depends on density and one-particle-reduced
density matrix.

The Fock operator defines an effective potential V̂ef f

F̂ = T̂ + V̂ext + V̂H + V̂X = T̂ + V̂ef f (F.5)

I used the symbol T̂ to denote the kinetic-energy operator and V̂ext to denote the external-potential
operator, which typically is the Coulomb potential of the nuclei. Because of the exchange term, the
effective potential is a non-local potential V̂ef f =

∫
d4x

∫
d4x ′ |x⃗⟩vef f (x⃗ , x⃗ ′)⟨x⃗ |.

In order to arrive at Eq. F.3, let me work out the derivatives of the individual terms of the total
energy functional Eq. F.2:

• The derivative of the energy E1P from the non-interacting Hamiltonian ĥ is2Eqs. 2.38,2.41

1

fn

∂E1P
∂⟨ϕn|

= Tr

[
∂E1P

∂ρ̂(1)︸ ︷︷ ︸
ĥ

1

fn

∂ρ̂(1)

∂⟨ϕn|

]
= Tr

[
ĥ
1

fn

∂

∂⟨ϕn|

ρ̂(1)︷ ︸︸ ︷∑
j

|ϕj⟩fj⟨ϕj |︸ ︷︷ ︸
|ϕn⟩fn

]
= ĥ|ϕn⟩ (F.8)

• The derivative of the Hartree energy EH is

1

fn

∂EH
∂⟨ϕn|

=

∫
d3r

dEH
dn(r⃗)︸ ︷︷ ︸
vH(r⃗)

1

fn

∂n(r⃗)

∂⟨ϕn|
Eq. 2.38
=

∫
d3r vH(r⃗)

1

fn

∂

∂⟨ϕn|

n(r⃗)︷ ︸︸ ︷∑
σ

∑
j

⟨x⃗ |ϕj⟩fj⟨ϕj |x⃗⟩︸ ︷︷ ︸∑
σ |x⃗⟩⟨x⃗ |ϕn⟩fn

=
∑
σ

∫
d3r |x⃗⟩vH(r⃗)⟨x⃗ |︸ ︷︷ ︸

V̂H

ϕn⟩ = V̂H|ϕn⟩ (F.9)

2The derivative with respect to a matrix is defined as follows:

dE =
∑
i ,j

∂E(a)

∂ai ,j
dai ,j = Tr

[
∂E(a)

∂a
da

]
⇒
(∂E
∂a

)
i ,j

def
=

∂E

∂aj,i
(F.6)

Notice that the order of the indices in the definition is swapped. This corresponds to the so-called “numerator-layout no-
tation”.(see https://en.wikipedia.org/wiki/Matrix_calculus) There is also another notation called “denominator-
layout notation”, which will not be used here.

The derivative with respect to an operator is defined analogously to the matrix case, so that

dE = Tr

[
∂E(â)

∂â
dâ

]
(F.7)

https://en.wikipedia.org/wiki/Matrix_calculus


476 F HARTREE-FOCK APPROXIMATION

• The derivative of the exchange energy EX is

1

fn

∂EX
∂⟨ϕn|

=

∫
d4x

∫
d4x ′

dEX

dρ(1)(x⃗ , x⃗ ′)︸ ︷︷ ︸
vX(x⃗ ′,x⃗)

1

fn

∂ρ(1)(x⃗ , x⃗ ′)

∂⟨ϕn|

Eq. 2.41
=

∫
d4x

∫
d4x ′ vX(x⃗ ′, x⃗)

1

fn

∂

∂⟨ϕn|
∑
j

⟨x⃗ |ϕj⟩fj ⟨ϕj |x⃗ ′⟩︸ ︷︷ ︸∑
σ |x⃗ ′⟩⟨x⃗ |ϕn⟩fn

=

∫
d4x

∫
d4x ′ |x⃗ ′⟩vX(x⃗ ′, x⃗)⟨x⃗︸ ︷︷ ︸

V̂X

|ϕn⟩ = V̂X |ϕn⟩ (F.10)

I recommend to carefully inspect the order of the indices in the derivative of the exchange
energy with the density matrix ρ(1)(x⃗ , x⃗ ′) and those in vX(x⃗ ′, x⃗).

• Derivative of the orthonormality constraint:

1

fn

∂

∂⟨ϕn|

(
−
∑
i ,j

Λj,i [⟨ϕi |ϕj⟩ − δi ,j ]
)
= −

∑
j

|ϕj⟩Λj,n
1

fn
(F.11)

• Derivative of the particle-number constraint:

1

fn

∂

∂⟨ϕn|

[
−µ
(
Tr
[
ρ̂(1)
]
− N

)]
=
1

fn

∂

∂⟨ϕn|

[
−µ
(∑

j

fj ⟨ϕj |ϕj⟩ − N
)]
= −|ϕn⟩µ (F.12)

These five derivatives are then combined to yield Eq. F.3, which, in turn, determines the Fock
operator F̂ in Eq. F.4.

The derivatives with respect to the occupation variables γn are determined analogously.

Self-consistency: For a given Fock operator, the system of equations can be solved by matrix
diagonalization

F̂ |ϕn⟩ = |ϕn⟩ϵn (F.13)

which yields the eigenstates |ϕn⟩ and the one-particle energies ϵn. The matrix of Lagrange multipliers
has the simple form Λm,n 1fn = ϵnδm,n.

The Fock operator changes with changing density and one-particle reduced density matrix and,
thus, with the orbitals.

This implies that one needs to solve the following system of equations

• The eigenvalue equation Eq. ?? with the Fock operator Eq. F.4 expressed in terms of Hartree
and exchange potentials V̂H and V̂X ,

• Eq. F.1, which provides the density matrix ρ(1) and the density n from the orbitals |ϕn⟩ and
their occupations.

• Eq. 2.38 and Eq. 2.41, which provide the Hartree potential V̂H and the exchange potential V̂X
from the density n and the density matrix ρ(1).
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Fock operator and total energy: As we will see below, the Fock operator describes the spectral
properties, but it does not provide directly the total energy as its expectation value.

Etot ̸= ⟨Φ|F̂ |Φ⟩ (F.14)

However, comparing the expectation value of the Fock operator with the total energy expression
Eq. 2.35 or Eq. F.130, we find

Etot = ⟨Φ|
1

2

(
ĥ + F̂

)
|Φ⟩ =

∑
n

fn⟨ϕn|
1

2

(
ĥ + F̂

)
|ϕn⟩ (F.15)

A similar expression, the Migdal-Galitskii-Koltun sum rule Eq. 8.36, is also valid for interactions
of arbitrary strength. The Migdal-Galitskii-Koltun sum rule can be rewritten in the form Eq. 8.37,
which is closer to the expression given above.

F.2 Contributions to exchange

While the Hartree energy has a very transparent physical interpretation, the exchange term is less
accessible. The exchange is not only important in the Hartree-Fock approximation. Also in an
approximation of many-particle theory, the random-phase approximation, the potential acting on the
electrons can be represented by an exchange term, albeit with a screened interaction instead of the
bare Coulomb potential. Another use is in a class of density functionals, the hybrid functionals which
represent part of the exchange-correlation energy by a Fock term.

F.2.1 Decompose the exchange term into local orbitals

Let me express the exchange term in local orbitals |χα⟩. The occupied one-particle wave function
are expanded in these local orbitals

|ϕn⟩ =
∑
α

|χα⟩cα,n (F.16)

and the one-particle-reduced density matrix has the form

ρ̂(1) =
∑
n

|ϕn⟩fn⟨ϕn| =
∑
α,β

|χα⟩ρ(1)α,β⟨χβ | (F.17)

The exchange energy can be expressed by the matrix elements of the density matrix and the
Coulomb matrix elements in local orbitals, called the four-center integrals.

EX
Eq. 2.40
= −

1

2

∑
m,n

fmfn

∫
d4x

∫
d4x ′

e2ϕ∗m(x⃗)ϕ
∗
n(x⃗

′)ϕn(x⃗)ϕm(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

= −
1

2

∑
α,β,γ,δ

ρ
(1)
α,βρ

(1)
γ,δ

∫
d4x

∫
d4x ′

e2χ∗β(x⃗)χ
∗
δ(x⃗
′)χγ(x⃗)χα(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

= −
1

2

∑
α,β,γ,δ

ρ
(1)
α,βρ

(1)
γ,δWβ,δ,γ,α

with Wβ,δ,γ,α =

∫
d4x

∫
d4x ′

e2χ∗β(x⃗)χ
∗
δ(x⃗
′)χγ(x⃗)χα(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(F.18)

Compare the definition of the Coulomb matrix element given here with Eq. 3.51.
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Two contributions will be of interest: The contribution EX to the energy, and secondly to the
one-particle spectrum of the electrons. The shift ∆ϵn of the one-particle level ϵn due to exchange
can be written as

∆ϵn =
∂EX
∂fn

= −
∑
α,β

⟨ψn|πβ⟩
(∑
γ,δ

Wβ,δ,γ,αρ
(1)
γ,δ

)
⟨πα|ψn⟩ (F.19)

where |πα⟩ is the projector function for the local orbitl |χα⟩.

F.2.2 Long-range exchange

Let me consider large distances, that is distances |r⃗ − r⃗ ′| so large hat the orbitals connected to
different coordinates do not overlap.

For each orbital |χα⟩, I define the position of the atom, on which it is centered as R⃗α. In order
to approximate the position of the density of a product of two orbitals, let me furthermore define

R⃗α,β =
1

2

(
R⃗α + R⃗β

)
(F.20)

EX ≈ −
1

2

∑
α,β,γ,δ

ρ
(1)
α,βρ

(1)
γ,δ

e2

4πϵ0|R⃗β,γ − R⃗α,δ|

(∫
d4x χ∗β(x⃗)χγ(x⃗)

)
︸ ︷︷ ︸

Oβ,γ

(∫
d4x ′ χ∗δ(x⃗

′)χα(x⃗ ′)
)

︸ ︷︷ ︸
Oδ,α

= −
1

2

∑
α,β,γ,δ

ρ
(1)
α,βOβ,γρ

(1)
γ,δOδ,α

e2

4πϵ0|R⃗β,γ − R⃗α,δ|
(F.21)

For an orthonormal basisset (Oα,β = δα,β) this expression becomes even simpler, namely

EX = −
1

2

∑
α,γ

e2ρ
(1)
α,γρ

(1)
γ,α

4πϵ0|R⃗γ,γ − R⃗α,α|
for Oα,β = δα,β (F.22)

Apparently the range of the exchange term is linked to the range of the density matrix. This
range is itself connected to the coherence length.

In order to understand the concept of coherence length let me consider again the free-electron gas.
The one-particle-reduced density matrix of a free-electron gas is Editor: up to some factors

ρ(1)(r⃗ , r⃗ ′) = C

∫
d3k θ(kF − |k⃗ |)ei k⃗(r⃗−r⃗

′) Eq. E.21
= C ·

4π

3
k3F

[
−3
cos(kF s)

(kF s)2
+ 3
sin(kF s)

(kF s)3

]
(F.23)

where s = |r⃗ − r⃗ ′|. The expression shows that the exchange term falls off with order |R⃗− R⃗|−5. The
number of terms increases proportional to |R⃗− R⃗|2, so that the contribution from a given radius falls
of like |R⃗ − R⃗|−3.

This implies that the decay of the exchange contributions is algebraic rather than exponential.
This changes as soon as temperature is switched on. Let me do a dimensional argument: at finite
temperature the temperature broadening is proportional to kBT . This leads to a momentum broad-
ening of ∆ϵ = ∂ϵ

∂|k⃗|∆kF = vF∆kF , where vF is the Fermi velocity. Let me estimate the coherence
length ℓc as that distance where the thermally excited electrons and holes are out of phase, i.e.
(kF +

1
2∆kF )ℓc = (kF −

1
2∆kF )ℓc + π. We obtain the estimate

ℓc =
π

∆kF
=
vFπ

kBT
(F.24)

Editor: work out values.
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Not only temperature reduces the coherence length. While temperature creates electron-hole
pairs, which destroy the coherence, also the interaction can induce electron-hole pairs which essentially
have the same effect. However, here the term is described as screening the potential. Electron-hole
pairs are formed which act against the interaction, so that the Coulomb potential in the exchange
term is replaced by a Yukawa potential having an exponential decay.

For insulators the decay of the density matrix is more rapid. Editor: I need to find an
intuitive argument.

F.2.3 On-site exchange

Evaluation of onsite Coulomb parameters

For pure angular momentum eigenstates the Coulomb matrix elements can be traced back to simple
radial integrations.

We make the assumption that the orbitals are eigenstates of angular momentum and spin, i.e.
they can be expressed in terms of radial functions Rα(r), spherical harmonics Yℓ,m(r⃗) and eigenstates
of Ŝz as

χα(r⃗ , σ) = δσ,σαRα(|r⃗ |)Yℓα,mα(r⃗) (F.25)

The angular momentum eigenstates are combined into one, i.e. L = (ℓ,m). The spherical
harmonics are defined such that

1

r2

∫
d3r δ(|r⃗ | − r)Y ∗L (r⃗)YL′(r⃗) = δL,L′ (F.26)

We make use of the Gaunt coefficients CL,L′,L′′ defined via

YL(r⃗) =
∑
L′,L′′

CL,L′,L′′YL′(r⃗)YL′′(r⃗) (F.27)

Furthermore we use

Y−L(r⃗) = Y
∗
L (r⃗) (F.28)

where −L is a short hand for ℓ,−m. Note that this relation differs for real spherical harmonics!
For a density in an angular momentum decomposition

ρ(r⃗) =
∑
ℓ,m

ρℓ,m(|r⃗ |)Yℓ,m(r⃗) (F.29)

the electrostatic potential is(see Eq. 5.42 in ΦSX: Elektrodynamik[21])

Φ(r⃗ =

∫
d3r ′

ρ(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

=
1

4πϵ0

∑
ℓ,m

4π

2ℓ+ 1
Yℓ,m(r⃗)

{
r ℓ
∫ ∞
r

dr0 r
2
0 r
−ℓ−1
0 ρℓ,m(r0) + r

−ℓ−1
∫ r

0

dr0 r
2
0 r
ℓ
0ρℓ,m(r0)

}
(F.30)

Now we can evaluate the Coulomb matrix element

UL,L′,L′′,L′′′ =

∫
d3r

∫
d3r ′

e2
(
R∗ℓ (r)Y ∗L (r⃗)

)(
R∗ℓ′(r ′)Y ∗L′(r⃗ ′)

)(
Rℓ′′(r)YL′′(r⃗)

)(
Rℓ′′′(r ′)YL′′′(r⃗ ′)

)
4πϵ0|r⃗ − r⃗ ′|

=
∑
L̄,L̄′

CL̄,−L,L′′CL̄′,−L′,L′′′

∫
d3r

∫
d3r ′

e2
(
R∗ℓ (r)Rℓ′′(r)YL̄(r⃗)

)(
R∗ℓ′(r ′)Rℓ′′′(r ′)YL̄′(r⃗ ′)

)
4πϵ0|r⃗ − r⃗ ′|

=
∑
L̄

4π

2ℓ̄+ 1
CL̄,L,L′′CL̄,L′,L′′′F

L
ℓ,ℓ′,ℓ′′,l ′′′ (F.31)
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with the so-called Slater integrals 3

F Lℓ,ℓ′,ℓ′′,l ′′′
def
=

e2

4πϵ0

∫
dr r2

∫
dr ′ r ′

2 R∗ℓ (r)Rℓ′′(r)
[min(r, r ′)]ℓ

[max(r, r ′)]ℓ+1
R∗ℓ′(r ′)Rℓ′′′(r ′) (F.32)

Kanamori parameters

Let me now consider the opposite limit, namely that all four orbitals contributing to a given exchange
term are located on the same atom.

Kanamori parameters[16]

U =

∫
d4x

∫
d4x ′

e2χ∗m(x⃗)χ
∗
m(x⃗

′)χ∗m(x⃗)χ
∗
m(x⃗

′)

4πϵ0|r⃗ − r⃗ ′|

U ′ =

∫
d4x

∫
d4x ′

e2χ∗m(x⃗)χ
∗
m′(x⃗

′)χ∗m(x⃗)χ
∗
m′(x⃗

′)

4πϵ0|r⃗ − r⃗ ′|

J =

∫
d4x

∫
d4x ′

e2χ∗m(x⃗)χ
∗
m′(x⃗

′)χ∗m′(x⃗)χ
∗
m(x⃗

′)

4πϵ0|r⃗ − r⃗ ′|

J ′ =

∫
d4x

∫
d4x ′

e2χ∗m(x⃗)χ
∗
m(x⃗

′)χ∗m′(x⃗)χ
∗
m′(x⃗

′)

4πϵ0|r⃗ − r⃗ ′|
(F.33)

• Terms that describe the interaction of spherical densities

– the largest term is the one with all four indices equal. This term favors that the electrons
accumulate in few spatial and spin orbitals. It disfavors that the electrons distribute over
many orbitals. If the electrons are in one spatial orbital, this term favors that the electrons
have the same spin. This term is identified with the intraband Coulomb parameter U.

– The second largest term is Lα = −Lδ and Lβ = −Lδ, but Lα ̸= Lβ, because each pair
produces a spherical contribution to the density. There is only a contribution if σα = σδ
and σβ = σγ . This term is identified with the interband Coulomb parameter U ′.

Model for an atom

Let me make a model (See Eq. 9 of [113]) of the interaction energy of an atom, which has the form

Ĥ =
1

2

∑
m,m′,σ

Un̂m,σn̂m′,−σ +
1

2

∑
m,m′,σ;m ̸=m′

(U − J)n̂m,σn̂m′,σ

=
1

2

∑
m,m′,σ,σ′

Un̂m,σn̂m′,σ′︸ ︷︷ ︸
Hartree energy

−
1

2

∑
m,σ

Un̂2m,σ −
1

2

∑
σ

∑
m,m′

Jn̂m,σn̂m′,σ +
1

2

∑
m,σ

Jn̂2m,σ︸ ︷︷ ︸
exchange energy

=
1

2
U
(∑
m,σ

n̂m,σ

)2
−
1

2
J
∑
σ

(∑
m

n̂m,σ

)2
︸ ︷︷ ︸
1
2
(n̂↑+n̂↓)2+

1
2
(n̂↑−n̂↓)2

−
1

2
(U − J)

∑
m,σ

n̂2m,σ︸ ︷︷ ︸
self-energy correction

=
1

2
(U −

1

2
J)n̂2t −

1

4
Jn̂2s −

1

2
(U − J)

∑
m,σ

n̂2m,σ︸ ︷︷ ︸
self-energy correction

(F.34)

3Compare the notation with Tran et al.[112]
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where

n̂t =
∑
m,σ

n̂m,σ

n̂σ =
∑
m

n̂m,σ

n̂s = n̂↑ − n̂↓ (F.35)

In order to arrive at the mean-field approximation, I express each operator by its expectation value
and the fluctuation operator about the expectation value.

Ĥ =
1

2

(
U −

1

2
J
)(
n̂t − ⟨nt⟩

)2
−
1

4
J
(
n̂s − ⟨ns⟩

)2
−
1

2
(U − J)

∑
m,σ

(
n̂m,σ − ⟨nm,σ⟩

)2
+
[1
2
(U −

1

2
J)⟨nt⟩

](
n̂t − ⟨nt⟩

)
−
[1
2
J⟨ns⟩

](
n̂s − ⟨ns⟩

)
−
∑
m,σ

[
(U − J)⟨nm,σ⟩

](
n̂m,σ − ⟨nm,σ⟩

)
+
1

2
(U −

1

2
J)⟨nt⟩2 −

1

4
J⟨ns⟩2 −

1

2
(U − J)

∑
m,σ

⟨nm,σ⟩2 (F.36)

The Hartree-Fock approximation amounts to ignoring the quadratic terms in the fluctuations. The
terms linear in the fluctuation define the band structure, but do not affect the total energy, because
the expectation value of the fluctuations vanish, i.e.〈

n̂ − ⟨n⟩
〉
= 0 . (F.37)

Thus, the total energy of the Hartree-Fock term is the last line

EHF =
1

2

(
U −

1

2
J
)
⟨nt⟩2 −

1

4
J⟨ns⟩2 −

1

2

(
U − J

)∑
m,σ

⟨nm,σ⟩2 (F.38)

and the energy levels are obtained from the second line, the mean-field Hamiltonian

ĤMF =
[
(U −

1

2
J)⟨nt⟩

]
n̂t −

[1
2
J⟨ns⟩

]
n̂s −

∑
m,σ

[
(U − J)⟨nm,σ⟩

]
n̂m,σ

=
∑
m,σ

(
U⟨nt⟩ − J⟨nσ⟩ − (U − J)⟨nm,σ⟩

)
n̂m,σ

ϵm,σ =
(
U⟨nt⟩ − J⟨nσ⟩ − (U − J)⟨nm,σ⟩

)
=

∑
m′( ̸=m)

(U − J)⟨nm′,σ⟩+
∑
m′

U⟨nm′,−σ⟩ (F.39)

It can be shown that Janak’s Theorem[74] holds, that is the one-particle energies are obtained as
derivatives

ϵHFm,σ =
∂EHF

∂nm,σ
(F.40)

of the mean-field total energy with respect to the corresponding average occupation.
The first term of ϵm,σ, U⟨nt⟩, expresses that the one-particle energy levels shift as result of the

Coulomb repulsion. The second term, −J⟨nσ⟩, describes Hund’s rule, i.e. electrons are stabilized
by other electrons with the same spin, because they avoid each other better than electrons with
equal spin. The last term, −(U − J)⟨nm,σ⟩, describes that filled orbitals are stabilized with respect
to unoccupied orbitals by U − J.

The last term, the self-interaction correction is the most important term of Hartree-Fock com-
pared to the Kohn-Sham bandstructure of DFT. This term is responsible for ensuring Koopmanns’
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theorem[114, 115], which says that the energy difference can be calculated from energy levels. In
other words it says that

∂ϵHFm,σ
∂nmσ

= 0 for 0 < nm,σ < 1 (F.41)

Note, however, that this equation is only valid for the derivatives with respect to the occupation on
the same orbital!

This property follows from the fact that for isolated systems a state with fractional occupation
is a classical mixture of two states (ensembles) with different particle numbers.

4

N
1 2 3 4

empty filled

U−J

ε

e2

e3

e

Fig. F.1: Energy level diagram of an atom with several degenerate atomic levels, that change only
due to the Coulomb interaction. Occupied and unoccupied orbitals must be different, if the energy
level, that receives an electron must not shift upon charging. The fact that the energy level remains
constant upon charging reflects the fact that the energy is a sequence of piece-wise linear segments
describing the coexistence of two ensembles with different particle numbers.

The self energy correction term makes sure that energy differences for different occupations can
be estimated from the energy level differences as seen in Figure F.2.

−

vacuum level
e

M
0

M
+

M
0

M

Fig. F.2: Schematic energy level of an atom in the Hartree-Fock approximation with two degenerate
energy levels, that become different only via occupation. Note that the energy level, that changes
its occupation remains fixed, while the other orbitals shift due to the coulomb interaction with the
electron that is shifted around.
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F.2.4 Bond-exchange

Let me consider a two-center bond. That is, the bonding orbital is polarized in one or the other
bonding partner. The asymmetry is governed by the angle α. The bonding orbital |ϕb⟩ and the
antibonding orbital |ϕa⟩ are

|ψb⟩ = +|χ1,σ⟩ cos(α) + |χ2,σ⟩ sin(α) with occupation fb
|ψa⟩ = −|χ1,σ⟩ sin(α) + |χ2,σ⟩ cos(α) with occupation fa (F.42)

|χ1⟩ on the orbital on the left atom R1 and |χ2⟩ is the one on the right atom R2.
A value of α = π/4 = 45◦ describes the symmetric case. In a half-filled system, i.e. fb = 1 and

fa = 0,

• α = 0◦: the electron is localized on the left atom R1

• α = 45◦: the electron is delocalized over both orbitals

• α = 90◦: the electron is localized on the right atom R2.

The corresponding density matrix is

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
=

(
fb cos

2(α) + fa sin
2(α) (fb − fa) cos(α) sin(α)

(fb − fa) cos(α) sin(α) fb sin
2(α) + fa cos

2(α)

)

=
fa + fb
2

(
1 0

0 1

)
+
fb − fa
2

(
cos(2α) sin(2α)

sin(2α) − cos(2α)

)
(F.43)

The exchange energy is

EX = −
1

2

∑
α,β,γ,δ

ρ
(1)
α,βρ

(1)
γ,δ

∫
d4x

∫
d4x ′

e2χ∗β(x⃗)χ
∗
δ(x⃗
′)χγ(x⃗)χα(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

= −
1

2

∑
α,β,γ,δ

ρ
(1)
α,βρ

(1)
γ,δWα,β,γ,δ

= −
1

2

2∑
α=1

ρ(1)α,αρ
(1)
α,αWα,α,α,α︸ ︷︷ ︸
onsite

−
1

2

2∑
α̸=β=1

{
ρ
(1)
α,βρ

(1)
β,αWβ,α,β,α︸ ︷︷ ︸
NDDO

+ ρ
(1)
α,βρ

(1)
α,βWβ,β,α,α + ρ

(1)
α,αρ

(1)
β,βWα,β,β,α︸ ︷︷ ︸

bondx

+ ρ
(1)
α,βρ

(1)
β,βWβ,β,β,α + ρ

(1)
β,αρ

(1)
β,βWα,β,β,β + ρ

(1)
β,βρ

(1)
α,βWβ,β,α,β + ρ

(1)
β,βρ

(1)
β,αWβ,α,β,β︸ ︷︷ ︸

31 terms

}
(F.44)

Let me exploit the symmetry of the four-center integrals Wα,β,γ,δ:

Wα,β,γ,δ = Wβ,α,δ,γ = W
∗
γ,δ,α,β = W

∗
δ,γ,β,α (F.45)

For real-valued orbitals, where χ∗α(r⃗)χβ(r⃗) = χ
∗
β(r⃗)χα(r⃗), we can furthermore exploit

Wα,β,γ,δ = Wγ,β,α,δ = Wα,δ,γ,β

= Wδ,α,β,γ = Wβ,γ,δ,δ

= W ∗α,δ,γ,β = W
∗
γ,β,α,δ

= W ∗β,γ,δ,α = W
∗
δ,α,β,γ (F.46)
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With these simplifications, we arrive at

EX = −
1

2
ρ
(1)
1,1ρ

(1)
1,1W1,1,1,1 −

1

2
ρ
(1)
2,2ρ

(1)
2,2W2,2,2,2︸ ︷︷ ︸

onsite

− ρ(1)1,2ρ
(1)
2,1W1,2,1,2︸ ︷︷ ︸
NDDO

− 2ρ(1)1,2ρ
(1)
1,2W1,1,2,2︸ ︷︷ ︸
bondx

− 2ρ(1)1,2ρ
(1)
2,2W1,2,2,2 − 2ρ

(1)
1,2ρ

(1)
1,1W2,1,1,1︸ ︷︷ ︸

31-terms

(F.47)

Let me now insert the density matrix Eq. F.43

EX = −
1

8

(
(fb + fa) + (fb − fa) cos(2α)

)2
W1,1,1,1 −

1

8

(
(fb + fa)− (fb − fa) cos(2α)

)2
W2,2,2,2︸ ︷︷ ︸

onsite

−
1

4
(fb − fa)2 sin2(2α)

(
W1,2,1,2︸ ︷︷ ︸
NDDO

+2W1,1,2,2︸ ︷︷ ︸
bondx

)
−
1

2
(fb − fa) sin(2α)

[(
(fb + fa)− (fb − fa) cos(2α)

)
W1,2,2,2 +

(
(fb + fa) + (fb − fa) cos(2α)

)
W2,1,1,1︸ ︷︷ ︸

31-terms

)
(F.48)

Let me now calculate the shift of the band edges due to the exchange term for fb = 1 and fa = 0

∆ϵa = −
1

4

sin2(2α)︷ ︸︸ ︷(
1− cos2(2α)

)
W1,1,1,1 −

1

4

sin2(2α)︷ ︸︸ ︷(
1− cos2(2α)

)
W2,2,2,2︸ ︷︷ ︸

onsite

+
1

2
sin2(2α)

(
W1,2,1,2︸ ︷︷ ︸
NDDO

+2W1,1,2,2︸ ︷︷ ︸
bondx

)
− sin(2α) cos(2α)

(
W1,2,2,2 −W2,1,1,1

)
︸ ︷︷ ︸

31-terms

(F.49)

∆ϵb = −
1

8

(
1 + cos(2α)

)2
W1,1,1,1 −

1

8

(
1− cos(2α)

)2
W2,2,2,2︸ ︷︷ ︸

onsite

−
1

2
sin2(2α)

(
W1,2,1,2︸ ︷︷ ︸
NDDO

+2W1,1,2,2︸ ︷︷ ︸
bondx

)
− sin(2α)

(
W1,2,2,2 +W1,2,2,2

)
+ sin(2α) cos(2α)

(
W1,2,2,2 −W1,2,2,2

)
︸ ︷︷ ︸

31-terms

(F.50)

• Left-right correlation: Left-right correlation describes the tendency of electrons to localize
on opposite sides of a bond, in order to reduce the energy cost of their Coulomb repulsion.
Considering a symmetric bond, the onsite terms have the form

EX = −
W1111
4

(
(fa + fb)

2 + (fb − fa)2 cos2(2α)
)

(F.51)

This term favors the polarization of the bond to one or the other side.

There is, however, a competition between the kinetic energy and this exchange term. The
bond polarization destroys the delocalization of the electron over both bond partners and thus
the chemical bond. A hydrogen molecule, the Hubbard dimer, undergoes a phase transition
to an antiferromagnetic structure beyond a certain strength of the interaction. In the anti-
ferromagnetic configuration, the spin-up electron is one atom and the spin-down electron is
on the other atom. A weak delocalization to the other atom is still present. The spin-up
electron can polarize in one or the other direction. Each of these two configurations can be
described by a Slater determinant. The fully correlated state is a superposition of these two
Slater determinants, resulting in a spin-singlet state with antiferromagnetic correlations.
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• The term denoted NDDO describes the exchange term due to the intersite Coulomb interaction.
The term favors α = 45◦, that is, it it favors a symmetric bond with delocalized electrons.
This term is closely related to the kinetic energy Ekin = −t(fb − fa) sin(2α). The terms
(NDDO+BONDX) can be expressed as ENDDO+BONDXX = −W1212+2W1,1,224t2 E2kin.

The term is sensitive to the phase shift of bonding and antibonding orbitals, and it tends to
open up the band gaps which are due to covalent bond formation.

• The terms denoted 31-terms open up the band gap for ionic bonds. The 31-terms do not
shift the empty orbital in a symmetric bond. The empty orbital is shifted up when the bond is
strongly polarized, while the effect vanishes for a completely polarized ?????.

In a simple approximation (the density of the orbitals form a homogeneously charged sphere)
the matrix elements can be related to the radius of the orbitals. W1222 = Q12

r2
W2111 =

Q12
r1

.

Therefore, the level shift due to the 31 term is 12 sin(4α)Q12
(
1
r2
− 1

r1

)
. Thus, the conduction

band is shifted up if the bond is polarized towards the more extended orbital, which it is shifted
down, if the orbital is polarized towards the more localized orbital.

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.8

0.8

1.6

2.4

31-terms NDDO+bondX

on-site

Fig. F.3: Shift of the band edges due to different exchange terms. full line in blue: NDDO+BONDX
Red dash-dotted line: 31-terms and black dashed lines: symmetric onsite term. Empty states are
shifted up for better visibility. Each term must be scaled by the respective matrix elements.

F.3 Double occupancy

In Eq. F.137 on p. 510 I investigated the terms of the interaction that are ignored in the mean-
field approximation. The second term in this expression described an effect of occupation-number
fluctuations. Here I want to consider a pair of these terms and investigate its role when a double
occupancy is specified. The underlying idea is that this second term, which is absent in the mean-
field expression, describes important correlation effects. These can be described by the repulsion of
electrons in strongly interacting orbitals.

Consider two natural orbitals and probabilities Pσa,σb . Let me define the double occupation
dab

def
= Pσ⃗σaσb which, in our case, equals d = P11. For a given set of occupations (fa, fb) and a

specified double occupation we obtain the probabilities as

P00 + P10 + P01 + P11 = 1

P10 + P11 = fa

P01 + P11 = fb

P11 = d (F.52)
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so that

P00 = 1 + d − f1 − f2; P10 = f1 − d ; P01 = f2 − d and P11 = d (F.53)

The double occupations cannot be chosen arbitrary. The requirement that all probabilities must
be positive, leads to the following conditions

max(0, f1 + f2 − 1) ≤ d ≤ min(f1, f2)

−min
(
f1f2, (1− f1)(1− f2)

)
≤ d − f1f2 ≤ min

(
f1(1− f2), (1− f1)f2

)
(F.54)

1

2

∞∑
m,n=1

(∑
σ⃗

Pσ⃗(σm − fm)(σn − fn)︸ ︷︷ ︸
(
∑
σ⃗ Pσ⃗σmσn)−fmfn

)(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)

≥ −
1

2

∑
m ̸=n
min {fmfn, (1− fm)(1− fm)}

(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
(F.55)

F.4 Exact properties of the exchange-correlation hole

F.4.1 Bounds for the exchange-correlation hole

The lower bound of the exchange-correlation hole is

0 ≤ n(2)(r⃗ , r⃗ ′) = n(1)(r⃗)
[
n(1)(r⃗ ′) + hxc(r⃗ , r⃗ ′)

]
n(1)>0⇒ 0 ≤ n(1)(r⃗ ′) + hxc(r⃗ , r⃗ ′)

⇒ −n(1)(r⃗ ′) ≤ hxc(r⃗ , r⃗ ′) (F.56)

Editor: Is there an upper bound hxc(r⃗ , r⃗ ′) ≤ 0? It could be derived analogously
from n(2)(r⃗ , r⃗ ′) ≤ n(1)(r⃗)n(1)(r⃗ ′), if the latter were a true statement.

F.5 Self-consistent Hartree-Fock code for finite temperatures

Below, I discuss how a Hartree-Fock code can be built for a finite system with known matrix elements
for the non-interacting Hamiltonian and known interaction matrix elements. The code is built for
demonstration purposes. It is simple, but neither efficient nor robust.

The code works at finite temperatures.

F.5.1 Theoretical background

At finite temperature T , the grand potential is, expressed as functional of the one-particle-reduced
density matrix ρ(1),

ΩHFT,µ[ρ
(1)] =

∑
α,β

h
(0)
α,βρ

(1)
β,α +

1

2

∑
α,β,γ,δ

(
Wα,β,γ,δ −Wα,β,δ,γ

)
ρ(1)γ,αρ

(1)
δ,β︸ ︷︷ ︸

Etot

+ kBT Tr
[
ρ(1) ln(ρ(1)) + (111− ρ(1)) ln(111− ρ(1))

]
︸ ︷︷ ︸

−TS

−µTr[ρ(1)]︸ ︷︷ ︸
−µN

(F.57)
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1. The first term describes the kinetic energy and the potential energy contribution from the
interaction with the atom cores. The non-interacting Hamiltonian h(0) contains the orbital
energies on the diagonal and the hopping matrix elements on the off-diagonal elements.

2. The second term describes the electron-electron interaction with the interaction tensor is W .
It is divided into the Hartree energy (first) and the exchange energy (second).

3. The third term describes the heat bath, which exchanges heat with the electrons. For a single
Slater determinant, this term would vanish, because the occupations are all either zero or one.
We use the entropy expression of non-interacting electrons. This heat bath extends Hartree-
Fock theory to finite temperatures.4

4. The fourth and last term is the particle reservoir.

The domain5 of this free-energy functional are all hermitian matrices ρ in the one-particle Hilbert
space with eigenvalues between zero and one.[27].

The derivative of the grand potential is

∂ΩT,µ[ρ
(1)]

∂ρ
(1)
u,v

= h(0)v,u +
∑
α,γ

(
Wα,v,γ,u −Wα,v,u,γ

)
ρ(1)γ,α︸ ︷︷ ︸

hout

+kBT

{
ln
[
ρ(1)(111− ρ(1))−1

]}
v,u

− µδu,v(F.58)

∂ΩT,µ[ρ
(1)]

∂µ
= −Tr[ρ(1)]︸ ︷︷ ︸

−N

. (F.59)

∂ΩT,µ[ρ
(1)]

∂T
= kBTr

[
ρ(1) ln(ρ(1)) + (111− ρ(1)) ln(111− ρ(1))

]
︸ ︷︷ ︸

−S

(F.60)

A new one-particle Hamiltonian hout has been introduced, which we call output Hamiltonian and
which is defined by the density matrix via

houtα,β
def
= h

(0)
α,β +

∑
γ,δ

(
Wδ,α,γ,β −Wδ,α,β,γ

)
ρ
(1)
γ,δ . (F.61)

Effective Hamiltonian

Next, we express the density matrix as functional of an effective Hamiltonian hef f

ρ(1)[hef f , µ]
def
=

[
1 + eβ(h

ef f−µ111)
]−1

⇔ ρ
(1)
α,β[h

ef f , µ] =
∑
n

ψα,n
1

1 + eβ(ϵn−µ)
ψ∗β,n (F.62)

where the ϵn are the eigenvalues of the effective Hamiltonian hef f and ψ⃗n are its eigenvectors.
This representation simplifies the derivatives of the reservoirs −TS − µN considerably, because

we can use

hef f
Eq. F.62
= µ111− kBT ln

[
ρ(1)(111− ρ(1))−1

]
(F.63)

which leads to

dΩT,µ[ρ
(1)]

dρ
(1)
u,v

Eq. F.58
= h(0)v,u +

∑
α,γ

(
Wα,v,γ,u −Wα,v,u,γ

)
ρ(1)γ,α︸ ︷︷ ︸

hout

−hef fv ,u = h
out
v,u − hef fv ,u (F.64)

4The extension to an ensemble of a Slater determinant is questionable, because the electron-electron interaction is
no more consistent with a model of an ensemble of Slater determinants.

5The domain of a functional is the set of arguments for which the functional is defined.



488 F HARTREE-FOCK APPROXIMATION

The condition, that this derivative vanishes, determines the minimum of the grand potential.
Thus, for the physical density matrix, the output Hamiltonian is identical to the effective Hamiltonian.
This is the so-called self-consistency condition of the Hartree-Fock method.

Derivative of the density matrix with respect to the effective Hamiltonian

Let me work out the derivative of the one-particle-reduced density matrix with respect to the effective
Hamiltonian. We need to consider that the variation dh of the Hamiltonian does not commutate
with the Hamiltonian h. Therefore, let me calculate the changes dϵn of eigenvalues and those, dψ⃗n,
of the eigenvectors by perturbation theory.

Let me consider a Hamiltonian ĥ, which has eigenvalues ϵn and eigenstates |ψn⟩. The response
of the density matrix with respect to a change of the Hamiltonian is obtained as follows.

δϵn = ⟨ψn|δĥ|ψn⟩

δ|ψn⟩ =
∑
m,m ̸=n

|ψm⟩
⟨ψm|δĥ|ψn⟩
ϵn − ϵm

(F.65)

δρ̂(1) =
∑
n

|δψn⟩fn⟨ψn|+
∑
n

|ψn⟩fn⟨δψn|+
∑
n

|ψn⟩δfn⟨ψn|

Eq. F.65
=

∑
n,m;m ̸=n

|ψm⟩
⟨ψm|δĥ|ψn⟩
ϵn − ϵm

fn⟨ψn|+
∑

n,m;m ̸=n
|ψn⟩fn

⟨ψm|δĥ|ψn⟩∗

ϵn − ϵm
⟨ψm|

+
∑
n

|ψn⟩
(
−
[ 1

1 + eβ(ϵn−µ)

]−2
β(δϵn − δµ)eβ(ϵn−µ)

)
︸ ︷︷ ︸

=δfn=δ
[
1+eβ(ϵn−µ)]−1=−βfn(1−fn)(δϵn−δµ)

⟨ψn|

=
∑

n,m;m ̸=n
|ψm⟩

⟨ψm|δĥ|ψn⟩
ϵn − ϵm

fn⟨ψn|+
∑

n,m;m ̸=n
|ψn⟩
⟨ψn|δĥ|ψm⟩
ϵn − ϵm

fn⟨ψm|

−β
∑
n

|ψn⟩fn(1− fn)
(
⟨ψn|δĥ|ψn⟩ − δµ

)
⟨ψn|

=
∑

n,m;m ̸=n
|ψn⟩⟨ψn|δĥ|ψm⟩

fn − fm
ϵn − ϵm

⟨ψm| − β
∑
n

|ψn⟩⟨ψn|δĥ|ψn⟩fn(1− fn)⟨ψn|

+δµβ
∑
n

|ψn⟩fn(1− fn)⟨ψn|

∂ρ
(1)
α,β[h

ef f , µ]

∂hef fγ,δ

=
∑
m,n

ψα,nψ
∗
β,mψ

∗
γ,nψδ,m

{
(fn − fm)/(ϵn − ϵm) for ϵn ̸= ϵm
−βfn(1− fn) for ϵn = ϵm

(F.66)

∂ρ
(1)
α,β[h

ef f , µ]

∂µ
= β

∑
n

ψα,nfn(1− fn)ψ∗β,n = β
(
ρ(1)(111− ρ(1)

)
α,β

(F.67)

For equal orbital indices, the quantity used, −βfn(1 − fn), is the limes of (fn − fm)/(ϵn − ϵm) for
ϵm − ϵn → 0. Therefore, we use the same expression for equal diagonal terms also for any pair of
degenerate eigenvalues.

The derivative has a symmetry, which we will exploit lateron.

∂ρ
(1)
α,β[h

ef f , µ]

∂hef fγ,δ

Eq. F.66
=

∂ρ
(1)
δ,γ [h

ef f , µ]

∂hef fβ,α

(F.68)

Thus, we may replace the upper and lower index pairs, if we also revert the order in each index pair.
Let me derive the inverse of dρ(1)[hef f , µ]/dhef f , because it will be used later. The inverse is
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defined via ∑
γ,δ

Kα′,β′,γ,δ
∂ρ
(1)
β,α[h

ef f , µ]

∂hef fγ,δ

= δα,α′δβ,β′ (F.69)

The expression for the inverse,

Kα,β,γ,δ =
∑
m,n

ψ∗α,nψβ,mψγ,nψ
∗
δ,m

{
(ϵn − ϵm)/(fn − fm) for ϵn ̸= ϵm
−[βfn(1− fn)]−1 for ϵn = ϵm

(F.70)

can be verified by insertion of Eq. F.66 into the defining equation for the inverse Eq. F.70.

Derivative of the grand potential

Finally, we obtain the derivative of the energy with respect to the effective Hamiltonian in the form

δΩT,µ

[
ρ(1)[hef f , µ]

]
=
∑
u,v

∂ΩT,µ[ρ
(1)]

∂ρ
(1)
u,v

δρu,v +
∂ΩT,µ[ρ

(1)]

∂µ
δµ

=
∑
u,v

∂ΩT,µ[ρ
(1)]

∂ρ
(1)
u,v

(∑
x,y

∂ρ
(1)
u,v [h

ef f , µ]

∂hef fx,y

δhef fx,y +
∂ρ
(1)
u,v [h

ef f , µ]

∂µ
δµ

)
+
∂ΩT,µ[ρ

(1)]

∂µ
δµ

=
∑
u,v

∂ΩT,µ[ρ
(1)]

∂ρ
(1)
u,v

∑
x,y

∂ρ
(1)
u,v [h

ef f , µ]

∂hef fx,y

δhef fx,y

+

(∑
u,v

∂ΩT,µ[ρ
(1)]

∂ρ
(1)
u,v

∂ρu,v [h
ef f , µ]

∂µ
+
∂ΩT,µ[ρ

(1)]

∂µ

)
δµ

=
∑
u,v

(
houtv,u − hef fv ,u

)∑
x,y

∂ρ
(1)
u,v [h

ef f , µ]

∂hef fx,y

dhef fx,y

+

(∑
u,v

(
houtv,u − hef fv ,u

)
β
(
ρ(1)(111− ρ(1))

)
u,v
− Tr[ρ(1)]

)
dµ (F.71)

• For a variation at fixed chemical potential, we set dµ = 0, which leaves us with the partial
derivative with respect to the effective Hamiltonian.

• For a variation of the grand potential at fixed particle number we set

dµ =
∂µ[hef f , N]

∂hef fx,y

dhef fx,y (F.72)

At this point, I switch from the grand potential to the Helmholtz potential, the thermodynamic
potential for an ensemble with fixed temperature and particle number.

AT,N [h
ef f ] = ΩT,µ(N) + µ(N) · N (F.73)

dAT,N [h
ef f ]

dhef fx,y

=
∂ΩT,µ[h

ef f ]

∂hef fx,y

+

(
∂ΩT,µ[h

ef f ]

∂µ
+ N

)
dµ[hef f , N]

dhef fx,y

=
∑
u,v

(
houtv,u − hef fv ,u

)∑
x,y

dρ
(1)
u,v [h

ef f , µ]

∂hef fx,y

∣∣∣∣∣
µ[hef f ,N]

+

(
Tr
[(
hout − hef f

)
βρ(1)(111− ρ(1))

]
−Tr[ρ(1)] + N︸ ︷︷ ︸

=0

)
dµ[hef f , N]

dhef fx,y

(F.74)
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The variation of the chemical potential at constant particle number is obtained from the constraint
equation

Tr[ρ(1)[hef f , µ] = N

⇒ Tr
[
∂ρ

∂hef fx,y

dhef fx,y +
∂ρ(1)

∂µ
dµ

]
= 0

⇒ dµ = −
(
Tr

[
∂ρ(1)

∂µ

])−1∑
x,y

∂Tr[ρ(1)]

∂hef fx,y

dhef fx,y =
∑
u,v

−δu,v
Tr
[
βρ(1)(111− ρ(1))

] dρu,v
dhef fx,y

dhef fx,y (F.75)

This provides us with the derivative of the grand potential at constant particle number

dAT,N [h
ef f ]

dhef fx,y

=
∑
u,v

(
houtv,u − hef fv ,u

)∑
x,y

dρ
(1)
u,v [h

ef f , µ]

∂hef fx,y

+ Tr
[(
hout − hef f

)
βρ(1)

(
111− ρ(1)

)]∑
u,v

−δu,v
Tr
[
βρ(1)(111− ρ(1))

] dρ(1)u,v
dhef fx,y︸ ︷︷ ︸

dµ/dhef f

=
∑
α,β

[(
houtβ,α − hef fβ,α

)
−
Tr
[(
hout − hef f

)
βρ(1)(111− ρ(1))

]
Tr
[
βρ(1)(111− ρ(1))

] δβ,α︸ ︷︷ ︸
constraint

]

×
∑
m,n

ψα,nψ
∗
x,nψy,mψ

∗
β,m

{
(fn − fm)/(ϵn − ϵm) for ϵn ̸= ϵm
−βfn(1− fn) for ϵn = ϵm︸ ︷︷ ︸
dρα,β/∂hef fx,y

(F.76)

The term denoted “constraint” ensures that the gradient dAT,N/dh is trace-less. This is due to a
fact that a shift of the effective Hamiltonian by a constant energy does not affect the density matrix,
because the chemical potential shifts along, if the particle-number constraint is enforced. This term
could as well be implemented by simply removing the trace of the final expression for dAT,N/dhef f .

The contribution of dρα,β/∂hef fx,y related to the terms diagonal in the band indices m, n describe
the response of the Helmholtz potential to the eigenvalues of hef f . This means that only these
diagonal terms are present if hout is diagonal in the eigenstates of hef f .

Self-consistent cycle

1. The derivative of the free energy with respect to the effective Hamiltonian can used to set up
a gradient-following scheme, which improves the effective Hamiltonian iteratively.

hn+1 = hn − αf
dAT,N
dhef f

∣∣∣∣
hn

(F.77)

αf is a suitably chosen mixing factor α.

2. The simple mixing is not efficient. A better choice is a two-parameter mixing

hn+1 =
2

1 + af
hn −

1− af
1 + af

hn−1 −
dAT,N
dhef f

∣∣∣∣
hn

∆2

1 + af
(F.78)

The values of the two parameters can be chosen in the range 0 < af < 1 and 0 < ∆. We call
af friction parameter and ∆ the time step.

This scheme is inspired by the Car-Parrinello method .[116]. Here, we start from a Lagrangian

L[h, v ] =
1

2
T r
[
vv †
]
− AT,N [h] (F.79)



F HARTREE-FOCK APPROXIMATION 491

together with the action

S[h(t)] =
∫
dt L[h,

.
h] (F.80)

The stationary principle of the action yields the Euler-Lagrange equation to which I added a
friction term.

..
h(t) = −

dAT,N
dhef f

∣∣∣∣
h(t)

−αf
.
h(t)︸ ︷︷ ︸

friction

(F.81)

The differential equation is discretized using the Verlet algorithm. In the Verlet algorithm[117],
the time derivatives are replaced by the differential quotients

.
h(t)→

1

2∆

(
h(t + ∆)− h(t − ∆)

)
..
h(t)→

1

∆2

(
h(t + ∆)− 2h(t) + h(t − ∆)

)
(F.82)

This turns the differential equation into an equation for the effective Hamiltonian at discrete
times tn = ∆ · n. For a given time tn it connects three successive Hamiltonians, h(tn + ∆),
h(tn) and h(tn − ∆). Resolving for h(tn + ∆) and identifying hef fn = h(tn) yields the iterative
procedure suggested above. The parameter af in Eq. F.78 is related to αf by af = αf∆/2.

3. Only those parts of the effective Hamiltonian, which affect the density matrix, experiences
forces. Eigenstates of the effective Hamiltonian, which are sufficiently far from the Fermi level,
will not be updated.

One solution is to discard the term dρ/dhef f and simply proceed to a mixing scheme of
Hamiltonians.

hef f ,n+1 = hef f ,n + α
(
hout − hef f − 111

Tr
[
hout − hef f

]
Tr[111]

)
(F.83)

4. The price to be paid is that we arrive again at a fairly inefficient iteration scheme. Therefore,
we return to the fictitious Lagrangian method of Car and Parrinello, but we change the kinetic
energy. The new Lagrangian

L[h, v ] = −
1

2

[ ∑
α,β,γ,δ

vβ,α
dρ
(1)
α,β

dhef fγ,δ

∣∣∣∣∣
h

vγ,δ︸ ︷︷ ︸
Tr
[.
h
.
ρ
(1)
]

]
− AT,N [h] (F.84)

has the Euler-Lagrange equation

−
dρ
(1)
β,α

dhef fγ,δ

∣∣∣∣∣
h

..
hα,β −

d2ρ
(1)
β,α

dhef fγ,δ dh
ef f
ζ,η

∣∣∣∣∣
h

.
hζ,η

.
hα,β = −

∂AT,N

∂hef fγ,δ

∣∣∣∣∣
h

= −
∂AT,N

∂ρ
(1)
β,α

∣∣∣∣∣
ρ[h,µ[N]]

∂ρ
(1)
β,α

∂hef fγ,δ

∣∣∣∣∣
h

⇒
..
hα,β = +

∂AT,N

∂ρ
(1)
β,α

∣∣∣∣∣
ρ[h,µ[N]]

+
∑

γ,δ,α′,β′

Kα,β;γ,δ
d2ρ

(1)
β′,α′

dhef fγ,δ dh
ef f
ζ,η

∣∣∣∣∣
h

.
hζ,η

.
hα′,β′ (F.85)

with Kα′,β′;γ,δ defined by

∑
γ,δ

Kα′,β′;γ,δ
dρ
(1)
β,α

dhef fγ,δ

∣∣∣∣∣
h

= δα,α′δβ,β′ (F.86)
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The explicit form of Kα′,β′;γ,δ is given in Eq. F.70.

We managed to get rid of dρ(1)/dhef f in the main terms, but we are left with a complicated
velocity-dependent term. The latter term applies an effective friction if an eigenstate of the
effective Hamiltonian approaches the chemical potential, and thus starts to contribute to the
kinetic energy. Because this would break the energy conservation, the velocity is reduced to
compensate its effect.

The remedy is to remove the velocity dependent term from the equation of motion, but to
monitor the resulting energy change. When we add in addition a friction term we obtain

..
hα,β =

∂AT,N
∂ρβ,α

∣∣∣∣
ρ(1)[h,µ[N]]

− C
.
hα,δ (F.87)

This yields our equation of motion

..
hα,β =

[(
houtα,β − hef fα,β

)
−
Tr
[(
hout − hef f

)
βρ(1)(111− ρ(1))

]
Tr
[
βρ(1)(111− ρ(1))

] δα,β︸ ︷︷ ︸
constraint

]
− C

.
hα,δ (F.88)

The result appears trivial because it integrates the product of equation of motion and
.
ρ
(1)

.

Monitor energy conservation

E =
∑
i

∂L
∂vi

vi − L(x⃗ , v⃗ , t)

.
E =

(
d

dt

∂L
∂vi

)
vi +

∂L
∂vi

.
v i −

∂L
∂vi

.
v i︸ ︷︷ ︸

=0

−
∂L
∂xi

.
x i −

∂L
∂t

vi=
.
x i
=
∑
i

vi

(
d

dt

∂L
∂vi
−
∂L
∂xi

)
−
∂L
∂t

(F.89)

Es expected, we obtain the energy conservation law. The energy is conserved if (1) the Euler Lagrange
equations are satisfied, and (2) the Lagrangian is not explicitly time dependent.

Let me now specialize the Lagrangian to be closed to our problem at hand

L(x⃗ , v⃗ , t) =
1

2

∑
i ,j

viMi ,j(x⃗)vj − A(x⃗) (F.90)

.
E =

∑
i

.
x i

(∑
j,k

dMi ,j(x⃗)

dxk

.
xk

.
x j +

∑
j

Mi ,j(x⃗)
..
x j︸ ︷︷ ︸

d/dt ∂L/∂vi

−
1

2

∑
j,k

dMj,k

dxi

.
x j

.
xk +

A(x⃗)

∂xi︸ ︷︷ ︸
−∂L/∂xi

)
(F.91)

Instead of the Euler-Lagrange equations, which would lead to a conserved energy, I use another
equation of motion, which is analogous to

∑
j

Mi ,j(x⃗)
..
x j +

A(x⃗)

∂xi
+ C

∑
i

Mi ,j(x⃗)
.
x j = 0 (F.92)
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With this equation of motion, I obtain

.
E =

∑
i

.
x i

(∑
j,k

dMi ,j(x⃗)

dxk

.
xk

.
x j −

1

2

∑
j,k

dMj,k

dxi

.
x j

.
xk − C

∑
j

Mi ,j(x⃗)
.
x j

)

=
1

2

∑
i ,j,k

dMi ,j(x⃗)

dxk

.
xk

.
x i

.
x j − C

∑
i ,j

.
x iMi ,j(x⃗)

.
x j

=
1

2

∑
i ,j

.
x i

.
M i ,j

.
x j − C

∑
i

.
x iMi ,j

.
x j

=
d

dt

1
2

∑
i ,j

.
x iMi ,j

.
x j

−∑
i ,j

.
x iMi ,j

..
x j − C

∑
i

.
x iMi ,j

.
x j (F.93)

In order to obtain a conserved energy, we need to compensate for this energy change

Econs = L(x⃗ , v⃗ , t) =
∑
i ,j

1

2
viMi ,j(x⃗)vj + A(x⃗)−

.
E

=
∑
i ,j

1

2
viMi ,j(x⃗)vj + A(x⃗)−

∫
dt

(
d

dt

(1
2

∑
i ,j

.
x iMi ,j

.
x j

)
−
∑
i ,j

.
x iMi ,j

..
x j − C

∑
i

.
x iMi ,j

.
x j

)

= A(x⃗) +

∫
dt

(∑
i ,j

.
x iMi ,j

..
x j + C

∑
i

.
x iMi ,j

.
x j

)
(F.94)

Translating this into our equation, using M = −dρ(1)/dh, we obtain an energy

E(t) = AT,N [h]−
∫
dt

{ ∑
α,β,γ,δ

..
hα,β

∂ρ
(1)
β,α

∂hef fγ,δ

.
hγ,δ − C

∑
α,β,γ,δ

.
hα,β

∂ρ
(1)
β,α

∂hef fγ,δ

.
hγ,δ

}

= AT,N [h]−
∫
dt

{∑
α,β

..
hα,β

.
ρ
(1)

β,α − C
∑
α,β

.
hα,β

.
ρ
(1)

β,α

}
= AT,N [h]−

∫
dt Tr

[..
h
.
ρ
(1)
+ C

.
h
.
ρ
(1)
]

(F.95)

F.5.2 Calculating one step of the HF loop

We start the iteration with the non-interacting Hamiltonian hef f ,n = h(0) and hef f ,n−1 = h(0). The
superscript n of the effective Hamiltonian identifies a particular iteration in the sequence leading to
the converged result.

1. The effective Hamiltonian hef f is diagonalized∑
γ

ĥef fα,βψβ,n = ψα,nϵn (F.96)

2. The occupations fn are obtained as Fermi function.

fn =
(
1 + eβ(ϵn−µ)

)−1
with

∑
n

fn = N . (F.97)

An internal loop adjusts the chemical potential consistent with the selected particle number N.

3. The one-particle-reduced density matrix is obtained as

ρ
(1)
α,β =

∑
n

ψα,nfnψ
∗
β,n (F.98)
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4. The Helmholtz potential is evaluated as

AT,N [ρ] =
∑
α,β

h
(0)
α,βρ

(1)
β,α +

1

2

∑
α,β,γ,δ

(
Wα,β,γ,δ −Wα,β,δ,γ

)
ρ(1)γ,αρ

(1)
δ,β︸ ︷︷ ︸

Etot

+ kBT Tr
[
ρ(1) ln(ρ(1)) + (111− ρ(1)) ln(111− ρ(1))

]
︸ ︷︷ ︸

−TS

(F.99)

5. The output potential is determined as

houtv,u = h
(0)
v,u +

∑
α,γ

(
Wα,v,γ,u −Wα,v,u,γ

)
ρ(1)γ,α (F.100)

6. The derivative of the Helmholtz potential is

dAT,N
dhx,y

=
∑
α,β

[(
houtβ,α − hef fβ,α

)
−
Tr
[(
hout − hef f

)
βρ(1)(111− ρ(1))

]
Tr
[
βρ(1)(111− ρ(1))

] δβ,α

]

×
∑
m,n

ψα,nψ
∗
x,nψy,mψ

∗
β,m

{
(fn − fm)/(ϵn − ϵm) for ϵn ̸= ϵm
−βfn(1− fn) for ϵn = ϵm

(F.101)

7. The effective Hamiltonian is updated using the force and the effective Hamiltonians of the two
previous iterations

hef f ,n+1 =
1

1 + a
hef f ,n −

1− a
1 + a

hef f ,n−1 −
dAT,N
dhef f

∣∣∣∣
hef f ,n

∆2

1 + a
(F.102)

8. In order to only store at most three effective Hamiltonians, the arrays are mapped hef f ,n →
hef f ,n−1 and then hef f ,n+1 → hef f ,n.

The sequence is repeated until the free energy A(T,N) remains constant.

F.5.3 Source code

The source code uses the LAPACK library for the matrix diagonalization.
On my MacBook, I compile and run the code below with

gfortran -framework accellerate -o code.x code.f90
code.x

The input parameters are specified in the parameter section of the main code.
The code hfscf.f90 can be downloaded from the ΦSX Website phisx.org. For the sake of

completeness it is included below.

!
! ...1.........2.........3.........4.........5.........6.........7.........8

program main
! **************************************************************************
! ** hartree fock code for the hydrogen dimer. **
! ** uses diagonalization of the effective hamiltonian and follows the **
! ** energy gradient **
! ** **

phisx.org
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! ** caution: demonstration code: simple rather than efficient **
! ** caution: do not choose the temperature too low **
! ** **
! ** for demonstration purposes only. use at own risk **
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
integer(4),parameter :: norb=4 ! #(spin orbitals)
real(8) ,parameter :: kbt=1.d-3 ! k_B*T: T=temperature
real(8) ,parameter :: thop=1.d0 ! hopping parameter
real(8) ,parameter :: u=3.d0 ! interaction parameter
real(8) ,parameter :: nel=2.1d0 ! #(electrons)
real(8) ,parameter :: dt=5.d-2 ! time step (5.d-1 is still ok)
real(8) ,parameter :: anne=1.d-4 ! friction parameter
logical(4),parameter :: tstopandgo=.false. ! accelerates optimization
real(8) ,parameter :: tol=1.d-6 ! scf convergence criterion
real(8) ,parameter :: ampran=1.d-1 ! size for initial randomization
integer(4),parameter :: niter=10000 ! x#(iterations)
integer(4),parameter :: nfilo=6
integer(4),parameter :: nfiltra=1001
complex(8),parameter :: cone=(1.d0,0.d0) ! complex 1
complex(8) :: hni(norb,norb) ! non-interacting hamiltonian
complex(8) :: w(norb,norb,norb,norb) !interaction tensor
complex(8) :: heff(norb,norb) ! effective hamiltonian
complex(8) :: hm(norb,norb)
complex(8) :: hp(norb,norb)
complex(8) :: rhom(norb,norb)
complex(8) :: rhop(norb,norb)
real(8) :: etot
real(8) :: ekin
real(8) :: energyreservoir
real(8) :: efric
real(8) :: firstetot
real(8) :: etotlast
real(8) :: eig(norb)
complex(8) :: dedrho(norb,norb)
complex(8) :: psi(norb,norb)
integer(4) :: i,j,iter
logical(4) :: convg

! **************************************************************************
open(nfiltra,form=’formatted’,file=’tra.dat’)
rewind nfiltra

!
! ==========================================================================
! == set up hamiltonian
! == (left,up)(left,dn),(right,up),(right,dn)
! ==========================================================================

hni=(0.d0,0.d0)
hni(1,3)=-cone*thop
hni(2,4)=-cone*thop
do i=1,norb
do j=i+1,norb
hni(j,i)=conjg(hni(i,j))

enddo
enddo
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!
w=(0.d0,0.d0)
do i=1,2
do j=1,2
w(i,j,i,j)=cone*u
w(i+2,j+2,i+2,j+2)=cone*u

enddo
enddo

!
! ==========================================================================
! == scf loop
! ==========================================================================
!
! == initial conditions ====================================================

call randomham(norb,ampran,heff)
heff=heff+hni
hm=heff

etotlast=huge(etotlast)
energyreservoir=0.d0
do iter=1,niter

! == total energy and forces
call hfetot(norb,kbt,nel,hni,w,heff,etot,dedrho)

!
! == repeat previous step with zero velocity if energy goes up ===========

if(tstopandgo.and.etot.gt.etotlast) then
heff=hm
efric=efric+energyreservoir
energyreservoir=0.d0
cycle

end if
etotlast=etot

!
! == propagate ===========================================================

hp=(heff*2.d0-hm*(1.d0-anne)+dedrho*dt**2)/(1.d0+anne)
!
! == report ==============================================================

call rhoofh(norb,kbt,nel,hm,rhom)
call rhoofh(norb,kbt,nel,hp,rhop)

ekin=-0.5d0*real(sum((hp-hm)*conjg(rhop-rhom)))/(2.d0*dt)**2
energyreservoir=energyreservoir &

& -real(sum((hp-2.d0*heff+hm)*conjg(rhop-rhom)))/(2.d0*dt**2)
efric=efric+4.d0*anne*ekin ! dissipated energy
write(*,fmt=’(i10," ekin,etot,econs=",10f20.5)’) &

& iter,ekin,etot,etot+energyreservoir
if(iter.eq.1)firstetot=etot
write(nfiltra,fmt=’(i10,10f20.5)’)iter,ekin,etot-firstetot &

& ,ekin+etot-firstetot &
& ,etot-firstetot+energyreservoir

!
! == check convergence and terminate loop ================================

convg=maxval(abs(dedrho)).lt.tol
if(convg) exit



F HARTREE-FOCK APPROXIMATION 497

!
! == switch ==============================================================

hm=heff
heff=hp

enddo
if(convg) then
write(*,fmt=’("scf convergence ok")’)

else
write(*,fmt=’("scf loop not converged")’)

end if
!
! ==========================================================================
! == write eigenvalues and eigenstates =====================================
! ==========================================================================

write(*,*)
call mydiag(norb,heff,eig,psi)
do i=1,norb
write(*,fmt=’("ib=",i3," e=",f10.5," psi=",10(2f7.3,"; "))’) &

& i,eig(i),psi(:,i)
enddo
stop
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine randomham(norb,ampran,ranh)
! **************************************************************************
! ** produces a random hermitean matrix **
! ** the matrix elements are equally distributed in [-ampran,ampran] **
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
integer(4),intent(in) :: norb
real(8) ,intent(in) :: ampran !
complex(8),intent(out):: ranh(norb,norb) !random matrix
integer(4) :: i,j
real(8) :: ran1,ran2

! **************************************************************************
do i=1,norb
do j=1,norb
call random_number(ran1)
call random_number(ran2)
ran1=(2.d0*ran1-1.d0)*ampran
ran2=(2.d0*ran2-1.d0)*ampran
ranh(i,j)=cmplx(ran1,ran2,kind=8)
ranh(j,i)=cmplx(ran1,-ran2,kind=8)

enddo
ranh(i,i)=real(ranh(i,i),kind=8)

enddo
return
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine hfetot(norb,kbt,nel,hni,w,heff,etot,dedrho)
! **************************************************************************
! *****************************************Peter Bloechl, Goslar 2018*******
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implicit none
integer(4),intent(in) :: norb
real(8) ,intent(in) :: kbt
real(8) ,intent(in) :: nel
complex(8),intent(in) :: hni(norb,norb)
complex(8),intent(in) :: w(norb,norb,norb,norb)
complex(8),intent(in) :: heff(norb,norb)
real(8) ,intent(out):: etot
complex(8),intent(out):: dedrho(norb,norb)
logical(4),parameter :: tpr=.false.
logical(4),parameter :: ttest=.true.
logical(4),parameter :: tgrandpot=.false.
complex(8),parameter :: cnull=(0.d0,0.d0)
complex(8),parameter :: cone=(1.d0,0.d0)
real(8) :: eig(norb)
complex(8) :: psi(norb,norb)
real(8) :: occ(norb)
complex(8) :: rho(norb,norb)
complex(8) :: mat(norb,norb)
real(8) :: mu
real(8) :: nofmu
real(8) :: etot1
real(8) :: svar
integer(4) :: i,j,k
real(8) :: trdrhodmu,trdedrhodrhodmu

! **************************************************************************
!
! ==========================================================================
! == diagonalize heff using lapack routine
! ==========================================================================

call mydiag(norb,heff,eig,psi)
!
! ==========================================================================
! == determine chemical potential and occupations
! ==========================================================================

call muofn(kbt,nel,norb,eig,mu,occ)
nofmu=sum(occ)

!
! ==========================================================================
! == determine density matrix
! ==========================================================================

rho=cnull
do i=1,norb
do j=1,norb
do k=1,norb
rho(i,j)=rho(i,j)+psi(i,k)*occ(k)*conjg(psi(j,k))

enddo
enddo

enddo
!
! ==========================================================================
! == grand potential and derivative
! ==========================================================================

call eofrho(norb,hni,w,rho,etot,dedrho)
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dedrho=dedrho-heff
!
! == electron entropy ======================================================

etot1=0.d0
do k=1,norb
if(occ(k).ne.0.d0.and.occ(k).ne.1.d0) then
etot1=etot1+kbt*(occ(k)*log(occ(k))+(1.d0-occ(k))*log(1.d0-occ(k)))

end if
enddo
etot=etot+etot1

!
! ==========================================================================
! == constraint
! ==========================================================================

mat=cnull
do i=1,norb
mat(i,i)=cone

enddo
mat=matmul(rho,mat-rho)/kbt !drhodmu

!
trdrhodmu=0.d0
trdedrhodrhodmu=0.d0
do i=1,norb
trdrhodmu=trdrhodmu+real(mat(i,i),kind=8)
do j=1,norb
trdedrhodrhodmu=trdedrhodrhodmu+real(dedrho(i,j)*mat(j,i),kind=8)

enddo
enddo

!
! == dedrho=dedrho-(domega/dmu*dmu+mu*N)/drho ===========================

svar=-trdedrhodrhodmu/trdrhodmu
do i=1,norb
dedrho(i,i)=dedrho(i,i)+svar

enddo
return
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine eofrho(norb,hni,w,rho,etot,detot)
! **************************************************************************
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
integer(4),intent(in) :: norb
complex(8),intent(in) :: hni(norb,norb)
complex(8),intent(in) :: w(norb,norb,norb,norb)
complex(8),intent(in) :: rho(norb,norb)
real(8) ,intent(out):: etot
complex(8),intent(out):: detot(norb,norb)
complex(8),parameter :: cnull=(0.d0,0.d0)
integer(4) :: i,j,k,l

! *****************************************Peter Bloechl, Goslar 2018*******
!
! ==========================================================================
! == total energy and output hamiltonian
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! ==========================================================================
etot=0.d0
detot(:,:)=cnull

!
do i=1,norb
do j=1,norb
etot=etot+real(hni(i,j)*rho(j,i),kind=8)
detot(i,j)=detot(i,j)+hni(i,j)

enddo
enddo

!
do i=1,norb
do j=1,norb
do k=1,norb
do l=1,norb
etot=etot &

& +0.5d0*real((w(l,i,k,j)-w(l,i,j,k))*rho(k,l)*rho(j,i),kind=8)
detot(i,j)=detot(i,j)+0.5d0*(w(l,i,k,j)-w(l,i,j,k))*rho(k,l)
detot(l,k)=detot(l,k)+0.5d0*(w(l,i,k,j)-w(l,i,j,k))*rho(j,i)

enddo
enddo

enddo
enddo

!
return
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine rhoofh(norb,kbt,nel,heff,rho)
! **************************************************************************
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
integer(4),intent(in) :: norb
real(8) ,intent(in) :: kbt
real(8) ,intent(in) :: nel
complex(8),intent(in) :: heff(norb,norb)
complex(8),intent(out):: rho(norb,norb)
complex(8),parameter :: cnull=(0.d0,0.d0)
real(8) :: eig(norb)
complex(8) :: psi(norb,norb)
real(8) :: mu
real(8) :: occ(norb)
integer(4) :: i,j,k

! **************************************************************************
!
! ==========================================================================
! == diagonalize heff using lapack routine
! ==========================================================================

call mydiag(norb,heff,eig,psi)
!
! ==========================================================================
! == determine chemical potential and occupations
! ==========================================================================

call muofn(kbt,nel,norb,eig,mu,occ)
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!
! ==========================================================================
! == determine density matrix
! ==========================================================================

rho=cnull
do i=1,norb
do j=1,norb
do k=1,norb
rho(i,j)=rho(i,j)+psi(i,k)*occ(k)*conjg(psi(j,k))

enddo
enddo

enddo
return
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine muofn(kbt,nel,norb,eig,mu,occ)
! **************************************************************************
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
real(8) ,intent(in) :: kbt
real(8) ,intent(in) :: nel
integer(4),intent(in) :: norb
real(8) ,intent(in) :: eig(norb)
real(8) ,intent(out):: mu
real(8) ,intent(out):: occ(norb)
logical(4),parameter :: ttest=.true.
logical(4),parameter :: tpr=.false.
real(8) ,parameter :: neltol=1.d-12
real(8) ,parameter :: mutol=1.d-12
real(8) :: mulo,muhi
real(8) :: nlo,nhi,nofmu
integer(4) :: i

! **************************************************************************
mulo=eig(1) -30.d0*kbt
muhi=eig(norb)+30.d0*kbt
call occofmu(kbt,mulo,norb,eig,occ)
nlo=sum(occ)
call occofmu(kbt,muhi,norb,eig,occ)
nhi=sum(occ)
if((nlo-nel)*(nhi-nel).gt.0) then
print*,’nlo,nhi=’,nlo,nhi,’ mulo,muhi=’,mulo,muhi
stop ’bisection error’

end if
do i=1,10000
mu=0.5d0*(mulo+muhi)
call occofmu(kbt,mu,norb,eig,occ)
nofmu=sum(occ)
if(abs(nofmu-nel).lt.neltol.and.(abs(muhi-mulo).lt.mutol)) then
if(tpr) print*,’converged: iter=’,i,’ nofmu-n=’,nofmu-nel &

& ,’mulo muhi=’,mulo,muhi
exit

end if
if(nofmu.gt.nel) then
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muhi=mu
else
mulo=mu

end if
enddo

if(ttest) then
if(abs(nel-nofmu).gt.neltol) then
print*,’abs(nel-nofmu) ’,abs(nel-nofmu)
stop ’test2 failed’

end if
if(abs(muhi-mulo).gt.mutol) then
print*,’muhi-mulo ’,muhi-mulo
stop ’test3 failed’

end if
end if
return
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine occofmu(kbt,mu,norb,eig,occ)
! **************************************************************************
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
real(8) ,intent(in) :: kbt
real(8) ,intent(in) :: mu
integer(4),intent(in) :: norb
real(8) ,intent(in) :: eig(norb)
real(8) ,intent(out):: occ(norb)
real(8) ,parameter :: xexparg=700.d0
integer(4) :: i
real(8) :: svar

! **************************************************************************
do i=1,norb
svar=(eig(i)-mu)/kbt
if(abs(svar).lt.xexparg) then
occ(i)=1.d0/(1.d0+exp(svar))

else
occ(i)=0.d0
if(svar.lt.0) occ(i)=1.d0

end if
enddo
return
end

!
! ...1.........2.........3.........4.........5.........6.........7.........8

subroutine mydiag(n,h,e,u)
! **************************************************************************
! *****************************************Peter Bloechl, Goslar 2018*******

implicit none
integer(4),intent(in) :: n
complex(8),intent(in) :: h(n,n)
real(8) ,intent(out):: e(n)
complex(8),intent(out):: u(n,n)
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logical(4),parameter :: ttest=.true.
real(8) :: rwork(3*n)
integer(4),parameter :: lwork=100
complex(8) :: cwork(lwork)
complex(8) :: hout(n,n)
integer(4) :: info
integer(4) :: i,j

! **************************************************************************
u=h
call zheev(’v’,’u’,n,u,n,e,cwork,lwork,rwork,info)
if(info.lt.0) then
write(*,fmt=’("the ",i3,"-th argument had an illegal value")’)-info
stop ’error stop in mydiag’

else if(info.gt.0) then
write(*,fmt=’("the algorithm failed to converge")’)
write(*,fmt=’(i3," off-diagonal elements of an intermediate")’)info
write(*,fmt=’("tridiagonal form did not converge to zero")’)
stop ’error stop in mydiag’

end if

if(ttest) then
hout=-h
do i=1,n
do j=1,n
hout(i,j)=hout(i,j)+sum(u(i,:)*e(:)*conjg(u(j,:)))

enddo
enddo
if(maxval(abs(hout)).gt.1.d-6) then
print*,’deviation ’,maxval(abs(hout))
stop ’test1 failed’

end if
end if

return
end

F.5.4 Generalization to periodic systems

Editor: This section is under construction!
The discussion of the previous sections did not consider the translation symmetry of a crystal.

The generalization to a system with translation symmetry is, however, quite straightforward.
The key element is to replace indices as followsEditor: Is the t⃗ correct? Time is not

a vector...

α→ α, t⃗

n → n, k⃗ (F.103)

We consider a supercell with N primitive unit cells. In this supercell, we consider the wave
functions to be strictly periodic. This requirement determines a discrete grid of N k-points in the
reciprocal unit cell.

The goal is to generalize the Helmholtz potential of Eq. F.57 to periodic systems. Because the
energy of an infinite system is infinite, we determine the Helmholtz potential per unit cell.

We start with the energy from Eq. F.57. We skip the entropy contribution later for the time
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being and return to it later.

E =
1

N

{ ∑
α,t⃗,β,t⃗ ′

h(α,t⃗),(β,t⃗ ′)ρ(β,t⃗ ′),(α,t⃗) +
1

2

∑
α,t⃗,β,t⃗ ′,γ,t⃗ ′′,δ,t⃗ ′′′

W(α,t⃗),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′)

×
(
ρ(γ,t⃗ ′′),(α,t⃗)ρ(δ,t⃗ ′′′),(β,t⃗ ′) − ρ(δ,t⃗ ′′′),(α,t⃗)ρ(γ,t⃗ ′′),(β,t⃗ ′)

)}
(F.104)

Now we use Bloch theorem to block-diagonalize the density matrix. The natural orbitals, i.e. the
eigenstates of the density matrix, are expressed as Bloch states.

ψ(α,t⃗),(n,k⃗) = ψ(α,⃗0),(n,k⃗)e
i k⃗ t⃗ (F.105)

We normalize the wave function such that their contribution in one unit cell equals one.∑
α

ψ(α,⃗0),(n,k⃗)ψ(α,⃗0),(m,k⃗) = δn,m (F.106)

This differs from the discussion without lattice translation, where the norm is evaluated as a sum
over the entire system.

Thus, the density matrix has the form

ρ(α,t⃗),(β,t⃗ ′) =
1

N
∑
n,k⃗

ψ(α,t⃗),(n,k⃗)f(n,k⃗)ψ
∗
(β,t⃗ ′),(n,k⃗)

=
1

N
∑
n,k⃗

ψ(α,⃗0),(n,k⃗)f(n,k⃗)ψ
∗
(β,⃗0),(n,k⃗)

ei k⃗(t−t
′)

=
1

N
∑
k⃗

ρα,β(k⃗)e
i k⃗(t−t ′) (F.107)

with the k-dependent density matrix

ρα,β(k⃗)
def
=
∑
n

ψ(α,⃗0),(n,k⃗)f(n,k⃗)ψ
∗
(β,⃗0),(n,k⃗)

(F.108)

The potential acting on the electrons due to the interaction can be calculated as

v(α,t⃗),(β,t⃗ ′)
def
=
1

N
∂Eint

∂ρ(β,t⃗ ′),(α,t⃗)

=
1

N
∑

(γ,t⃗ ′′),(δ,t⃗ ′′′)

(
W(α,t⃗),(δ,t⃗ ′′′),(β,t⃗ ′),(γ,t⃗ ′′) −W(α,t⃗),(δ,t⃗ ′′′),(γ,t⃗ ′′),(β,t⃗ ′)

)
ρ(γ,t⃗ ′′),(δ,t⃗ ′′′)

=
1

N
∑
k⃗

∑
γ,δ

{
1

N
∑
t⃗ ′′,t⃗ ′′′

(
W(α,t⃗),(δ,t⃗ ′′′),(β,t⃗ ′),(γ,t⃗ ′′) −W(α,t⃗),(δ,t⃗ ′′′),(γ,t⃗ ′′),(β,t⃗ ′)

)
ei k⃗(t⃗

′′−t⃗ ′′′)
}
ργ,δ(k⃗)

(F.109)

Now we insert the density matrix, expressed in terms of the k-dependent density matrix into the
energy expression. Before doing so, however, we eliminate one sum over unit cells by exploiting the
periodicity of the material.

h(α,t⃗),(β,t⃗ ′) = h(α,⃗0),(β,t⃗ ′−t⃗)

W(α,t⃗),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′) = W(α,⃗0),(β,t⃗ ′−t⃗),(γ,t⃗ ′′−t⃗),(δ,t⃗ ′′′−t⃗) (F.110)
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E =
1

N

{∑
α,β

∑
t⃗,t⃗ ′

h(α,t⃗),(β,t⃗ ′)
1

N
∑
k⃗

ρβ,α(k⃗)e
i k⃗(t⃗ ′−t⃗)

︸ ︷︷ ︸
ρ
(β,t⃗′),(α,t⃗)

+
1

2

∑
α,β,γ,δ

∑
t⃗,t⃗ ′,t⃗ ′′,t⃗ ′′′

W(α,t⃗),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′)

×
( 1
N
∑
k⃗

ργ,α(k⃗)e
i k⃗(t⃗ ′′−t⃗)

︸ ︷︷ ︸
ρ
(γ,t⃗′′),(α,t⃗)

1

N
∑
k⃗ ′

ρδ,β(k⃗ ′)e
i k⃗ ′(t⃗ ′′′−t⃗ ′)

︸ ︷︷ ︸
ρ
(δ, ⃗t′′′),(β,t⃗′)

−
1

N
∑
k⃗

ρδ,α(k⃗)e
i k⃗(t⃗ ′′′−t⃗)

︸ ︷︷ ︸
ρ
(δ,t⃗′′),(α,t⃗)

1

N
∑
k⃗ ′

ργ,β(k⃗ ′)e
i k⃗ ′(t⃗ ′′−t⃗ ′)

︸ ︷︷ ︸
ρ
(γ,t⃗′′),(β,t⃗′)

}

=
1

N
∑
k⃗

∑
α,β

(
1

N
∑
t⃗ t⃗ ′

h(α,t⃗),(β,t⃗ ′)e
i k⃗(t⃗ ′−t⃗)

)
︸ ︷︷ ︸

hα,β(k⃗)

ρβ,α(k⃗)

+
1

2

1

N 2
∑
k⃗ ,k⃗ ′

∑
α,β,γ,δ

{(
1

N
∑

t⃗,t⃗ ′,t⃗ ′′,t⃗ ′′′

W(α,t⃗),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′)e
i k⃗(t⃗ ′′−t⃗)ei k⃗

′(t⃗ ′′′−t⃗ ′)
)

︸ ︷︷ ︸
Wα,β,γ,δ(k⃗ ,k⃗ ′;k⃗ ,k⃗ ′)

ργ,α(k⃗)ρδ,β(k⃗ ′)

−
(
1

N
∑

t⃗,t⃗ ′,t⃗ ′′,t⃗ ′′′

W(α,t⃗),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′)e
i k⃗(t⃗ ′′′−t⃗)ei k⃗

′(t⃗ ′′−t⃗ ′)
)

︸ ︷︷ ︸
Wα,β,γ,δ(k⃗ ,k⃗ ′;k⃗ ′,k⃗)

ρδ,α(k⃗)ργ,β(k⃗ ′)

}

=
1

N
∑
k⃗

∑
α,β

hα,β(k⃗)ρβ,α(k⃗)

+
1

2

1

N 2
∑
k⃗ ,k⃗ ′

∑
α,β,γ,δ

(
Wα,β,γ,δ(k⃗ , k⃗ ′, k⃗ , k⃗ ′)−Wα,β,δ,γ(k⃗ , k⃗ ′, k⃗ ′, k⃗)

)
ργ,α(k⃗)ρδ,β(k⃗ ′) (F.111)

with

hα,β(k⃗)
def
=
∑
t⃗ ′

h(α,⃗0),(β,t⃗)e
i k⃗ t⃗

Wα,β,γ,δ(k⃗ , k⃗ ′; k⃗ ′′, k⃗ ′′′) =
1

N
∑

t⃗,t⃗ ′,t⃗ ′′,t⃗ ′′′

W(α,t⃗),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′)e
−i k⃗ t⃗e−i k⃗ t⃗

′
ei k⃗

′ t⃗ ′′ei k⃗
′′ t⃗ ′′′

=
∑
t⃗ ′,t⃗ ′′,t⃗ ′′′

W(α,⃗0),(β,t⃗ ′),(γ,t⃗ ′′),(δ,t⃗ ′′′)e
−i k⃗ t⃗ ′ei k⃗

′ t⃗ ′′ei k⃗
′′ t⃗ ′′′ (F.112)

Because of translation symmetry, many interaction matrix elements vanish

Wα,β,γ,δ(k⃗ , k⃗ ′; k⃗ ′′, k⃗ ′′′) = 0 for k⃗ + k⃗ ′ ̸= k⃗ ′′ + k⃗ ′′′ (F.113)

which is equivalent to momentum conservation during scattering.

Entropy contribution

We need to determine the entropy for the electrons in Eq. F.57. As for the energy, the entropy is
calculated per unit cell.

S[ρ] =
1

N {−kB Tr [ρ ln(ρ) + (1
11− ρ) ln(111− ρ)]} (F.114)



506 F HARTREE-FOCK APPROXIMATION

The density matrix of the entire system is already decomposed in eigenstates and eigenvalues of
the density matrix.

ρ(α,t⃗),(β,t⃗ ′) =
∑
n,k⃗

1√
N
ψ(α,t⃗),(n,k⃗)f(n,k⃗)

1√
N
ψ∗
(β,t⃗ ′),(n,k⃗)

(F.115)

The entropy can be written as

S[ρ] = −kB
1

N
∑
k⃗

∑
n

[fn,k ln(fn,k) + (1− fn,k) ln(1− fn,k)]

= −kB
1

N
∑
k⃗

Tr
[
ρ(k⃗) ln(ρ(k⃗)) + (111− ρ(k⃗)) ln(111− ρ(k⃗))

]
(F.116)

Helmholtz potential

Adding the energy Eq. F.111 and the entropy Eq. F.116, we arrive at the Helmholtz potential

AT,N [{ρ(k⃗)}] =
1

N
∑
k⃗

∑
α,β

hα,β(k⃗)ρβ,α(k⃗)

+
1

2

1

N 2
∑
k⃗ ,k⃗ ′

∑
α,β,γ,δ

(
Wα,β,γ,δ(k⃗ , k⃗ ′, k⃗ , k⃗ ′)−Wα,β,δ,γ(k⃗ , k⃗ ′, k⃗ ′, k⃗)

)
ργ,α(k⃗)ρδ,β(k⃗ ′)

+ kBT
1

N
∑
k⃗

Tr
[
ρ(k⃗) ln(ρ(k⃗)) + (111− ρ(k⃗)) ln(111− ρ(k⃗))

]
(F.117)

Effective one-particle Hamiltonian as independent variable

We introduce an effective Hamiltonian hef fα,β(k⃗), which parameterizes the one-particle-reduced density
matrix.

ρ(k⃗) =
[
111 + exp

(
β(ĥef f (k⃗)− µ111)

)]−1
(F.118)

The density matrix is evaluated by diagonalizing the effective potential

hef fα,β(k⃗)ψα,0,n,k⃗ = ψα,0,n,k⃗ϵn(k⃗) with
∑
α

ψα,0,n,k⃗ψ
∗
α,0,m,k⃗

= δn,m (F.119)

which yields the density matrix as

ρα,β(k⃗) =
∑
n

ψα,0,n,k⃗ fn,k⃗ψ
∗
β,0,n,k⃗

(F.120)

with the occupations

fn,k⃗ =
1

1 + exp
(
β(ϵn(k⃗)− µ)

) (F.121)

The chemical potential is determined so that the particle number per unit cell is correct

N =
1

N
∑
n,k⃗

fn,k⃗ (F.122)

Thus, we obtain the k-dependent reduced density matrix as function of a k-dependent effec-
tive Hamiltonian. This in turn allows one to express the Helmholtz potential as functional of this
Hamiltonian.

AT [{hef f (k⃗)}] = AT
[{
ρ
(
k⃗ ,
{
hef f (k⃗)

})}]
(F.123)

With braces we denote that the contributions from all k-points contribute.
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Minimum condition

At self consistency the effective Hamiltonian has the form

N
∂ΩT,µ

∂ρβ,α(k⃗)
= hα,β(k⃗) +

1

N
∑
k⃗ ′

∑
α,β,γ,δ

(
Wα,γ,β,δ(k⃗ , k⃗ ′, k⃗ , k⃗ ′)−Wα,γ,δ,β(k⃗ , k⃗ ′, k⃗ ′, k⃗)

)
ρδ,γ(k⃗ ′)

−hef fα,β(k⃗)
!
= 0 (F.124)

This yields an expression for the effective Hamiltonian

hef fα,β(k⃗) = hα,β(k⃗)

+
1

N
∑
k⃗ ′

∑
α,β,γ,δ

(
Wα,γ,β,δ(k⃗ , k⃗ ′, k⃗ , k⃗ ′)−Wα,γ,δ,β(k⃗ , k⃗ ′, k⃗ ′, k⃗)

)
ρδ,γ(k⃗ ′)

(F.125)

The derivative with respect to the Hamiltonian introduces a further term

N
∂ΩT,µ

∂hα,β(k⃗)
= N

∑
k⃗

∑
γ,δ

∂ΩT,µ

∂ρδ,γ(k⃗ ′)

∂ρδ,γ(k⃗ ′)

∂hef fα,β(k⃗)
(F.126)

where

∂ρδ,γ(k⃗ ′)

∂(hef fα,β(k⃗)− µδα,β)
Eq. F.66
= δk⃗ ,k⃗ ′

∑
m,n

ψδ,⃗0,m,k⃗ψ
∗
α,⃗0,m,k⃗

ψβ,⃗0,n,k⃗ψ
∗
γ,⃗0,n,k⃗

×

{
(fn,k⃗ − fm,k⃗)/(ϵn,k⃗ − ϵm,k⃗) for ϵn,k⃗ ̸= ϵm,k⃗
− 1
kBT

fn,k⃗(1− fn,k⃗) for ϵn,k⃗ = ϵm,k⃗
(F.127)

We obtain at fixed chemical potential

∂ρδ,γ(k⃗ ′)

∂hef fα,β(k⃗)
=
∑
u,v

∂ρδ,γ(k⃗ ′)

∂(hef fu,v (k⃗)− µδu,v )
∂hef fu,v (k⃗)

∂hef fα,β(k⃗)

=
∂ρδ,γ(k⃗ ′)

∂(hef fα,β(k⃗)− µδα,β)
(F.128)

Thus, we obtain

∂ΩT,µ

∂hα,β(k⃗)
=
∑
k⃗

∑
γ,δ

∂ΩT,µ

∂ρδ,γ(k⃗ ′)

∂ρδ,γ(k⃗ ′)

∂hef fα,β(k⃗)

=
1

N
∑
k⃗

∑
m,n

ψβ,⃗0,n,k⃗

(∑
γ,δ

ψ∗
γ,⃗0,n,k⃗

(
houtγ,δ (k⃗)− hef fγ,δ (k⃗)

)
ψδ,⃗0,m,k⃗

)
ψ∗
α,⃗0,m,k⃗

×

{
(fn,k⃗ − fm,k⃗)/(ϵn,k⃗ − ϵm,k⃗) for ϵn,k⃗ ̸= ϵm,k⃗
− 1
kBT

fn,k⃗(1− fn,k⃗) for ϵn,k⃗ = ϵm,k⃗
(F.129)

This term determines the forces acting on the effective Hamiltonian, which are required t=o steer
the system towards self-consistency.

F.6 Mean-field approximation and beyond

Editor: This material has been been moved from the chapter on weak interaction. The
most relevant material has been lifted. This implies that some material in the following
section is duplicated.
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So far, we investigated a world in which all wave functions are Slater determinants. With this
limitation, the expectation values, including the total energy, have a simple form of Eq. 2.44 and can
be written down without further approximations.

Here, we go beyond the restriction to single Slater determinants. However, in order to arrive at
a theory with comparable complexity, we make a common approximation, the mean-field approxi-
mation.

For Slater determinants, the total energy can be expressed by Eq. 2.44 in terms of its one-
particle-reduced density matrix. Consider now an ensemble of several Slater determinants: Shall we
calculate the one-particle-reduced density matrix by averaging over the ensemble and insert the result
into the total energy expression Eq. 2.44 as E[

∑
σ⃗ Pσ⃗ρ̂

(1)
σ⃗ ]? Or shall we instead average the total

energies obtained from the Slater determinants individually as
∑

σ⃗ Pσ⃗E[ρ̂
(1)
σ⃗ ]? The two choices lead

to different results.
In the mean-field approximation one works with the averaged one-particle-reduced density matrix.

This is very efficient and intuitive and, therefore, the mean-field approximation is widely used. How-
ever, while it is usually accurate, it can also produce qualitatively incorrect results. In order to know,
when it can be considered reliable, and when does it break down, it is important to understand this
approximation.

F.6.1 Mean-field approximation

The Hartree-Fock approximation uses the total-energy expression for Slater determinants. However,
then it makes an approximation, which is called mean-field approximation or “self-consistent field”
(SCF) approximation.

We can generalize the total-energy expression for a Slater determinant Eq. 2.44 blindly to arbitrary
many-particle states. We arrive at an approximate expression for the total energy of a many-particle
wave function.

Emf [ρ̂(1)]
def
= Tr

[
ρ̂(1)ĥ

]
︸ ︷︷ ︸

E1P

+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EH

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EX

(F.130)

with the general one-particle-reduced density matrix ρ̂(1) Eq. 2.19 of a fermionic wave function and
the density n(r⃗) =

∑
σ ρ
(1)(r⃗ , σ; r⃗ , σ). In contrast to the energy Eq. 2.44 of a Slater determinant,

the mean-field expression is defined also for non-integer occupations.
This mean-field energy Emf differs from the energy expectation value of a many-particle state,

unless the many-particle state is a Slater determinant. In other words: when the occupations defined
in Eq. 2.18 are integer, the wave function is a Slater determinant, and the mean-field total energy
Eq. F.130 is, according to Eq. 2.44, identical to the expectation value of the Hamiltonian. For
fractional occupations, Eq. F.130 is approximate.

The mean-field theory is an approximation for the energy expectation value of a many-particle
state, which is equally well or equally poorly justified for the ground and for excited states.6

6Density-functional theory on the other hand, which has some similarities with mean-field theory, is not approximate,
but limited to the electronic ground state.
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F.6.2 Beyond the mean-field approximation

In order to explore the errors introduced by the mean-field approximation, let me write down the total
energy ⟨Ψ|ĥ + Ŵ |Ψ⟩ for a general many-particle wave function |Ψ⟩,

|Ψ⟩ Eq. 1.95
=

∑
σ⃗

|σ⃗⟩cσ⃗ (F.131)

represented as superposition of Slater determinants |σ⃗⟩ in a basis of natural orbitals |ϕn⟩.
In this section, I will assume that the natural orbitals and the coefficients cσ⃗ of the Slater determi-

nants are known. This implies that the problem is already solved. Thus, the following considerations
are not helpful to solve the many-electron problem, but they are invaluable for the understanding of
the underlying energy contributions. They provide a suitable framework to rationalize many effects,
which we will encounter lateron.

Let us divide the energy, into a sum over the diagonal terms σ⃗ = σ⃗′ and the rest, the sum over
the off-diagonal elements σ⃗ ̸= σ⃗′.

⟨Ψ|ĥ + Ŵ |Ψ⟩ Eq. F.131
=

∑
σ⃗,σ⃗′

c∗σ⃗cσ⃗′⟨σ⃗|ĥ + Ŵ |σ⃗′⟩

=
∑
σ⃗

c∗σ⃗cσ⃗︸︷︷︸
=:Pσ⃗

⟨σ⃗|ĥ + Ŵ |σ⃗⟩

︸ ︷︷ ︸
diagonal terms

+
∑
σ⃗ ̸=σ⃗′

c∗σ⃗cσ⃗′⟨σ⃗|ĥ + Ŵ |σ⃗′⟩︸ ︷︷ ︸
off-diagonal terms

(F.132)

The diagonal terms (σ⃗ = σ⃗′) in Eq. F.132 require the expectation values of the interaction for Slater
determinants, which can be determined “easily” using Eq. 2.44 in terms of the one-particle-reduced
density matrices ρ̂(1)σ⃗ of the individual Slater determinants |σ⃗⟩.

The pre-factors

Pσ⃗
def
= c∗σ⃗cσ⃗ (F.133)

of the diagonal matrix elements behave like probabilities: they are positive Pσ⃗ ≥ 0 and they are
normalized

∑
σ⃗ Pσ⃗ = 1. Therefore, the sum over diagonal elements can be considered as an ensemble

expectation value (Section ??) with probabilities Pσ⃗.
The occupations are the averaged occupation numbers (without proof, yet.)Editor: This

needs a proof!!

fn =
∑
σ⃗

Pσ⃗σn (F.134)

Non-interacting Hamiltonian

The expectation value of the non-interacting Hamiltonian ĥ can be obtained with the help of the one-
particle-reduced density matrix ρ̂(1). We exploit the definition Eq. 2.16 of the one-particle-reduced
density matrix, which yields the expectation value of a one-particle operator as

⟨Ψ|ĥ|Ψ⟩ Eq. 2.16
= Tr[ρ̂(1)ĥ] (F.135)

Using Eq. F.134 and the representation of the one-particle-reduced density matrix in terms of
natural orbitals and occupations, we can show that ⟨Ψ|ĥ|Ψ⟩ can be expressed as an ensemble average
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with Slater determinants

⟨Ψ|ĥ|Ψ⟩ Eq. 2.16
= Tr[ρ̂(1)ĥ]

Eq. 2.18
=

∑
n

fn⟨ϕn|ĥ|ϕn⟩
Eq. F.134
=

∑
n

∑
σ⃗

Pσ⃗σn︸ ︷︷ ︸
fn

⟨ϕn|ĥ|ϕn⟩

=
∑
σ⃗

Pσ⃗
∑
n

σn⟨ϕn|ĥ|ϕn⟩︸ ︷︷ ︸
=Tr[ρ̂

(1)
σ⃗ ĥ]=⟨σ⃗|ĥ|σ⃗⟩

Eq. 2.22
=

∑
σ⃗

Pσ⃗⟨σ⃗|ĥ|σ⃗⟩ (F.136)

Note that there are no off-diagonal matrix elements, which connect different Slater determinants.

Interaction part of the Hamiltonian

Let me return to the interaction energy: As mentioned above, the interaction energy can be divided
into one term diagonal in the Slater determinants, which corresponds to an ensemble of Slater deter-
minants, and the off-diagonal terms, which reflect the entanglement between Slater determinants.

⟨Ψ|Ŵ |Ψ⟩ Eq. F.131
=

∼ensemble︷ ︸︸ ︷∑
σ⃗

c∗σ⃗cσ⃗︸︷︷︸
Pσ⃗

⟨σ⃗|Ŵ |σ⃗⟩+

entanglement︷ ︸︸ ︷∑
σ⃗ ̸=σ⃗′

c∗σ⃗cσ⃗′⟨σ⃗|Ŵ |σ⃗′⟩

Eq. 2.33
=

∼ensemble︷ ︸︸ ︷∑
σ⃗

Pσ⃗
∑
m,n

σmσn

(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
︸ ︷︷ ︸

⟨σ⃗|Ŵ |σ⃗⟩

+

entanglement︷ ︸︸ ︷∑
σ⃗ ̸=σ⃗′

c∗σ⃗cσ⃗′⟨σ⃗|Ŵ |σ⃗′⟩

=
1

2

∞∑
m,n=1

[⇝mean field︷︸︸︷
fmfn +

⇝occupation-number fluctuations︷ ︸︸ ︷(∑
σ⃗

Pσ⃗σmσn

)
− fmfn︸ ︷︷ ︸(∑

σ⃗ Pσ⃗σmσn

)
−fm

(∑
σ⃗ Pσ⃗σn

)
−
(∑

σ⃗ Pσ⃗σm

)
fn+fmfn︸ ︷︷ ︸(∑

σ⃗ Pσ⃗(σm−fm)(σn−fn)
)

]

×
(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
+

entanglement︷ ︸︸ ︷∑
σ⃗ ̸=σ⃗′

c∗σ⃗cσ⃗′⟨σ⃗|Ŵ |σ⃗′⟩

Eq. 2.44
=

mean-field︷ ︸︸ ︷
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree energy EH

−
1

2

∫
d4x

∫
d4x ′

e2ρ(1)(x⃗ , x⃗ ′)ρ(1)(x⃗ ′, x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
exchange energy EX

+

occupation-number fluctuations︷ ︸︸ ︷
1

2

∞∑
m,n=1

(∑
σ⃗

Pσ⃗(σm − fm)(σn − fn)︸ ︷︷ ︸
=(
∑
σ⃗ Pσ⃗σmσn)−fmfn

)(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩︸ ︷︷ ︸

⇝Hartree

−⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩︸ ︷︷ ︸
⇝exchange︸ ︷︷ ︸

> 0 for m ̸= n and = 0 for m = n

)

+

entanglement︷ ︸︸ ︷∑
σ⃗ ̸=σ⃗′

c∗σ⃗cσ⃗′⟨σ⃗|Ŵ |σ⃗′⟩ (F.137)

1. The first line denoted as “mean field” is the interaction energy of the Hartree-Fock approx-
imation: All terms can be expressed by one-particle expectation values. Combined with the
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non-interacting energy, this is the energy Eq. F.130 in the mean-field approximation. The
name “self-consistent field” (SCF) originates in this background.

2. The second term describes the effect of correlated occupation-number fluctuations. It van-
ishes for a single Slater determinant, but it is present in (1) an ensemble of Slater determinants
and (2) in a many-particle wave function or an ensemble of them.

The factors ⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩ are non-negative for all values (m, n)7

and they vanish for m = n. They are large for electron pairs with opposite spin, because
for pairs with equal spin the exchange term (2nd) counteracts the Hartree term (1st). The
exchange term vanishes for electrons pairs with opposite spin.

The correlated occupation-number fluctuations
∑

σ⃗ Pσ⃗(σm − fm)(σn − fn) vanish

• for completely filled fn = 1 and completely empty fn = 0 orbitals, and

• statistically independent occupations, i.e. for

⟨σmσn⟩ =
∑
σ⃗

Pσ⃗σmσn =
(∑

σ⃗

Pσ⃗σm

)
︸ ︷︷ ︸

fm

(∑
σ⃗

Pσ⃗σn

)
︸ ︷︷ ︸

fn

= ⟨σm⟩⟨σn⟩ (F.138)

For a given set of occupations fn =
∑

σ⃗ Pσ⃗σm, a wave function with small double occupancy

dm,n
def
=
∑
σ⃗

Pσ⃗σmσn (F.139)

will have a lower energy. That is, electrons with strong Coulomb repulsion try to get out of
each other’s way.8

3. The third term describes the entanglement of the Slater determinants. Let me call it entan-
glement energy. It describes the hybridization9 of Slater determinants. This is the only term
that depends on the relative phases of the coefficients of different Slater determinants.

Imagine a special case with only two relevant Slater determinants |σ⃗1⟩ and |σ⃗2⟩, so that the
many-particle wave functions have the form |Ψ⟩ = |σ⃗1⟩c1+ |σ⃗2⟩c2. Let us treat the two Slater
determinants as basisset in Fock space and evaluate the matrix elements of the interacting
2× 2 Hamiltonian. (assuming orthonormality)

Hα,β = ⟨σ⃗α|ĥ + Ŵ |σ⃗β⟩ for α, β ∈ {1, 2}. (F.141)

We obtain a 2×2 Schrödinger equation.10 We will obtain two eigenvectors c⃗± for two different
energies E±, where ± ∈ {+,−} identifies one or the other eigenstate. The complex coefficients

7This follows from the fact that the electrostatic energy of any two-particle system is positive. This is also true if
the two electrons are in a two-particle Slater determinant with the two orbitals |ϕm⟩ and |ϕn⟩. The factor mentioned
is twice the Coulomb energy of this Slater determinant.

8This is a private note of the editor: Editor: Bounds for the correlated occupation-number fluctuations
can be derived by considering each pair of states independently.

max(0, fm + fn − 1)− fmfn ≤ Pσm ,σn (σm − fm)(σn − fn) ≤ min(1, fm + fn)− fmfn (F.140)

To avoid the double occupancy, one could estimate the occupation-number fluctuations from the lower
of the two bounds, rather than ignoring the term as in the mean-field approximation. The result is
shown in fig. 2.4 The independent-pair approximation relies on P00 + P01 + P10 + P11 = 1, P10 + P11 = f1,
P01 + P11 = f2, 0 ≤ Pσ,σ′ ≤ 1.

9Hybridization is the formation of a superposition of orbitals to form a bond orbital or an antibond orbital. The
difference between a bond and an antibond can be attributed to a phase factor between the two orbitals forming the
bonding and antibonding orbitals. The bond orbital of a hydrogen molecule is (|χ1⟩+χ2⟩)/

√
2 while that of an antibond

is (|χ1⟩−χ2⟩)/
√
2. The plus and minus signs can be described by a relative phase factor eiϕ with a real-valued phase of

ϕ = 0 for the bond and ϕ = π for the antibond. In the present case, it is Slater determinants rather than one-particle
states that hybridize. The underlying concept is the matrix diagonalization, which is common to both cases.

10The problem of diagonalizing the 2 × 2 matrix is the same as that for the diatomic molecule. The difference to
the diatomic molecule is that the Hamiltonian is formed from many-particle Slater determinants and the Hamiltonian
contains also the interaction Ŵ . As in the diatomic molecule, there will be level-repulsion and superpositions of the
two Slater determinants analogous to the bonding and the antibonding states of the diatomic molecule.
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of the eigenvectors cα,± =
√
P±e

iφα,± contain the phase relation φ2,± − φ1,± between the two
Slater determinants. When the two Slater determinants with different phases contribute with
distinct weight, i.e. Pσ⃗1 ̸= Pσ⃗2 , there will be a finite entanglement energy.

The entanglement energy is the energy gain from optimizing the relative phases of the Slater
determinants as compared to an averaged phases.

1

f
2

0

0

1

f
1

Fig. F.4: Contour plot for the lower bound min(0, f1 + f2 − 1) − f1f2 for the occupation-number
fluctuations

∑
σ1,σ2

Pσ1,σ2(σ1 − f1)(σ2 − f2) of two orbitals as a function of the occupations f1 and
f2. The plot is drawn for fj ∈ [0, 1]. The function values are zero at the boundaries of the area and
the minimum, at f1 = f2 = 1

2 has the value − 14 . (This graph is repeated from figure 2.4 on p. 79)

The term “mean field”

Let us consider the first two terms of the interaction Eq. F.137, the mean-field term and the
occupation-number fluctuations. These two terms correspond to the interaction energy of an en-
semble of Slater determinants with probabilities Pσ⃗ = ĉ∗σ⃗ ĉσ⃗ (see Eq. F.131).

The interaction energy of this ensemble is the weighted sum of the interaction energies of the
Slater determinants.

EAPAint =
∑
σ⃗

Pσ⃗⟨σ⃗|Ŵ |σ⃗⟩ =
1

2

∑
σ⃗

Pσ⃗Tr
[
ρ̂
(1)
σ⃗

(
V̂H,σ⃗ + V̂X,σ⃗

)]
(F.142)

With ρ̂(1)σ⃗ , I denote the one-particle reduced density matrix of the Slater determinant σ⃗ and with
V̂H,σ⃗ and V̂X,σ⃗ I denote the Hartree potential Eq. 2.38 and exchange potentials Eq. 2.41 of that same
Slater determinant.

We notice, that each Slater determinant experiences its own potential.
In the mean-field approximation, the individual potentials are replaced by the mean-field, i.e. the

Hartree and exchange potentials averaged over the Slater determinants |σ⃗⟩ with their respective
weights Pσ⃗,

V̂H,mf + V̂X,mf
def
=
∑
σ⃗

Pσ⃗

(
V̂H,σ⃗ + V̂X,σ⃗

)
(F.143)

When the individual potentials are replaced by the mean-field potentials, the mean-field energy (first
term in Eq. F.137) is obtained.

Emfint =
1

2

∑
σ⃗

Pσ⃗Tr

[
ρ̂
(1)
σ⃗

[∑
σ⃗′

Pσ⃗′

(
V̂H,σ⃗′ + V̂X,σ⃗′

)]
︸ ︷︷ ︸

V̂H,mf+V̂X,mf

]
=
1

2
Tr

[
ρ̂(1)
(
V̂H,mf + V̂X,mf

)]
(F.144)
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Notice the prefactor 12 in Eq. F.144 which makes mean-field energy different from the expectation
value of the mean-field potential.

The comparison with Eq. F.137 shows that the difference between the mean-field energy Emfint in
Eq. F.144 and that of the averaged phase approximation EAPAint in Eq. F.142 is due to the occupation-
number fluctuations.

Random(average)-phase approximation

The first and second lines of Eq. F.137 together describe the interaction energy for an ensemble of
Slater determinants |σ⃗⟩ with probabilities Pσ⃗.

W =
∑
σ⃗

Pσ⃗⟨σ⃗|Ŵ |σ⃗⟩ (F.145)

The neglect of the entanglement energy (third term of Eq. F.137) can be described as random(average)-
phase approximation.11

Let me now work out the random(average)-phase approximation of the interaction energy. First,
the interaction energy ⟨Ψ|Ŵ |Ψ⟩ is evaluated for a transformed many-particle wave function R̂(γ⃗)|Ψ⟩,
for which each Slater determinant |σ⃗⟩ is multiplied by individual phase factor eiγσ⃗ . Then, the inter-
action energy is averaged over the phases γσ⃗ ∈ [0, 2π[ of each Slater determinant independently.

The transformation R̂(γ⃗) of the many-particle wave functions, which multiplies each Slater de-
terminant with an individual phase factor eiγσ⃗ with real-valued angle γσ⃗, is

R̂(γ⃗) =
∑
σ⃗

|σ⃗⟩eiγσ⃗ ⟨σ⃗| (F.146)

There is one angle γσ⃗ for every Slater determinant in Fock space. That is, γ⃗ is a vector in Fock
space, not in the one-particle Hilbert space.

This average yields〈
⟨Ψ|Ŵ |Ψ⟩

〉
γ⃗

=

(∏
σ⃗

∫ 2π
0

dγσ⃗
2π

)
⟨Ψ|R̂†(γ⃗)Ŵ R̂(γ⃗)|Ψ⟩

|Ψ⟩=
∑
σ⃗ |σ⃗⟩cσ⃗
=

(∏
σ⃗

∫ 2π
0

dγσ⃗
2π

)∑
σ⃗′,σ⃗′′

c∗
σ⃗′
⟨σ⃗′|Ŵ |σ⃗′′⟩cσ⃗′′e

i(γσ⃗′′−γσ⃗′ )

=
∑
σ⃗′,σ⃗′′

c∗
σ⃗′
⟨σ⃗′|Ŵ |σ⃗′′⟩cσ⃗′′

∫ 2π
0

dγσ⃗′

2π

∫ 2π
0

dγσ⃗′′

2π
ei(γσ⃗′′−γσ⃗′ )︸ ︷︷ ︸

δ
σ⃗′ ,σ⃗′′

=
∑
σ⃗

c∗σ⃗cσ⃗︸︷︷︸
Pσ⃗

⟨σ⃗|Ŵ |σ⃗⟩ (F.147)

The random(average)-phase approximation used here converts a correlated many-particle wave func-
tion into a statistical ensemble of Slater determinants |σ⃗⟩ with probabilities Pσ⃗ = |cσ⃗|2. In other
words, it removes the entanglement term from Eq. F.137.

The derivation can easily be generalized to ensembles {|Ψq⟩, P̄q} of many-particle wave functions
|Ψq⟩ =

∑
σ⃗ |σ⃗⟩cσ⃗,q, rather than a single many-particle wave function used in this proof. In this case

the probabilities of the Slater determinants are Pσ⃗ =
∑

q P̄qc
∗
σ⃗,qc

∗
σ⃗.

Let me alert you to a common mistake: It is important to understand, which phases are averaged.
In the derivation above, we have first chosen a one-particle basisset. This choice defines the set of

11This random(average)-phase approximation is probably unrelated to the random(average)-phase approximation
(APA), which leads to the screened interaction between electrons.
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Slater determinants. It is the phases between the Slater determinants, rather than those of the
one-particle orbitals that is averaged over.12

The choice of the one-particle basisset, which, in turn, determines the set of Slater determinants,
and thus, whether the random(average)-phase approximation is a good or a poor approximation.

F.7 Spectral function in the Hartree-Fock approximation

F.7.1 Spectral function of Hartree-Fock at finite temperatures

In this section, I calculating the exact spectral function for the thermal ensemble from the thermal
Hartree-Fock approximation. For a single Slater determinant, the one-particle spectral function
exhibits delta peaks at the eigenvalues of the Fock operator.

At finite temperatures, considered here, the excitations experience thermal fluctuations, which
leads to a thermal broadening of the spectral bands.

Let me start with the expression for the one-particle spectral function from the Lehmann repre-
sentation.

Â(ϵ) Eq. 9.32
=

∑
m,n

|ϕm⟩
(∑
σ⃗,σ⃗′

(
Pσ⃗ + Pσ⃗′

)
⟨σ⃗|âm|σ⃗′⟩⟨σ⃗′|â†n|σ⃗⟩δ(ϵ− (Eσ⃗′ − Eσ⃗)

)
⟨ϕn| (F.148)

We will use the microstates |σ⃗⟩ and probabilities Pσ⃗ = 1
Z e
−β(ϵeffn −µ) from the thermal Hartree-Fock

approximation, where ϵeffn are the eigenvalues of the Fock operator for the ensemble.
The excitation energies are obtained from the total energies Eσ⃗ of the individual microstates.

Eσ⃗ = ⟨σ⃗|ĥ + Ŵ |σ⃗⟩

=
∑
n

σn⟨ϕn|ĥ|ϕn⟩+
1

2

∞∑
m,n=1

σmσn

(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
(F.149)

The energy to add a particle in state |ϕn⟩ to |σ⃗⟩ is

∆E = ⟨ϕn|ĥ|ϕn⟩+
∞∑
m

σm

(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
= ⟨ϕn|ĥ + V̂H + V̂X |ϕn⟩︸ ︷︷ ︸

ϵeffn

+

∞∑
m

(σm − fm)
(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

)
(F.150)

It does not matter whether the sum over m includes n or not, because the corresponding matrix
element for m = n is zero. The energy ϵeffn is the corresponding eigenstate of the Fock operator
ĥeff = ĥ + V̂H + V̂X , which acts as an effective Hamiltonian.

While the first term ϵeffn is the same for all microstates the ensemble, the second term describes
thermal fluctuations, which differ from microstate to microstate. These fluctuations are low-energy
excitations, which are thermally accessible.

12A similar random(average)-phase approximation can be used to arrive at the Boltzmann equation. There, however,
the phases of one-particle orbitals are averaged, which is a much more severe approximation than the one done here.



F HARTREE-FOCK APPROXIMATION 515

The resulting spectral function is

A(ϵ) Eq. 9.32
=

∑
m,n

|ϕn⟩
{∑
σ⃗,σ⃗′

(
e−β

∑
j σj (ϵj−µ) + e−β

∑
j σ
′
j (ϵj−µ)

)
∑

σ⃗′′ e
−β

∑
j σ
′′
j (ϵj−µ)︸ ︷︷ ︸

Pσ⃗+Pσ⃗′

δσn,0δσ′n,1
∏

m;m ̸=n
δσm,σ′m︸ ︷︷ ︸

⟨σ⃗|âm |σ⃗′⟩⟨σ⃗′|â†n |σ⃗⟩

×δ
(
ϵ− ϵeffn −

∞∑
m

(σm − fm)
(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

))}
⟨ϕn|

=
∑
n

|ϕn⟩
{

1∑
σ⃗′ e
−β

∑
j σ
′
j (ϵj−µ)

∑
σ⃗

δσn,0e
−β

∑
j σj (ϵj−µ)

(
1 + e−β(ϵ

ef f
n −µ)

)
×δ
(
ϵ− ϵeffn −

∞∑
m

(σm − fm)
(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

))}
⟨ϕn|

=
∑
n

|ϕn⟩
{∑

σ⃗

δσn,0
e−β

∑
j σj (ϵj−µ)∑

σ⃗′ δσ′n,0e
−β

∑
j σ
′
j (ϵj−µ)

×δ
(
ϵ− ϵeffn −

∞∑
m

(σm − fm)
(
⟨ϕm, ϕn|Ŵ |ϕm, ϕn⟩ − ⟨ϕm, ϕn|Ŵ |ϕn, ϕm⟩

))}
⟨ϕn|

(F.151)

We see that each natural orbital contributes a large number of δ-peaks to the density of states. In
other words, the density of states is broadened. The broadening is due to the potential fluctuations
induced by the fluctuations of the occupation of other orbitals. These fluctuations are absent for
orbitals with integer occupations fn = 0 or fn = 1.

If only one Slater determinant contributes to the ensemble (at T = 0) this thermal broadening is
absent. If the ground state is, for example, doubly degenerate, the spectral function is the average
of the two Slater determinants in the ground state ensemble.

Because the broadening is hard to calculate, the mean-field approximation is also done for the
spectral function.

Âmf (ϵ) =
∑
n

|ϕn⟩δ
(
ϵ− ϵeffn

)
⟨ϕn| (F.152)

F.7.2 Spectral function beyond the mean-field spectral function

The discussion above rested on the mean-field approximation, where all particles experience the same
potential.

In the spirit of section F.6.2, we explore the spectrum of an ensemble of Slater determinants built
from the natural orbitals. This goes beyond the mean-field approximation, and it is consistent with
the random(averaged)-phase approximation.

The one-particle energies ϵn,σ⃗ = ⟨ϕn|ĥ+ V̂H,σ⃗+ V̂X,σ⃗|ϕn⟩ depend on the specific Slater determinant
in the ensemble, because each Slater determinant produces its own Hartree and exchange potential.
The spectral function of the ensemble is

Â(ϵ) =
∑
σ⃗

Pσ⃗
∑
n

|ϕn⟩δ(ϵ− ϵn,σ⃗)⟨ϕn| =
∑
n

|ϕn⟩
{∑

σ⃗

Pσ⃗δ(ϵ− ϵn,σ⃗)
}
⟨ϕn| (F.153)

For each natural orbital |ϕn⟩, I obtain a multitude of contributions at different energies ϵn,σ⃗ with
different weights Pσ⃗.

In the mean-field approximation the contributions for one natural orbital collapse into a single,
average energy level at

ϵmfn =
∑
σ⃗

Pσ⃗ϵn,σ⃗ (F.154)
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that is, the spectral function in the mean-field approximation is

Âmf (ϵ) =
∑
n

|ϕn⟩δ(ϵ− ϵmfn )⟨ϕn| (F.155)

The total weight and the mean energy of each natural orbital remains unchanged∫
dϵ ⟨ϕn|Â(ϵ)|ϕn⟩ =

∫
dϵ ⟨ϕn|Âmf (ϵ)|ϕn⟩ = 1∫

dϵ ⟨ϕn|Â(ϵ)|ϕn⟩ ϵ =
∫
dϵ ⟨ϕn|Âmf (ϵ)|ϕn⟩ ϵ =

∑
σ⃗

Pσ⃗ϵn,σ⃗ = ϵ
mf
n (F.156)

When we adjust the ensemble, keeping the natural orbitals unchanged for the sake of simplicity,
we find that the energy levels in the mean-field approximation shift when electrons are added or
removed. The weight of each excitation energy remains unchanged.

A

N+1

A A

N N+1

A

N

ε ε εε

Fig. F.5: Scheme to demonstrate the a spectral function An(ϵ, k⃗) of a single band ϵn(k⃗) for a specific
k-point k⃗ in the mean-field approximation (left) in comparison to the spectral function obtained from
a complete many-particle description (right). In the mean-field approximation the spectral function
for a specific k-point and band index is a delta-function centered at the one-particle energy ϵn(k⃗) as
shown on the left. As a parameter such as the particle number N is changed, the delta function shifts
with the one-particle energy, but it maintains its total weight. The true spectral function consists
of a large, possibly continuous, set of peaks at the many-particle total-energy differences. For weak
interactions they can be combined approximately into a Lorentzian of finite width. As the electron
number N, or any other parameter, is changed, it is the weight of the individual peaks that change,
while the positions of the many-particle energy differences remains fixed. Caution: The individual
bands are not regular as in the graph, and the positions of the individual peaks are not strictly fixed.

Beyond the mean-field approximation, the energy levels ϵn,σ⃗ remain unchanged, but the individual
weights adjust with the changed ensemble as sketched in Fig. F.5. This consideration provides a first
glimpse on the definition of the spectral function for general many-particle states and their ensemble
in section 9.3

F.8 Post Hartree-Fock methods: Quantum chemistry

Editor: Sketch here the main ideas of post-Hartree-Fock methods of quantum chemistry.
It may include configuration interaction (CI), complete active space (CAS) CI, Multireference,
coupled cluster (CC) and possibly Møller-Plesset (MP) perturbation theory.
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F.8.1 Coupled cluster:

Coupled-cluster theory is a quantum chemical method, which overcomes the problem of size in-
consistency in the configuration interaction methods. It has been invented in the context of nuclear
physics by Fritz Coester and Herman Kümmel in the early 1960s.13 14

Use a unitary transformation Û in Fock space to represent a general many-particle wave function
|Φ⟩ in terms of some reference wave function |Φ̄⟩.

The Fock-space can be spanned either by variation of the reference wave function or by variation
of the transformation operator. This allows one to restrict the reference wave functions, for example,
to Slater determinants.

|Φσ⃗⟩ = Û|Φ̄⟩ = e
i
ℏ Â|Φ̄⟩ = e

i
ℏ

(∑
α,β aα,β ĉ

†
αĉβ+

∑
α,β,γ,δ bα,β,γ,δ ĉ

†
αĉ
†
β ĉγ ĉδ+...

)
|Φ̄⟩ (F.157)

A unitary operator can be expressed in terms of an exponential of a hermitean operator Â. It makes
sense to choose the operator as particle-number conserving, which implies that each term in Â has
the same number of creation and annihilation operators.

The parameters aα,β, bα,β,γ,δ are considered as variational parameters for the total energy, along-
side with some reference wave function.

The total energy can be obtained by minimizing

E = min
|Φ⟩
stat
Λ

{
⟨Φ|Ĥ|Φ⟩ − Λ

(
⟨Φ|Φ⟩ − 1

)}
= min
|Φ̄⟩,Â
stat
Λ

{
⟨Φ̄|e−i ÂĤei Â|Φ̄⟩ − Λ

(
⟨Φ̄| e−i Âei Â︸ ︷︷ ︸

= 1̂ if Â = Â†

|Φ̄⟩ − 1
)}

= min
|Φ̄⟩,Â(Â=Â†)

stat
Λ

{
⟨Φ̄|e−i ÂĤei Â|Φ̄⟩ − Λ

(
⟨Φ̄|Φ̄⟩ − 1

)}
(F.158)

Rather than using the stationary condition with respect to the operator Â, the stationary condition
with respect to the reference wave function is used

e−i ÂĤei Â|Φ̄⟩ = |Φ̄⟩Λ (F.159)

This strategy is permitted, as long as the same portion of Fock space is spanned by the variation of
Â and the variation of the reference wave function.

This equation is solved by introducing a basis of Slater determinants |σ⃗⟩.

⟨σ⃗|e−i ÂĤei Â|Φ̄⟩ = ⟨σ⃗|Φ̄⟩Λ (F.160)

where the basis of Slater determinants ⟨σ⃗| must be sufficienly large to determine all parameters of
the transformation operator, respectively of Â. It is convenient to select the Slater determinants
such that the reference wave function is one of them.

13see [118] and references
14See also Sinanoglu[119] who introduced a variational formulation which is considered a predecessor of coupled

cluster theory. This may be close to what I am using here.
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Appendix G

Density-functional theory

Density-functional theory[29, 30] is an extremely powerful technique. It is based on an exact theorem
that the ground-state energy is determined solely by the density alone.

The theorem says

• that all ground-state properties are unique functionals of the electron density and

• that the electron density can be obtained from a one-particle Schrödinger equation in an effec-
tive potential.

Density-functional theory maps the interacting electron system onto a system of non-interacting
electrons in an effective potential. The effective potential depends in turn on the electron distribution
and describes the interacting between the electrons in an effective way.

G.1 Existence of a density functional for the energy

Density-functional theory says that all ground-state properties can be expressed, at least in
principle, as functionals of the charge density alone.

This statement is nontrivial, because the wave function contains far more information than the
density. The statement also provides a dramatic simplification as the density, in contrast to the wave
function, can be handled on a computer: The density is a function in three dimensions, while the
wave function is a function in 3N dimensions.

The original proof of existence for density functionals goes back to Hohenberg and Kohn[120].
Later, Levy[121, 122] and Lieb[123] have given a recipe how the density functional can actually be
constructed . This proof contains the proof of existence. For this reason, I will not present the
original proof of Hohenberg and Kohn, but show the one by Levy.

G.1.1 The many-particle Hamiltonian

Let us start with a Hamilton operator

Ĥλ = T̂ + V̂ext + λŴ , (G.1)

where the kinetic energy is

T̂ =

∫
d4x ψ̂†(x⃗)

−ℏ2

2me
∇⃗2ψ̂(x⃗) =

∑
α,β

⟨χα|
ˆ⃗p2

2me
|χβ⟩︸ ︷︷ ︸

tα,β

ĉ†αĉβ (G.2)
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n1(r) n2(r) n3(r) n4(r)

|ΨΑ>

|ΨΕ> |ΨΗ>

|ΨΚ>

|ΨΜ>

|ΨΒ>
|ΨΙ >|ΨΧ>

F1[n1(r)]

F0[n1(r)]
F0[n2(r)]

F1[n2(r)]

F0[n3(r)]

F1[n3(r)]

F0[n4(r)]

F1[n4(r)]

Fig. G.1: Sketch of Levy’s derivation of a density functional.

The external potential operator describes the Coulomb potential of the nuclei

V̂ =

∫
d4x vext(r⃗) ψ̂

†(x⃗)ψ̂(x⃗)︸ ︷︷ ︸
n̂(x⃗)

=
∑
α,β

⟨χα|v̂ext |χβ⟩︸ ︷︷ ︸
vα,β

ĉ†αĉβ (G.3)

The interaction operator is

Ŵ
Eq. 3.75
=

1

2

∫
d4x

∫
d4x ′ ψ̂†(x⃗)ψ̂†(x⃗ ′)

e2

4πϵ0|r⃗ − r⃗ ′|
ψ̂(x⃗ ′)ψ̂(x⃗)

=
1

2

∑
α,β,γ,δ

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χγ(x⃗ ′)χδ(x⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Uα,β,δ,γ

ĉ†αĉ
†
β ĉγ ĉδ (G.4)

The U-tensor is defined with the arguments x⃗ and x⃗ ′ in the same order for the product wave
function and its complex conjugate.

Uα,β,γ,δ
def
=

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χγ(x⃗)χδ(x⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(G.5)

We scaled the electron-electron interaction by a coupling parameter λ, which allows us later to
switch the electron-electron interaction on an off. This is not required for the proof of Levy, but
later-on, we will often refer also to Hamiltonians without or with scaled interaction.

G.1.2 The proof: constrained search

The idea of the proof is very simple:

1. Group all normalized, antisymmetric many-particle wave functions {|Φ⟩} according to their
density.1 Each such subset A[n(r⃗)] contains all wave functions in the Fock space F with the
same density n(r).

A[n(r⃗)] = {|Φ⟩ ∈ F : ⟨Φ|n̂(r⃗)|Φ⟩ = n(r⃗)}
1the density is considered as function not as value at a specific point in space.



G DENSITY-FUNCTIONAL THEORY 521

2. For each subset A[n(r⃗)], that is for each density, we determine that wave function
∣∣∣Φ(0)λ [n(r⃗)]〉

that provides the lowest energy ⟨Φ|Ĥλ|Φ⟩. The minimum of the total energy defines the total
energy functional Eλ[n(r⃗)] of the electron density.

Eλ[n(r⃗)] = min
|Φ⟩∈A[n(r⃗)]

〈
Φ
∣∣Ĥλ∣∣Φ〉 = 〈Φ(0)λ [n(r⃗)] ∣∣Ĥλ∣∣Φ(0)λ [n(r⃗)]〉

3. The energy can be divided into universal density functional Fλ[n(r⃗)], which is a general
property of the electron gas, and a system-specific term, that depends on the external potential.

Eλ[n(r⃗)] = Fλ[n(r⃗)]︸ ︷︷ ︸
⟨Φ(0)λ [n]|T̂+λŴ |Φ

(0)
λ [n]⟩

+

∫
d3r n(r⃗)vext(r⃗)︸ ︷︷ ︸
⟨Φ(0)λ [n]|V̂ |Φ

(0)
λ [n]⟩

Because the energy related to the external potential only depends on the density, it is a constant
within each group of a given density. Thus, we can directly determine the universal functional
Fλ[n(r⃗)] as minimum of ⟨Φ|T̂ + λŴ |Φ⟩ for all wave functions with the specified density.

UNIVERSAL DENSITY FUNCTIONAL

Fλ[n(r⃗)]
def
= min
|Φ⟩∈A[n(r⃗)]

⟨Φ|T̂ + λŴ |Φ⟩

4. To find the ground-state energy E(0)λ of an electron gas with N electrons in a given external po-
tential, we minimize the total energy functional with respect to the density under the constraint
of a specified total number of electrons.

E
(0)
λ = min

n(r⃗):
∫
d3r n(r⃗)=N

{
Fλ[n(r⃗)] +

∫
d3r n(r⃗)vext(r⃗)

}
This minimization with respect to the density provides us with the ground-state density and
the ground-state energy. If we have remembered the wave function |Φ0[n(r⃗)]⟩ that minimized
the total energy within a group with given density n(r⃗), we can, in principle work our way back
to the ground-state wave function, which contains all information about the electronic ground
state.

This concludes the proof by Levy on the existence of a universal functional of the density, that allows
one to determine the ground-state energy and, in principle, all other properties of the electronic
ground state.

G.2 More explicit proof at finite temperature

The previous section shows the principle of Levy’s constrained search algorithm with the minimum
conceptual complication. In this section, we generalize the proof given above to finite temperature.

• This will make us familiar with a few thermodynamic relations, that will be used later again.
Thus, it shows, that the limitation to ground states implies the generalization to ensembles in
thermal equilibrium.

• The second motivation for repeating the proof is to make the steps for constrained minimization
more explicit. These expression provide us then with the set of equations that specify the
minimum.
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G.2.1 Grand potential

Let us start with the grand potential for a system of electrons. The grand potential2 ΩT,µ is the
thermodynamic potential for a system in contact with a heat bath and a particle reservoir. The heat
bath is characterized by the temperature T and the particle reservoir is characterized by the chemical
potential µ.

The grand potential has the form

ΩT,µ = min
|Φj ⟩,Pj

stat
ΛΛΛ,η

{
kBT

∑
j

Pj ln(Pj)︸ ︷︷ ︸
−TS

+
∑
j

Pj ⟨Φj |Ĥ − µN̂|Φj⟩︸ ︷︷ ︸
E−µN

−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}

(G.6)

where |Φj⟩ are many-electron wave functions in the Fock space and the Pj are their probabilities. The
set {Pj , |Φj⟩} of many-particle wave functions and their probabilities describes a general ensemble.
The ensemble is a macrostate, while a single many-particle wave function describes a microstate.
The symbol “stat” specifies a stationary point of the expression, which may be a minimum, a maximum
or a saddle point, while the symbol “min” is reserved for true minima.

The minimum condition with respect to the probabilities can readily be worked out as

Pj =
1

ZT,µ
e−β⟨Φj |Ĥ−µN̂|Φj ⟩ (G.7)

with the partition function

ZT,µ =
∑
j

e−β⟨Φj |Ĥ−µN̂|Φj ⟩ (G.8)

Inserting these probabilities into the expression for the grand potential, we obtain

ΩT,µ = min
|Φj ⟩
stat
ΛΛΛ

{
−kBT ln

[∑
j

e−β⟨Φj |Ĥ−µN̂|Φj ⟩
]
−
∑
j,k

Λj,k

(
⟨Φk |Φj ⟩ − δk,j

)}
(G.9)

The minimization with respect to the many-particle wave functions |Φj⟩ can be performed by
diagonalizing Ĥ − µN̂. When the wave functions |Φj⟩ obey

Ĥ|Φj⟩ = |Φj⟩Ej and N̂|Φj⟩ = |Φj ⟩Nj , (G.10)

the grand potential obtains the form

ΩT,µ = −kBT ln
[∑

j

⟨Φj |e−β(Ĥ−µN̂)|Φj⟩
]
= −kBT ln Tr

[
e−β(Ĥ−µN̂)

]
(G.11)

G.2.2 Helmholtz potential

In many practical problems, the particle number is fixed rather than the chemical potential. An equi-
librium ensemble with constant temperature and particle number is called the canonical ensemble.
The thermodynamic potential for the canonical ensemble is the Helmholtz potential AT,N . It de-
scribes a system in the presence of a heat-bath, but, in contrast to the grand potential, without a
particle reservoir.

2The thermodynamic potential of a homogeneous system, that only depends on intrinsic variables does not exist,
because it would either be eaten up or grow to infinity in the presence of the reservoirs. Here the situation is different,
because there are still the atoms, which are not affected by adding or removing energy or electrons.
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The Helmholtz potential is obtained from the grand potential by a Legendre-Fenchel transform

AT,N = stat
µ

[
ΩT,µ + µN

]
(G.12)

If the expression Eq. G.6 for the grand potential is inserted, we recognize that the stationary
condition is part of a constraint condition imposed by the method of Lagrange multipliers. We obtain

AT,N = min
|Φj ⟩,Pj

stat
ΛΛΛ,η,µ

{
kBT

∑
j

Pj ln(Pj)︸ ︷︷ ︸
−TS

+
∑
j

Pj⟨Φj |Ĥ|Φj⟩︸ ︷︷ ︸
E

− µ
(∑

j

Pj⟨Φj |N̂|Φj⟩ − N
)
−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}

(G.13)

The Helmholtz potential approaches the ground state energy in the low-temperature limit.
In the following discussion, I will often refer to the Helmholtz potential as the energy. I do this

for pedagogical reasons. The rationale is that the Helmholtz potential is a generalization of the
energy for finite temperatures. The difficulty other quantities such as the internal energy are also
generalizations of the energy for finite temperatures.

G.2.3 Density as fundamental variable

The important observation is that the external potential only acts on the electron density

∑
j

Pj⟨Φj |V̂ |Φj⟩ =
∫
d3r vext(r⃗)n(r⃗) (G.14)

The electron density of an ensemble is defined as

n(r⃗)
def
=
∑
σ

∑
j

Pj⟨Φj |ψ̂†(x⃗)ψ̂(x⃗)|Φj⟩

=
∑
σ

∑
α,β

∑
j

Pj⟨Φj |ĉ†αĉβ |Φj ⟩χ∗α(x⃗)χβ(x⃗) =
∑
α,β

ρα,β
∑
σ

χ∗α(x⃗)χβ(x⃗) (G.15)

where

ρα,β
def
=
∑
j

Pj⟨Φj |ĉ†αĉβ |Φj⟩ (G.16)

is the one-particle-reduced density matrix..
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G.2.4 Constrained search

The fact that the external potential acts only on the density suggests that we divide the minimization
into two steps:

ΩT,µ
Eq. G.6
= min

|Φj ⟩,Pj
stat
ΛΛΛ,η

{
kBT

∑
j

Pj ln(Pj)︸ ︷︷ ︸
−TS

+
∑
j

Pj ⟨Φj |Ĥ − µN̂|Φj⟩︸ ︷︷ ︸
E−µN

−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}

= min
n(r⃗)

{
min
|Φj ⟩,Pj

stat
ΛΛΛ,η,γ(r⃗

{
kBT

∑
j

Pj ln(Pj)︸ ︷︷ ︸
−TS

+
∑
j

Pj⟨Φj |Ĥ − µN̂|Φj⟩︸ ︷︷ ︸
E−µN

+

∫
d3r γ(r⃗)

((∑
j

Pj
∑
σ

⟨Φj |ψ̂†(x⃗)ψ̂(x⃗)|Φj⟩
)
− n(r⃗)

)

−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}}

= min
n(r⃗)

{∫
d3r n(r⃗)vext(r⃗) + F

W
T [n(r⃗)]− µ

∫
d3r n(r⃗)

}
(G.17)

with

UNIVERSAL DENSITY FUNCTIONAL

The quantity

F λŴT [n(r⃗)]
def
= min
|Φj ⟩,Pj

stat
ΛΛΛ,η,γ(r⃗

{
kBT

∑
j

Pj ln(Pj)︸ ︷︷ ︸
−TS

+
∑
j

Pj⟨Φj |T̂ + λŴ |Φj⟩

+

∫
d3r γ(r⃗)

((∑
j

Pj
∑
σ

⟨Φj |ψ̂†(x⃗)ψ̂(x⃗)|Φj⟩
)
− n(r⃗)

)

−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}

(G.18)

is the universal density functional . It is called universal, because it is an intrinsic property of
the electron gas and independent of the external potential. This implies that the universal density
functional is independent of the particular system.
The universal density functional depends on the mass of the particles, the temperature, the interaction
λŴ and the property that they are fermions.

G.2.5 Exchange and correlation energy

There have been attempts to approximate the density functional directly. However, this turned out
to be difficult, because it was difficult to represent chemical bonding.

The way out has been to use the kinetic energy of a non-interacting electron gas.
The universal density functional can be determined for any interaction Ŵ . Setting the interaction
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to zero yields the kinetic energy functional

F 0T [n(r⃗)]
def
= min
|Φj ⟩,Pj

stat
ΛΛΛ,η,γ(r⃗)

{
kBT

∑
j

Pj ln(Pj)︸ ︷︷ ︸
−TS

+
∑
j

Pj ⟨Φj |T̂ |Φj⟩

+

∫
d3r γ(r⃗)

((∑
j

Pj
∑
σ

⟨Φj |ψ̂†(x⃗)ψ̂(x⃗)|Φj⟩
)
− n(r⃗)

)

−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}

(G.19)

For a given density the minima for the interacting and the non-interacting functionals differ. That
is, the many-particle wave functions differ. Nevertheless, we may rewrite the grand potential in the
form

ΩT,µ = min
n(r⃗)

{
F 0[n(r⃗)] +

∫
d3r n(r⃗)vext(r⃗) + EH[n(r⃗)]

+
(
FWT [n(r⃗)]− F 0[n(r⃗)]− EH[n(r⃗)]

)
︸ ︷︷ ︸

Exc [n(r⃗)]

−µ
∫
d3r n(r⃗)

}
(G.20)

where EH is the Hartree energy defined in Eq. 2.37 on p. 58.

EXCHANGE AND CORRELATION ENERGY

Thus, the grand potential is

ΩT,µ = min
n(r⃗)

{
F 0[n(r⃗)] +

∫
d3r n(r⃗)vext(r⃗) + EH[n(r⃗)] + Exc [n(r⃗)]− µ

∫
d3r n(r⃗)

}
(G.21)

with the exchange-correlation functional

Exc [n(r⃗)]
def
= FWT [n(r⃗)]− F 0[n(r⃗)]− EH[n(r⃗)] (G.22)

It turns out that it is much simpler to find good approximations for the exchange-correlation
functional than for the universal density functional. This is the underlying reason for the success of
density-functional theory.

G.2.6 Kinetic energy functional

The kinetic-energy functional

F 0T [n(r⃗)] = stat
γ(r⃗)

{
−
∫
d3r γ(r⃗)n(r⃗)

+ min
|Φj ⟩,Pj

stat
ΛΛΛ,η

{
kBT

∑
j

Pj ln(Pj) +
∑
j

Pj⟨Φj |
[
T̂ +

∫
d4x γ(r⃗)ψ̂†(x⃗)ψ̂(x⃗)

]
|Φj ⟩

−
∑
j,k

Λj,k

(
⟨Φk |Φj⟩ − δk,j

)
− η
(∑

j

Pj − 1
)}

(G.23)

can be expressed in terms of one-particle wave functions |ψn⟩, the so-called natural orbitals, and
occupations fn of a non-interacting electron gas in an external potential γ(r⃗). The concept of
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natural orbitals and occupations will be described below in more detail.

F 0T [n(r⃗)] = stat
γ(r⃗)

{
−
∫
d3r γ(r⃗)n(r⃗)

+ min
fn∈[0,1],|ψn⟩

stat
ΛΛΛ

{
kBT

∑
n

(
fn ln(fn) + (1− fn) ln(1− fn)

)
+
∑
n

fn⟨ψn|
ˆ⃗p2

2me
+ γ̂|ψn⟩

−
∑
m,n

Λn,m

(
⟨ψm|ψn⟩ − δm,n

)}}
(G.24)

The ground state of the non-interacting system is a statistical average over Slater determinants
in a basis of eigenstates of the one-particle Hamiltonian

ĥ =

∫
d4x |x⃗⟩

[
−ℏ2

2me
∇⃗2 + γ(r⃗)

]
⟨x⃗ | (G.25)

Because of this form the Lagrange multiplier in the kinetic energy functional is named effective
potential vef f (r⃗) = γ(r⃗).

Thus, we arrive at the final form for the grand potential as it is used in density-functional calcu-
lations

ΩT,µ = min
n(r⃗)

{
min

fn∈[0,1],|ψn⟩
stat
ΛΛΛ,γ(r⃗)

{∑
n

fn⟨ψn|
ˆ⃗p2

2me
|ψn⟩︸ ︷︷ ︸

non-interacting Ekin

+

∫
d3r n(r⃗)vext(r⃗)

+
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Hartree energy

+Exc [n(r⃗)]

+ kBT
∑
n

(
fn ln(fn) + (1− fn) ln(1− fn)

)
︸ ︷︷ ︸
−TS; S =entropy of non-interacting electrons

−µ
∫
d3r n(r⃗)︸ ︷︷ ︸
−µN

}

+

∫
d4x γ(r⃗)

(∑
n

fnψ
∗
n(x⃗)ψn(x⃗)− n(r⃗)

)
−
∑
m,n

Λn,m

(
⟨ψm|ψn⟩ − δm,n

)}
(G.26)

G.2.7 Self-consistent equations

The minimum and stationary conditions define a set of equations that need to be obeyed simultane-
ously. It is called the set of self-consistent equations. These self-consistent equations can be solved
iteratively to find the ground state.

We start with the variation with respect to density n(r⃗), one-particle wave functions |ψn⟩ and
occupations fn.

∂Ω

∂n(r⃗)
= vext(r⃗) +

∫
d3r ′

e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
vH(r⃗)

+
∂Exc
∂n(r⃗)

− µ− γ(r⃗) != 0

1

fn

∂Ω

∂⟨ψn|
=
[ ˆ⃗p2
2me

+ γ(r⃗)
]
|ψn⟩ −

∑
m

|ψm⟩Λm,n
!
= 0

∂Ω

∂fn
= ⟨ψn|

[
ˆ⃗p2

2me
+ γ(r⃗)

]
|ψn⟩+ kBT

[
ln(fn)− ln(1− fn)

]
!
= 0 (G.27)
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From the first equation we obtain a definition for the effective potential for the non-interacting
electrons.

vef f (r⃗)
def
= γ(r⃗) + µ = vext(r⃗) +

∫
d3r ′

e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
vH(r⃗)

+
∂Exc
∂n(r⃗)

(G.28)

The middle equation, is kind of Schrödinger equation.[ ˆ⃗p2
2me

+ vef f (r⃗)
]
|ψn⟩ =

∑
m

|ψm⟩
(
Λm,n − µδm,n

)
(G.29)

The Lagrange multipliers is the Hamilton matrix shifted relative to the chemical potential

Λm,n = ⟨ψm|
[ ˆ⃗p2
2me

+ vef f (r⃗)
]
|ψn⟩ − µδm,n (G.30)

From the last equation, we obtain the equilibrium occupations as the Fermi distribution function.
The diagonal elements of Λm,n act here as energies.

fn =
1

1 + eβ(Λn,n−µ)
(G.31)

The relation between the density and the wave functions and occupations is obtained from the
constraint equation, i.e. the variation with respect to γ(r⃗)

n(r⃗) =
∑
n

fnψ
∗
n(x⃗)ψn(x⃗) (G.32)

If all occupations differ, the wave functions must be furthermore eigenstates of the effective
Hamiltonian.3 [ ˆ⃗p2

2me
+ vef f (r⃗)

]
|ψn⟩ = |ψn⟩ϵn (G.33)

The energy eigenvalues are called Kohn-Sham energies.

SELF-CONSISTENT EQUATIONS OF DFT

vef f (r⃗) = vext(r⃗) +

∫
d3r ′

e2n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
+
∂Exc
∂n(r⃗)

(G.34)

[ ˆ⃗p2
2me

+ vef f (r⃗)
]
|ψn⟩ = |ψn⟩ϵn (G.35)

n(r⃗) =
∑
n

fnψ
∗
n(x⃗)ψn(x⃗) (G.36)

fn =
1

1 + eβ(ϵn−µ)
(G.37)

G.3 One-particle density matrices and two-particle densities

In order to get used with the terminology, let me introduce a number of definitions related to density
matrices[124].

3Editor: This is not convincing yet! Show the energy variation under a unitary transform.
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G.3.1 N-particle density matrix

The ensemble of many-particle states is described uniquely by von-Neumann’s statistical density
operator

ρ̂(N) =
∑
n

|Φn⟩Pn⟨Φn| (G.38)

where |Φn⟩ are arbitrary many-particle states in the Fock space and Pn are their probabilities.
The ensemble expectation value of any operator Â can be obtained as trace of the product

⟨A⟩ = Tr
[
ρ̂(N)Â

]
=
∑
n

Pn⟨Φn|Â|Φn⟩ (G.39)

G.3.2 one-particle-reduced density matrix

From the N-particle density matrix we can form several contractions that are physically important,
because they allow one to represent expectation values of one-particle operators and the Coulomb
interaction in an elegant fashion.

For example, we do not need the full N-particle density matrix to determine the expectation value
of a one-particle operator, if we know the so-called one-particle density matrix.

A one-particle operator has the form

Â =
∑
α,β

Aα,β ĉ
†
αĉβ (G.40)

Its expectation value is

⟨A⟩ =
∑
α,β

Aα,βTr
[
ρ̂(N)ĉ†αĉβ

]
=
∑
α,β

Aα,βρ
(1)
β,α = Tr

[
Aρ(1)

]
(G.41)

where

ρ
(1)
α,β

def
= Tr

[
ρ̂(N)ĉ†β ĉα

]
=
∑
n

Pn⟨Φn|ĉ†β ĉα|Φn⟩ (G.42)

is the one-particle-reduced density matrix . Note here that the indices are reversed!

real-space representation: In real space the one-particle-reduced density matrix has the form of a
function with two arguments

ρ(1)(x⃗ , x⃗ ′) =
∑
n

Pn⟨Φn|ψ̂†(x⃗ ′)ψ̂(x⃗)|Φn⟩ (G.43)

From the diagonal elements we obtain the electron density

n(r⃗) =
∑
σ

ρ(1)(x⃗ , x⃗) (G.44)

Natural orbitals and occupations In order to deal with the one-particle-reduced density matrix,
one usually refers its eigendecomposition:

The one-particle density operator is itself expressed as one-particle operator

ρ̂(1) =
∑
α,β

|χα⟩ρα,β⟨χβ | =
∫
d4x

∫
d4x ′ |x⃗⟩ρ(1)(x⃗ , x⃗ ′)⟨x⃗ ′| (G.45)

Diagonalization yields the natural orbitals and occupations.

ρ̂(1)|ψn⟩ = |ψn⟩fn (G.46)
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• Natural orbitals |ψn⟩ are the eigenstates of the one-particle-reduced density matrix

• occupations fn are the eigenvalues of the one-particle reduced density matrix.

The occupations for a fermionic system lie between zero and one, and those of a bosonic system
is positive. The occupations add up to the particle number.

The expectation value of a one-particle operator can the be obtained as

⟨A⟩ =
∑
n

fn⟨ψn|Â|ψn⟩ (G.47)

G.3.3 Two-particle density

The Coulomb interaction is

Ŵ
Eq. 3.75
=

1

2

∫
d4x

∫
d4x ′ ψ̂†(x⃗)ψ̂†(x⃗ ′)

e2

4πϵ0|r⃗ − r⃗ ′|
ψ̂(x⃗ ′)ψ̂(x⃗) (G.48)

Thus, the interaction energy can be expressed with the help of the two-particle density

n(2)(r⃗ , r⃗ ′) =
∑
σ,σ′

∑
n

Pn⟨Φn|ψ̂†(x⃗)ψ̂†(x⃗ ′)ψ̂(x⃗ ′)ψ̂(x⃗)|Φn⟩ (G.49)

as

W =
1

2

∫
d3r

∫
d3r ′

e2n(2)(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
(G.50)

Two-particle density matrix and U-tensor In order to obtain the two-particle density from a
representation of orbitals, we need the complete two-particle density matrix

ρ̂
(2)
α,β;δ,γ =

∑
n

Pn⟨Φn|ĉ†αĉ
†
β ĉδ ĉγ |Φn⟩ (G.51)

Then the interaction is

Ŵ =
1

2

∑
α,β,γ,δ

Uα,β,δ,γ ρ̂
(2)
α,β;γ,δ (G.52)

with the U-tensor

Uα,β,δ,γ =

∫
d4x

∫
d4x ′

e2χ∗α(x⃗)χ
∗
β(x⃗

′)χγ(x⃗ ′)χδ(x⃗)

4πϵ0|r⃗ − r⃗ ′|
(G.53)

G.3.4 Pair-correlation function and hole function

Another quantity that is useful is the pair-correlation function

PAIR-CORRELATION FUNCTION

g(r⃗ , r⃗0) =
n(2)(r⃗ , r⃗0)

n(r⃗0)

The pair-correlation function describes the probability to find an electron at position r⃗ , given that
there is one at r⃗0. The pair-correlation function is the electron density seen by one electron that is
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located at r⃗0. Consider an N-electron system. Pick out one electron and determine the density of
the remaining N − 1 electrons.

Given that an electron will see at large distances nothing but the charge density itself, it makes
sense to define a more short-ranged quantity, namely the exchange-correlation hole function h(r⃗ , r⃗0)

HOLE FUNCTION

g(r⃗ , r⃗0) = n(r⃗) + h(r⃗ , r⃗0)

The physical picture of the hole function is that each electron “sees” the total density n(r⃗) and the
density h(r⃗ , r⃗ ′) of “one missing electron”. The density h(r⃗ , r⃗ ′) is like a hole in the total charge density
due to the fact that the remaining electrons do not come near to the electron in question. Thus, the
Coulomb repulsion between the electrons is reduced relative to the Hartree energy by the attraction
of the electron to its exchange-correlation hole.

Accurate calculations of the exchange-correlation hole have been obtained by quantum Monte
Carlo calculations[125].

The two-particle density can now be expressed by the density and the exchange-correlation hole
function as

n(2)(r⃗ , r⃗0) = n(r⃗0) [n(r⃗) + h(r⃗ , r⃗0)]

Now, we can also rewrite the interaction energy in the form

Eint =
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EH

+

∫
d3r n(r⃗)

1

2

∫
d3r ′

e2h(r⃗ ′, r⃗)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
Uxc

(G.54)

Uxc is the potential energy of exchange and correlation. It differs from the exchange and cor-
relation energy Exc , because it does not contain the kinetic energy contribution to the correlation
energy.

G.4 Adiabatic connection

We learned that one can reasonably estimate the exchange-correlation hole, and evaluate the potential
energy of exchange and correlation. However, it is nearly hopeless to estimate the contribution of
the kinetic energy to the correlation energy, needed to arrive at the exchange and correlation energy
functional Exc [n(r⃗)].

If there would be no cost to deform the exchange-correlation hole, the latter would simply adjust
such that the electrostatic energy is optimized. One can easily estimate how the hole would look
like: It would have the shape of a hard sphere centered at the reference electron. Its radius would
be determined by the sum rule that says that there is exactly one positive charge in the exchange-
correlation hole. The reason for this shape is that the electron would repel its neighbors as much as
possible, in order to reduce its electrostatic interaction.

However as the exchange-correlation hole is deformed, there is a price to pay, namely that the
kinetic energy goes up. In the extreme case of a hard-sphere like hole, the wave functions would have
steps, that is infinite curvature. The kinetic energy is just a measure of the curvature of the wave
function. Thus, the deformation of the hole costs kinetic energy. The final shape of the XC-hole is
therefore a balance between electrostatic gain and kinetic energy cost.

The adiabatic connection[126, 127, 128] is a theorem that allows one to relate the net energy
gain, including the kinetic energy cost, to the electrostatic energy gain only, but for variable strengths
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of the interaction energy. While this theorem looks like mystery, it cannot be applied directly. Never-
theless it provides an important route that allows important approximations to be made. The theorem
is demonstrated in the following:

In order to simplify the derivation we consider only a single many-particle wave function instead
of an ensemble. The generalization can be done without difficulties.

We consider a given electron density for which the non-interacting functional F0[n(r⃗)] is exactly
known.

Fλ[n(r⃗)] = ⟨Φλ|T̂ + λŴ |Φλ⟩

+

∫
d3r µλ(r⃗)

(
⟨Φλ|n̂(r⃗)|Φλ⟩ − n(r⃗)

)
− Eλ

(
⟨Φλ|Φλ⟩ − 1

)

where |Φλ⟩ is the many-electron wave function that minimizes Fλ under the constraint that the density
of the wave function is equal to n(r⃗). The function µλ(r⃗) represents the Lagrange parameters. The
operator

n̂(r⃗)
def
=
∑
σ

ψ̂†(x⃗)ψ̂(x⃗)

is the operator that extracts the electron density from the wave function.
The wave functions that minimize the functional obey the Schrödinger equation

[
T̂ + λŴ +

∫
d3r µλ(r⃗)n̂(r⃗)− Eλ

]
|Φλ⟩ = 0 (G.55)

This means that as the interaction strength is increased, a local potential, µλ(r⃗), is switched on that
ensures that the electron density remains unchanged.

If we know the derivatives of the functional with respect to the interaction strength λ, and if we
know the functional for the non-interacting electron gas, we can determine the functional for the
interacting electron gas as

F1[n(r⃗)] = F0[n(r⃗)] +

∫ 1
0

dλ
dFλ[n(r⃗)]

dλ

= ⟨Φ0|T̂ |Φ0⟩+
∫ 1
0

dλ
dFλ[n(r⃗)]

dλ

The first term is simply the kinetic energy of the non-interacting electron gas with the same density
as the interacting system.

Now we can show that the derivative of the functional with respect to the interaction strength can
be determined from the interaction energy alone. The proof rests on the Hellmann-Feynman the-
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orem.

dFλ[n(r⃗)]

dλ
=

d

dλ

[
⟨Φλ|T̂ + λŴ |Φλ⟩

+

∫
d3r µλ(r⃗)

(
⟨Φλ|n̂(r⃗)|Φλ⟩ − n(r⃗)

)
− Eλ

(
⟨Φλ|Φλ⟩ − 1

)]
= ⟨

dΦλ
dλ
|T̂ + λŴ |Φλ⟩+ ⟨Φλ|Ŵ |Φλ⟩+ ⟨Φλ|T̂ + λŴ |

dΦλ
dλ
⟩

+

∫
d3r

dµλ(r⃗)

dλ
(⟨Φλ|n̂(r⃗)|Φλ⟩ − n(r⃗))︸ ︷︷ ︸

=0

+

∫
d3r µλ(r⃗)

(
⟨
dΦλ
dλ
|n̂(r⃗)|Φλ⟩+ ⟨Φλ|n̂(r⃗)|

dΦλ
dλ
⟩
)

−
dEλ
dλ

(
⟨Φλ|Φλ⟩ − 1

)
︸ ︷︷ ︸

=0

−Eλ
(
⟨
dΦλ
dλ
|Φλ⟩+ ⟨Φλ|

dΦλ
dλ
⟩
)

= ⟨Φλ|Ŵ |Φλ⟩

+⟨
dΦλ
dλ
|
[
T̂ + λŴ +

∫
d3r µλ(r⃗)n̂(r⃗)− Eλ

]
|Φλ⟩︸ ︷︷ ︸

=0

+ ⟨Φλ|
[
T̂ + λŴ +

∫
d3r µλ(r⃗)n̂(r⃗)− Eλ

]
︸ ︷︷ ︸

=0

|
dΦλ
dλ
⟩

Eq. G.55
= ⟨Φλ|Ŵ |Φλ⟩

Thus, we can express the functional for the finite interaction strength as

F1[n(r⃗)] = ⟨Φ0|T̂ |Φ0⟩+
∫ 1
0

dλ ⟨Φλ|Ŵ |Φλ⟩︸ ︷︷ ︸
EH [n(r⃗)]+Exc [n(r⃗)]

Thus, we have obtained an explicit expression for the exchange-correlation energy, that does not
directly refer to the kinetic energy.

Exc [n(r⃗)] =

∫ 1
0

dλ ⟨Φλ|Ŵ |Φλ⟩ −
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
EH

This expression has the problem that we still need the wave functions |Φλ⟩ for all possible values for
the interaction strength.

The interaction energy can further be expressed by the exchange-correlation hole for a given value
of the interaction, namely

⟨Φλ|Ŵ |Φλ⟩ =
1

2

∫
d3r

∫
d3r ′

e2n(r⃗)n(r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|
+

∫
d3r n(r⃗)

1

2

∫
d3r ′

e2hλ(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

so that

Exc =

∫
d3r n(r⃗)

∫ 1
0

dλ
1

2

∫
d3r ′

e2hλ(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
=:ϵxc

(G.56)

The variable ϵxc , which itself is a functional of the density is the exchange-correlation energy per
electron.
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G.5 Ideas that guide the construction of density functionals

G.5.1 Screened interaction

It is possible4 to reformulate the exchange-correlation energy by the exchange-only energy with a
screened interaction. This is a form that reminds of the so-called GW approximation, where the
self-energy is expressed by Green’s-function times screened interaction.

Exc
Eq. G.56
=

1

2

∫
d3r

∫
d3r ′ n(r)h0(r, r

′)

∫
dλ
hλ(r⃗ , r⃗ ′)

h0(r⃗ , r⃗ ′)

e2

4πϵ0|r⃗ − r⃗ ′|︸ ︷︷ ︸
vscr (r⃗−r⃗ ′)

=
1

2

∑
i ,j

∫
d3r

∫
d3r ′ ϕ∗i (r⃗)ϕj(r⃗)vscr (r⃗ − r⃗ ′)ϕ∗j (r⃗ ′)ϕi(r⃗ ′)

where the screened interaction is defined as

vscr (r⃗ − r⃗ ′)
def
=

∫
dλ

hλ(r⃗ , r⃗ ′)

h0(r⃗ , r⃗ ′)

e2

4πϵ0|r⃗ − r⃗ ′|
Note that, in contrast to the GW approximation, our expression is exact, but, on the other hand, it
is limited to the ground state.

h0

ha

h0

rs

1

|r−r’|

h
x

Fig. G.2: Schematic diagram of the effect of the screening of the interaction. The golden line h0 is
the hole function of the non-interacting reference system, while the red line hλ is the hole function
in presence of a scaled interaction. The ratio scales the Coulomb interaction in the exchange term.
It suppresses the long-range tail of the interaction, and enhances the interaction for intermediate
distances. rs is the average electron radius 4π3 r

2
s ∗ n = 1. (ha and hx should be hλ; Problem with the

drawing program.)

Note also that the screened interaction in this formulation only enters the exchange term, but
not the Hartree term. It also includes the kinetic energy correction.

The qualitative behavior can be understood easily:

• The hole function hλ(r⃗ , r⃗ ′) for a finite interaction is generally more compact than the on
obtained without interaction. Thus, the screened interaction vscr is generally more short ranged
than the unscreened interaction.

4This is an idea from the author, that has not been crosschecked properly. Therefore, some caution is required.
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• The screened interaction for r⃗ = r⃗ ′ is identical to the unscreened interaction, because the hole
function cancels exactly the spin density, independent of the strength of the interaction.

• Due to the compression of the hole upon increasing interaction and because of the sum-rule
that the hole integrates to exactly one positive charge, the interaction must be enhanced for
intermediate distances.

• The screening will be more effective, if the price for the distortion of the wave function is
low, that is for a low density. This implies that the unscreened interaction is a reasonable
approximation in the high-density region around the atomic center, while the tail region of a
molecule is better described by a more short-ranged interaction.

G.5.2 Hybrid functionals

The adiabatic connection scheme is exploited in the construction of so-called hybrid functionals.
These density functionals describe the exchange-correlation energy as a mixture of the correct ex-
change, obtained as in the Hartree-Fock method and another local or gradient corrected functional.

The performance of the hybrid functionals is probably among the best. They have the disadvan-
tage that they require that the Hartree-Fock exchange must be evaluated, which is computationally
more challenging than the evaluation of the regular density functionals.

The idea behind the hybrid functionals is that the local functionals are appropriate if the interaction
energy is very large. However if the interaction energy is small, the exchange hole is given by Hartree-
Fock exchange.

If for example the kinetic energy dominates, the shape of the exchange-correlation hole cannot
adjust, and we can approximate hλ(r⃗ , r⃗ ′) ≈ h0(r⃗ , r⃗ ′) by the hole of the non-interacting electron gas.
Thus, we obtain

ϵxc ≈
1

2

∫
d3r ′

e2h0(r⃗ , r⃗ ′)

4πϵ0|r⃗ − r⃗ ′|

If the electrostatic interaction dominates over the kinetic energy then h1(r⃗ , r⃗ ′) would be a hard
sphere, and therefore fairly local. Therefore, the hybrid functionals try to approximate the integral
by a superposition of HF-exchange and a local density functional.

d3r
4 0|r−r’|πε
e2h  (r,r’)λ

2
1

Hartree−Fock
(hole of non−interacting electrons)

xcε

0 1 λ
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G.6 Scaling of with a fixed shape of the XC-hole function

Even before the invention of density-functional theory per se, the so-called Xα method has been
introduced. Today, the Xα method has mostly historical value. The Xα method uses the expression
for the exchange of a homogeneous electron gas instead of the exchange-correlation energy. However,
the exchange energy has been scaled with a parameter, namely Xα, that has been adjusted to Hartree-
Fock calculations. The results are shown in Fig. G.3.
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Fig. G.3: Xα value obtained by comparison of the atomic energy with exact Hartree-Fock calculations
as function of atomic number of the atom.[129, 130]

The rationale behind the Xα-method is a dimensional argument. Choose a given shape for the
exchange-correlation hole, but scale it according to the density and the electron sum rule. Then
the exchange-correlation energy per electron always scales like n

1
3 . Each shape corresponds to a

pre-factor.
Consider a given shape described by a function f (r⃗) with

f (⃗0) = 1∫
d3r f (r⃗) = 1

Now, we express the hole function by the function f by scaling its magnitude at the origin such that
the amplitude of the hole cancels the electron density. Secondly, we stretch the function in space so
that the sum rule, which says that the hole must integrate to −1, is fulfilled. These conditions yield
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the model for the exchange-correlation hole.

h(r⃗0, r⃗) = −n(r⃗0)f (
r⃗ − r⃗0
n(r⃗0)

1
3

)

The corresponding exchange-correlation energy per electron is

ϵxc(r⃗) = −
1

2

∫
d3r ′

e2

4πϵ0|r⃗ − r⃗ ′|
f (
r⃗ − r⃗ ′

n(r⃗)
1
3

)

If we introduce a variable transform

y⃗ =
r⃗ − r⃗ ′

n(r⃗)
1
3

we obtain

ϵxc(r⃗) = −
n(r⃗)

1
3

2

∫
d3y ′

e2

4πϵ0|y⃗ |
f (y⃗) = −Cn

1
3

where C is a constant that is entirely defined by the shape function f (r⃗).
In general, the Xα method yields larger band gaps than density-functional theory. The latter

severely underestimates band gaps. This is in accord with the tendency of Hartree-Fock to overesti-
mate band gaps. In contrast to Hartree-Fock, however, the Xα method is superior for the description
of metals because it does not lead to a vanishing density of states at the Fermi level.

G.7 Local density functionals

The first true density functionals were constructed for the homogeneous electron gas, by extracting
the exchange-correlation energy per electron ϵxc from a calculation of the interacting homogeneous
electron gas.

A breakthrough came about when Ceperley and Alder[49] performed quantum Monte-Carlo calcu-
lations of the homogeneous electron gas as function of the density. Quantum Monte-Carlo calcula-
tions are computationally expensive, but provide the energy of an interacting electron gas in principle
exactly, that is with the exceptions of numerical errors. These results have been parameterized by
Perdew and Zunger[131] and combined with so-called RPA results for the high-density limit. RPA
stands for Random-Phase Approximation[43], which is accurate in the high density limit.

These density functionals exhibit very good results for solids. Electron densities are nearly perfect.
Bond distances are typically underestimated by 1-3 % and bond angles agree with experiment within
few degrees. Binding energies, on the other hand, are strongly overestimated. The errors are in
the range of electron volts and thus comparable to bond energies. Thus, these functionals have
been useless for studying chemical reactions. However, the results for solid state processes such as
diffusion have been very good. This has lead to a long-standing misunderstanding between solid state
physicists and chemists about the usefulness of density-functional theory. The density functionals
worked find for solids, which was what the physicists are interested in, while they were a disaster for
the binding energies of molecules, the major interest of chemists. This difficulty has been overcome
by the gradient corrected density functionals discussed later.

The overestimate of the binding energies covers up the lack of Van der Waals interactions. For
example, the binding energy and the bond distances of Nobel gases are in very good agreement
with experiment. However, the agreement is good for the wrong reason. The weak van der Waals
interaction is not described properly in local density functionals, but the overbinding compensates for
this fact.

For a long time it was surprising that the approximate density functionals work at all. They have
been derived from a completely homogeneous electron gas and are applied to an electron density of
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real materials, which are far from homogeneous. Jones and Gunnarsson gave one explanation, namely
that density functionals observe an important sum rule, namely that the exchange-correlation hole
integrates to minus one electron charge. Fig. G.4 compares the exchange hole of a free-electron gas
with that of a nitrogen atom, demonstrating that despite their very different shape, their contributions
to the exchange energy are similar.

0 0

r−r0

0−0.3a 0−0.2a 00.1a0−0.1a r0

r−r000.3a00.2a00.1a

r−r0

−1.5a0 −1.0a0 −0.5a0 r0 00.5a

00.5a 01.0a 01.5a 02.0a

Exact

LSD

R

R

Exact

LSD

LSD

Exact
LSD

Exact

R

Fig. G.4: exchange-correlation hole of an electron in the nitrogen atom (full line) and in the local
density-functional approximation (dashed) [132]. In the left row, the reference electron is located
0.13 a0 from the nucleus and on the right it is located further, at 0.63 a0. Even though the shape
of the DFT-exchange hole deviates grossly from the correct exchange hole, the spherical averages
shown in the bottom figures are similar, which is attributed to the particle sum rule, obeyed in the
local density approximation (LDA). The arrows pointing down indicate the exact and the DFT result

of
[∫
d3r |h(r⃗ ,r⃗0)||r⃗−r⃗0|

]−1
. Similar results are available for neon[131].

G.8 Local spin-density approximation

In order to describe magnetic systems, or so-called open-shell molecules, one uses the local spin-
density approximation, where the spin-dependent density n(x⃗) = n(r⃗ , σ) is used instead of the total
density n(r⃗) =

∑
σ n(x⃗). As a result, we obtain one-particle wave functions with spin-up and spin-

down character and one obtains two effective potentials, one for the spin-up electrons and another
for the spin-down electrons.

The difference between the effective potentials acts like a magnetic field, even though its origin
is purely electrostatic, namely exchange and correlation also called the exchange interaction.

G.8.1 Non-collinear local spin-density approximation

While the local spin-density formalism only allows one-particle wave function to have either purely
spin-up or purely spin-down character, the non-collinear formulation allows the wave functions to
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have a mixed spin-up and spin-down character. As a result, the magnetization can not only vary in
magnitude but also in direction.

G.9 Generalized gradient functionals

For a long time one has hoped to obtain better functionals by including also a dependence on the
gradient of the density. The first attempts started from a model with a weakly oscillating electron
density. The resulting functionals however were worse than the local functionals.

The reason for this failure was that when the expansion for slowly varying densities are extrapolated
to strongly oscillating densities, the density of the exchange-correlation hole was overcompensating
the total density.

Later, one realized that one should introduce a dimension-less scaled gradient defined as

s =
rs |∇⃗n|
n

rs| n|

∆

rsrs r0

n

−h(r0,r)

r

n

The scaled gradient allows one to switch off the gradient corrections in a physical sense, that is
if the hole runs into the danger of producing a negative correlation function g(x⃗ ′, x⃗).

One way to construct the density is to use the results for slowly varying densities, which provides
the parameter β.

ϵxc(n, s) = ϵ
hom
xc

[
1 + β(n)s2

]
for s << 1 (G.57)

Surprisingly, the scaled gradient is largest in the tails of the wave functions, where the density
falls off exponentially, that is

n(r⃗) ≈ Ae−λe⃗r⃗

where e⃗ is the unit vector pointing into the direction in which the density falls off. Let us determine
the scaled gradient for this density

s =
3

√
3

4π

Aλ exp(−λe⃗r⃗)
A
4
3λ exp(− 43λe⃗r⃗)

=
3

√
3

4π
λn−

1
3 →∞
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If we use only the gradient correction with the small-s expansion, the exchange-correlation energy
per particle clearly becomes infinite.

However, in the tail region we can make use of other information. Consider an electron that is
far outside of a molecule. It is clear that it “sees” a molecule with N − 1 electrons. Thus, the hole is
entirely localized on the molecule and the center of the hole is far from the reference electron. If the
hole is at the molecule and the reference electron is far from it, we can estimate its interaction by

ϵxc =
1

2r
(G.58)

where r is the distance of the electron from the molecule.
Let me demonstrate the construction of such a gradient corrected functional using the example

of Becke’s gradient correction for exchange[133]. We make an ansatz for the exchange energy per
electron as

ϵxc = Cn
1
3F (s) (G.59)

where C is the pre-factor for the exchange energy. The function F (s) is determined such that small
gradient expansion, Eq. G.57, is reproduced, and that the exchange energy per electron in the tail
region is correct.

To consider the tail region we require

ϵxc
Eq. G.59
= Cn

1
3F (s)

Eq. G.58
=

1

2r
⇒ F (s) =

1

2Crn
1
3

for s →∞

First we express the radius by the density and insert the result in Eq. G.60 to obtain an expression
for F (n(s)).

n(r) = Ae−λr ⇒ r(n) = −
1

λ
ln
[ n
A

]
⇒ F (s) =

1

2Crn
1
3

=
−λ

2Cn
1
3 (ln[n]− ln[A]))

Next we express the density by the scaled gradient and insert the result in the above equation to
obtain an expression for F (s).

s(n) =
3

√
3

4π
λn−

1
3 ⇒ n(s) =

3λ3

4π
s−3

⇒ F (s) =
−λ

2Cn
1
3 (ln[n]− ln[A]))

=
−λ

2C 3

√
3λ3

4π
1
s

(
ln[ 3λ

3

4π s
−3]− ln[A]

)
=

−s

2C 3

√
3
4π

(
ln[ 3λ

3

4πA3 s
−3]− 3 ln[s]

)
s→∞
≈

1

6C
3

√
4π

3

s2

s ln[s]

This equation gives us the large gradient limit of F (s).
In order to connect the low gradient limit with the large gradient limit we choose

F (s) = 1 +
βs2

1 + 6Cβs sinh−1(s)

The result is shown in Fig. G.5.
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Fig. G.5: The function F (s) from Becke’s gradient corrected functional [133] for the exchange
energy and from the small gradient expansion (dashed). Note that the gradient correction of Becke
is smaller than the expansion for large gradients.

The gradient correction plays the role of a surface energy, as it contributes mostly in the tail region.
While the exchange-correlation energy per electron falls off exponentially in the local functionals, it
falls off as 1

2r in the gradient corrected functionals. This effect lowers the energy in the tail region
of a molecule compared to the local functionals. If we break a bond, the surface area of a molecule
increases, because the bond is transformed into a tail region. Thus, the gradient correction favors
the dissociation of the bonds. As a consequence, gradient corrected functionals avoid the artificial
overbinding of the local functionals. This argument also explains that local functionals perform fairly
well in solids: If an atom diffuses, there is no additional surface created so that the gradient correction
is minor.

Up to know there is an entire suite of different gradient corrected functionals. They are called
Generalized Gradient Approximations (GGA) to differentiate them from the gradient expansions.
The most common functionals are the Perdew-Wang-91-GGA, which has been superseded by the
simpler Perdew-Burke-Ernzerhof functional. Both yield nearly identical results.

As shown in Fig. G.6, the performance of gradient corrected functionals is extremely good also
for binding energies, which were unsatisfactory in the local density functionals. This has drawn also
the chemists into the field of density-functional calculations.

G.10 Additional material

G.10.1 Relevance of the highest occupied Kohn-Sham orbital

According to Perdew[134, 135], the energy of the highest occupied Kohn Sham orbital is the ionization
potential of the material.

This statement has been disputed by Kleinman[136].
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Fig. G.6: Accuracy of the atomization energies calculated with the Becke88-Perdew86 density func-
tional compared to experiment.

G.10.2 Correlation inequality and lower bound of the exact density functional

G.11 Reliability of DFT

If we knew the exact density functional, we would be able to determine exactly

• the total energy

• the electron density and

• the energy of the highest occupied orbital

The argument that DFT predicts the highest occupied orbital, while the orbital energies of all
other one-particle orbitals are, in principle, without physical meaning goes as follows: Far from the
surface of a crystal the density of a one-particle orbital falls off as e−λz where λ is related to the
orbital energy by λ = 1

ℏ
√
−2meϵ, where the orbital energy is measured relative to the vacuum level,

that is limz→∞ vef f (r⃗). For large distances the highest occupied orbital, which has the slowest decay,
will dominate the electron density. Thus, if we would know the electron density very accurately far
from a surface, we would be able to determine the dominant exponential decay constant and thus
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the energy of the highest occupied orbital.5 Thus, the energy of the highest occupied orbital can be
determined from the density, which is an exact prediction of DFT.

Of course, even though exact DFT predicts these quantities accurately, it remains to be seen in
each case if that also holds for the approximate functionals used in practice.

• Bond energies: Local functionals overestimate binding by often more than 1 eV. Energies are
fairly good as long as the effective surface area of the system is not changed. This poor result
is dramatically improved by the GGA’s.

• Structures: bond lengths are underestimated in LDA by 0-2 %. They are overestimated by
GGA’s by 0-2 %.

• Dipole moments standard deviation 0.1 Debye[137]

G.12 Deficiencies of DFT

• Missing Van der Waals interaction: The van-der-Waals interaction is not included. Surpris-
ingly the description of van der Waals bonds is nearly perfect with truly local density functionals.
This however is an artifact of the tendency to overbinding in truly local density functionals on
the one hand, and the lack of van der Waals interactions on the other. Since the overbinding
of covalent bonds introduces errors in the range of 1 eV, it is generally not a good idea to use
truly local density functionals instead of their gradient corrected counterparts.

A density functional for the van der Waals interaction has been developed by Dion et al.[138].
It is named vdWDF (van-der-Waals density functional).

• Band-gap Problem: If we compare the spectrum of Kohn Sham states with optical absorption
spectra we observe that the band gaps are too small. This is not a deficiency of density-
functional theory, but an over-interpretation of the Kohn Sham spectrum. The excited states
should not be calculated from the same potential as the ground state.

• Reduced band width: Band width of alkaline metals.

• Mott insulators

• unstable negative ions

• Broken symmetry spin states: singlet O2 Molecule[139]

• Transition states:

• High-energy spectrum: The high energy part if the Kohn-Sham spectrum is too low compared
to the measured optical spectrum[140]. The reason is that the exchange-correlation hole
cannot follow the very fast electrons, while in the functionals we assume that full relaxation is
always possible. Editor: It seems that the descrency[140] starts to grow above
the plasma frequency.

5There is a caveat in the argument. Consider an insulator which may have surface states in the band gap. In that
case the density would probe the highest occupied surface state, which may lie above the highest occupied bulk state.



Appendix H

Derivation of Slater-Condon rules

In this section, I derive the Slater-Condon rules[22, 50] spelled out in section 3.5 on p. 132.
The expectation values of Slater determinants[22] have been motivated earlier in the chapter 2

on the Hartree-Fock approximation in section 2.1.2 on p. 50 and section 2.1.4 on p. 55.

H.1 Maximum coincidence and orthonormality

An important ingredient to make the derivation of the Slater-Condon rule feasible is the concept of
maximum coincidence:

Two Slater determinants, expressed in the same one-particle basisset, are in maximum coinci-
dence, if all one-particle orbitals, which are present in both Slater determinants, are in the same
position in both Slater determinants.

For example:

• the following determinants are in maximum coincidence with |abcd⟩: |ef cd⟩, |abcd⟩ ,|aecd⟩.

• The determinants |bacd⟩, |eacd⟩ are not in maximum coincidence with |abcd⟩. They can be
brought into maximum coincidence by permuting one-particle orbitals, where each permutation
contributes a factor (−1).

When two Slater-determinants |Φ⟩ and |Ψ⟩ are in maximum coincidence, the distinct one-particle
orbitals can be moved to the front without changing the matrix elements ⟨Φ|Â|Ψ⟩ between the Slater
determinants. This special form simplifies the bookkeeping in the arguments following below:

The other requirement for the derivation is that the one-particle orbitals are orthonormal. For
non-orthonormal one-particle orbitals the expressions are considerably more complicated. When the
expressions for non-orthonormal basis functions are needed, they can be obtained by transforming
the expressions obtained with an orthonormal basisset.

H.2 Matrix elements with identical Slater determinants

The expectation values with a Slater determinant[22] make up the first set Slater-Condon rule
Eq. 3.41.

H.2.1 Expectation value of a one-particle operator

First, we evaluate only the matrix element of the one-particle operator ĥ1, that acts only on the
coordinates of only one particle, namely the first. This result is then generalized for the other

543
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particles and then summed up. Thus, we obtain the expectation value of the non-interacting part of
the Hamiltonian.

To be concise, we write here the detailed expressions for the matrix elements of the one-particle
Hamilton operator. The generalization to any other one-particle operator is straightforward. The
expectation value with a one-particle orbital |ϕ⟩ is

⟨ϕ|ĥ|ϕ⟩ =
∫
d4x

∫
d4x ′ ⟨ϕ|x⃗⟩

δ(r⃗ − r⃗ ′)δσ,σ′
(
−
ℏ2

2me
∇⃗2 + vext(r⃗)

)
︸ ︷︷ ︸︷ ︸︸ ︷

⟨x⃗ |ĥ|x⃗ ′⟩ ⟨x⃗ ′|ϕ⟩

=
∑
σ

∫
d3r ϕ∗(r⃗ , σ)

[
−ℏ2

2me
∇⃗2 + vext(r⃗)

]
ϕ(r⃗ , σ) (H.1)

The one-particle Hamiltonian ĥj acting on the j-th particle in a many-particle wave function |Ψ⟩
yields the expectation value

⟨Ψ|ĥj |Ψ⟩ =
∫
d4x1 · · ·

∫
d4xN Ψ

∗(x⃗1, . . . , x⃗N)

(
−ℏ2

2me
∇⃗2j + vext(r⃗j)

)
Ψ(x⃗1, . . . , x⃗N) (H.2)

so that the matrix element for two product wave functions |ϕ1, . . . , ϕN⟩ and |ψ1, . . . , ψN⟩ is

⟨ϕ1, . . . , ϕN |ĥj |ψ1, . . . , ψN⟩ = ⟨ϕ1|ψ1⟩ · · · ⟨ϕj |ĥ|ψj ⟩ · · · ⟨ϕN |ψN⟩ (H.3)

A Slater determinant |Ψ⟩ has the form

⟨x⃗1, . . . , x⃗N |Ψ⟩
Eq. 1.88
=

1√
N!

N∑
i1,...,iN=1

ϵi1,...,iN ⟨x⃗1|ϕi1⟩ · · · ⟨x⃗N |ϕiN ⟩ (H.4)

Thus, the matrix element of a one-particle operator Eq. 2.5 is

⟨Ψ|
N∑
i=1

ĥi |Ψ⟩ = N⟨Ψ|ĥ1|Ψ⟩

Eq. H.4
= N ·

1

N!

N∑
i1,i2,...,iN

N∑
j1,j2,...,jN

ϵi1,i2,...,iN ⟨ϕi1 , . . . , ϕiN |ĥ1|ϕj1 , . . . , ϕjN ⟩ϵj1,j2,...,jN

Eq. H.3
= N

1

N!

N∑
i1,i2,...,iN

N∑
j1,j2,...,jN

ϵi1,i2,...,iN ϵj1,j2,...,jN ⟨ϕi1 |ĥ1|ϕj1⟩ ⟨ϕi2 |ϕj2⟩︸ ︷︷ ︸
δi2 ,j2

· · · ⟨ϕiN |ϕjN ⟩︸ ︷︷ ︸
δiN ,jN

= N
1

N!

N∑
i1,j1=1

⟨ϕi1 |ĥ1|ϕj1⟩
N∑

i2,...,iN

ϵi1,i2,...,iN ϵj1,i2,...,iN︸ ︷︷ ︸
δi1 ,j1 (N−1)!

=

N∑
j=1

⟨ϕj |ĥ1|ϕj⟩

In the last step, we exploited, that the sum over j1 only contributes when j1 = i1: There is only one
orbital left if all the orbitals but the first are determined. Thus, the first orbital must be the same
for both Levi-Civita Symbols.

Finally, we obtain the expectation value of the one-particle Hamiltonian for a Slater determinant
|Ψ⟩ as
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EXPECTATION VALUE OF A ONE-PARTICLE OPERATOR WITH A SLATER DETERMINANT

⟨Ψ|
N∑
i=1

ĥi |Ψ⟩ =
N∑
i=1

⟨ϕi |ĥ|ϕi ⟩ (H.5)

Here, |Ψ⟩ is a N-particle Slater determinant built from the one-particle orbitals |ϕi ⟩, and
∑N

i=1 ĥi is
a one-particle operator.

This is Eq. 2.15 provided on p. 51 and it is the first of the Slater-Condon rules Eq. 3.41 provided
on p. 134.

H.2.2 Expectation value of a two-particle operator

We proceed as for the expectation value of a one-particle operator and relate the interaction energy
between all particles to the interaction between the first two electrons. This is allowed because of
the indistinguishability of the electrons: The interaction between any two electrons is identical to any
other pair. There are N(N−1)

2 ordered pairs and therefore the interaction energy is

EW = ⟨Ψ|
1

2

N∑
i ̸=j

Ŵi ,j |Ψ⟩ =
N(N − 1)
2

⟨Ψ|Ŵ1,2|Ψ⟩

Eq. H.4
=

N(N − 1)
2

1

N!

N∑
i1,i2,...,iN

N∑
j1,j2,...,jN

ϵi1,i2,...,iN ϵj1,j2,...,jN ⟨ϕi1 , . . . , ϕiN |Ŵ12|ϕj1 , . . . , ϕjN ⟩

=
1

2 · (N − 2)!

N∑
i1,i2,...,iN

N∑
j1,j2,...,jN

ϵi1,i2,...,iN ϵj1,j2,...,jN ⟨ϕi1 , ϕi2 |Ŵ12|ϕj1 , ϕj2⟩ ⟨ϕi3 |ϕj3⟩︸ ︷︷ ︸
δi3 ,j3

· · · ⟨ϕiN |ϕjN ⟩︸ ︷︷ ︸
δiN ,jN

=
1

2 · (N − 2)!

N∑
i1,i2,j1,j2

⟨ϕi1 , ϕi2 |Ŵ12|ϕj1 , ϕj2⟩
N∑

i3,...,iN

ϵi1,i2,i3...,iN ϵj1,j2,i3...,iN︸ ︷︷ ︸
=

(N − 2)! ϵi1,i2ϵj1,j2 for i1, i2 ∈ {j1, j2}
0 else

=
1

2

N∑
i1,i2

∑
j1,j2∈{i1,i2}

⟨ϕi1 , ϕi2 |Ŵ12|ϕj1 , ϕj2⟩ ϵi1,i2ϵj1,j2︸ ︷︷ ︸
δi1 ,j1δi2 ,j2−δi1 ,j2δi1 ,j2

=
1

2

N∑
i1,i2

(
⟨ϕi1 , ϕi2 |Ŵ12|ϕi1 , ϕi2⟩ − ⟨ϕi1 , ϕi2 |Ŵ12|ϕi2 , ϕi1⟩

)
(H.6)

In the last step, I exploited that the two interaction terms cancel when the indices i1 and i2 are
identical. Therefore, they need not be excluded from the sum. The expression with the terms i1 = i2
is more convenient to discuss the physical implications, while the former is commonly used in the
quantum chemical literature.

Thus, we obtain the expectation value of the interaction energy of a Slater determinant as
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EXPECTATION VALUE OF THE INTERACTION WITH A SLATER DETERMINANT

⟨Ψ|
1

2

N∑
i ̸=j

Ŵi ,j |Ψ⟩ =
1

2

N∑
i ,j=1

[
⟨ϕi , ϕj |Ŵ |ϕi , ϕj ⟩ − ⟨ϕi , ϕj |Ŵ |ϕj , ϕi ⟩

]
(H.7)

The matrix elements used in the above equation Eq. H.7 are

⟨ϕa, ϕb|Ŵ |ϕc , ϕd⟩
def
=
∑
σ,σ′

∫
d3r

∫
d3r ′ ϕ∗a(r⃗ , σ)ϕ

∗
b(r⃗
′, σ′)

e2

4πϵ0|r⃗ − r⃗ ′|
ϕc(r⃗ , σ)ϕd(r⃗ ′, σ

′)

(H.8)

H.3 Slater determinants differing by one orbital

H.3.1 One-particle operator

The matrix element of a one-particle operator with Slater determinants differing by one orbital is
obtained as follows:

First, we consider Slater determinants

⟨x⃗1, . . . , x⃗N |Ψ⟩ =
1√
N!

N∑
i1,...,iN=1

ϵi1,...,iN ⟨x⃗1|ψi1⟩ · · · ⟨x⃗N |ψiN ⟩ (H.9)

⟨x⃗1, . . . , x⃗N |Φ⟩ =
1√
N!

N∑
j1,...,jN=1

ϵj1,...,jN ⟨x⃗1|ϕj1⟩ · · · ⟨x⃗N |ϕjN ⟩ (H.10)

that differ by exactly one one-particle orbital. Due to the form of maximum coincidence defined in
section 3.5, we can place these two orbitals in the first position. Hence, |ψ1⟩ ≠ |ϕ1⟩, but |ψi ⟩ = |ϕi ⟩
for i ̸= 1. Thus,

⟨ψi |ϕj⟩ = δi ,j(1− δi ,1) (H.11)

Now, we can work out the matrix element for the one-particle operator Â1 acting on the first
particle coordinate.

⟨Ψ|Â1|Φ⟩ =
1

N!

N∑
i1,...,iN=1

N∑
j1,...,jN=1

ϵi1,i2,...,iN ϵj1,j2,...,jN ⟨ψi1 |Â|ϕj1⟩ ⟨ψi2 |ϕj2⟩︸ ︷︷ ︸
δi2 ,j2 (1−δi2 ,1)

. . . ⟨ψiN |ϕjN ⟩︸ ︷︷ ︸
δiN ,jN (1−δiN ,1)

Eq. H.11
=

1

N!

N∑
i2...,iN=1

N∑
i1,j1=1

ϵi1,i2,...,iN ϵj1,i2,...,iN (1− δi2,1) . . . (1− δiN ,1)︸ ︷︷ ︸
(B)

⟨ψi1 |Â|ϕj1⟩ (H.12)

The Levi-Civita symbol ϵi1,...,iN is non-zero only, when all its indices differ. Thus, the term denoted
as (B), is non-zero only,

• if the indices i2, . . . , iN are all different and

• if the indices are from i2, . . . , iN ∈ {2, . . . , N}.

Hence the Levi-Civita symbols are nonzero only when i1 = j1 = 1. When these conditions are fulfilled
the term (B) equals B = 1.
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Thus, we obtain

⟨Ψ|Â1|Φ⟩ =
1

N!

N∑
i2...,iN=2

(ϵ1,i2,...,iN )
2 ⟨ψ1|Â|ϕ1⟩ (H.13)

The Levi-Civita symbols contribute, if all indices are different, This happens (N − 1)! times, which
corresponds to the number of permutations of the indices 2, . . . , N. Thus, we obtain

⟨Ψ|Â1|Φ⟩ =
1

N
⟨ψ1|Â|ϕ1⟩ (H.14)

Since the operator has the form Â =
∑N

i=1 Âi , and since all operators Âi contribute the same
result, we obtain

⟨Ψ|Â|Φ⟩ = ⟨ψ1|Â|ϕ1⟩. (H.15)

which corresponds to the first line in the second Slater-Condon rule Eq. 3.42.

H.3.2 Two-particle operator

The matrix element of a two-particle operator with Slater determinants differing by one orbital is
obtained as follows:

We consider the matrix element between two Slater determinants

⟨x⃗1, . . . , x⃗N |Ψ⟩ =
1√
N!

N∑
i1,...,iN=1

ϵi1,...,iN ⟨x⃗1|ψi1⟩ · · · ⟨x⃗N |ψiN ⟩ (H.16)

⟨x⃗1, . . . , x⃗N |Φ⟩ =
1√
N!

N∑
j1,...,jN=1

ϵj1,...,jN ⟨x⃗1|ϕj1⟩ · · · ⟨x⃗N |ϕjN ⟩ (H.17)

Because only the first orbital of the two Slater determinants |Ψ⟩ and |Φ⟩ differ, the overlap
between the one-particle orbitals has the result

⟨ψi |ϕj⟩ = δi ,j(1− δi ,1) (H.18)

we obtained already earlier in Eq. H.11
Note, that the Slater determinants are chosen in maximum coincidence, defined in section 3.5:

the two orbitals that are present in only one of the two Slater determinants stand at the same
position, namely the first and second. That is, |ψ1⟩ and |ψ2⟩ differ from all |φj ⟩ for j ∈ {1, . . . , N},
and |φ1⟩ and |φ2⟩ differ from all |ψj⟩ for j ∈ {1, . . . , N}. The orbitals which are identical for both
Slater determinants are in the same position, i.e. |φj ⟩ = |ψj⟩ for j ∈ {3, . . . , N}.

Now, we can work out the matrix element of the interaction operator Ŵ1,2 that acts exclusively on
the first two particle coordinates. If the interaction would act onto any other orbital, at least one of
the orbitals in the first position would be connected with another one by an overlap matrix element.
This overlap matrix element vanishes because the orbitals in the first position are orthogonal to all
other orbitals involved.

Later, we will see that the result is the same for each pair of coordinates, so that the sum over
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pairs is done easily at the end of the calculation.

⟨Ψ|Ŵ1,2|Φ⟩ =
1

N!

N∑
i1,...,iN=1

N∑
j1,...,jN=1

ϵi1,i2,...,iN ϵj1,j2,...,jN

·⟨ψi1ψi2 |Ŵ1,2|ϕj1ϕj2⟩ ⟨ψi3 |ϕj3⟩︸ ︷︷ ︸
δi3 ,j3 (1−δi3 ,1)

. . . ⟨ψiN |ϕjN ⟩︸ ︷︷ ︸
δiN ,jN (1−δiN ,1)

=
1

N!

N∑
i3,...,iN=1

N∑
i1,i2,j1,j2=1

ϵi1,i2,i3,...,iN ϵj1,j2,i3,...,iN (1− δi3,1) . . . (1− δiN ,1)︸ ︷︷ ︸
(B)

⟨ψi1ψi2 |Ŵ1,2|ϕj1ϕj2⟩

=
1

N!

N∑
i3,...,iN=2

N∑
n=2

∑
i1,i2,j1,j2∈{1,n}

ϵi1,i2,i3,...,iN ϵj1,j2,i3,...,iN ⟨ψi1ψi2 |Ŵ1,2|ϕj1ϕj2⟩

=
1

N!

N∑
n=2

∑
i1,i2,j1,j2∈{1,n}

⟨ψi1ψi2 |Ŵ1,2|ϕj1ϕj2⟩
N∑

i3,...,iN=2

ϵi1,i2,i3,...,iN ϵj1,j2,i3,...,iN

(H.19)

The factor (B) is nonzero, if the indices i3, . . . , iN are different from each other and if they are
element of {2, . . . , N}. We exploit that for each set i3, . . . , iN in the sum, there is one pair of
numbers {1, . . . , N}, which has not been used. One number is 1, and the other we call n. The
second number n is selected by adding the sum, while we exploit that the only nozero term in that
sum is the one from the elements not covered already, which differs from 1.

The only nonzero contributions for i1, i2, j1, j2 ∈ {1, n} with n ∈ {2, . . . , N} are

N∑
i3,...,iN=2

ϵi1,i2,i3,...,iN ϵj1,j2,i3,...,iN = (N − 2)(N − 3) · · · 1


+1 for i1 = j1 and i2 = j2
−1 for i1 = j2 and i2 = j1
0 else

= (N − 2)!
(
δi1,j1δi2,j2 − δi1,j2δi2,j1

)
(H.20)

Thus, we obtain

⟨Ψ|Ŵ1,2|Φ⟩ =
(N − 2)!
N!

N∑
n=2

(
⟨ψ1ψn|Ŵ |ϕ1ϕn⟩ − ⟨ψ1ψn|Ŵ |ϕnϕ1⟩ − ⟨ψnψ1|Ŵ |ϕ1ϕn⟩+ ⟨ψnψ1|Ŵ |ϕnϕ1⟩

)

=
2

N(N − 1)

N∑
n=2

(
⟨ψ1ψn|Ŵ |ϕ1ϕn⟩ − ⟨ψ1ψn|Ŵ |ϕnϕ1⟩

)
(H.21)

In the last line, we exploited that the simultaneous interchange of the two orbitals in the bra and
those in the ket do not change the matrix element of the interaction.

Since the operator has the form Ŵ = 1
2

∑N
i ̸=j Ŵi ,j . Each pair contributes the same result. As

there are N(N − 1) distinct pairs in the double-sum, we obtain

⟨Ψ|Ŵ |Φ⟩ =
N∑
n=1

(
⟨ψ1ψn|Ŵ1,2|ϕ1ϕn⟩ − ⟨ψ1ψn|Ŵ1,2|ϕnϕ1⟩

)
(H.22)

This result corresponds to the Slater-Condon rule Eq. 3.43. The sum runs now over all terms because
the element with n = 1 cancels anyway.
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H.4 Slater determinants differing by two orbitals

H.4.1 One-particle operator

The matrix element of a one-particle operator with Slater determinants differing by two orbitals is

⟨Ψ|Â1|Φ⟩ =
1

N!

N∑
i1,...,iN=1

N∑
j1,...,jN=1

ϵi1,i2,...,iN ϵj1,j2,...,jN

·⟨ψi1 |Â|ϕj1⟩ ⟨ψi2 |ϕj2⟩︸ ︷︷ ︸
δi2 ,j2 (1−δi2 ,1)(1−δi2 ,2)

. . . ⟨ψiN |ϕjN ⟩︸ ︷︷ ︸
δiN ,jN (1−δiN ,1)(1−δiN ,2)

= 0 (H.23)

It is evident that this matrix element vanishes, because in each term there is at least one scalar
product between to orbitals that differ in the two Slater determinants.

This result corresponds to the first line in the third Slater-Condon rule Eq. 3.44.

H.4.2 Two-particle operator

The matrix element of a two-particle operator with Slater determinants differing by two orbitals is

⟨Ψ|Ŵx1,x2 |Φ⟩ =
1

N!

∑
i1,...,iN

∑
j1,...,jN

ϵi1,i2,...,iN ϵj1,j2,...,jN

·⟨ψi1ψi2 |Ŵ |ϕj1ϕj2⟩ ⟨ψi3 |ϕj3⟩︸ ︷︷ ︸
δi3 ,j3 (1−δi3 ,1)(1−δi3 ,2)

. . . ⟨ψiN |ϕjN ⟩︸ ︷︷ ︸
δiN ,jN (1−δiN ,1)(1−δiN ,2)

=
1

N!

2∑
i1,i2=1

2∑
j1,j2=1

⟨ψi1ψi2 |Ŵ |ϕj1ϕj2⟩
∑
i3,...,iN

ϵi1,i2,i3...,iN ϵj1,j2,i3...,iN

=
1

N!

2∑
i1,i2=1

2∑
j1,j2=1

⟨ψi1ψi2 |Ŵ |ϕj1ϕj2⟩(N − 2)! (δi1,j1δi2,j2 − δi1,j2δi2,j1)

=
2

N(N − 1)
(
⟨ψ1ψ2|Ŵ |ϕ1ϕ2⟩ − ⟨ψ1ψ2|Ŵ |ϕ2ϕ1⟩

)
(H.24)

With the interaction Ŵ = 1
2

∑N
i ̸=j Ŵi ,j we obtain with ⟨Ψ|Wi ,j |Φ⟩ = ⟨Ψ|W1,2|Φ⟩

⟨Ψ|Ŵ |Φ⟩ = ⟨ψ1ψ2|Ŵ |ϕ1ϕ2⟩ − ⟨ψ1ψ2|Ŵ |ϕ2ϕ1⟩ (H.25)

This result corresponds to the second line in the third Slater-Condon rule Eq. 3.45.

H.5 Slater determinants differing by more than two orbitals

The matrix elements of one- and two-particle operators between two Slater determinants differing by
more than two orbitals vanish. The argument is analogous to that about in Section H.4.1
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Appendix I

One- and two-particle operators
expressed by field operators

Here, we will explicitly derive the form of one- and two-particle operators by field operators as given
by Eqs. 3.49 and 3.50 on p. 135.

OPERATORS EXPRESSED BY ANNIHILATION AND CREATION OPERATORS

A one-particle operator has the form

Â =
∑
i ,j

Ai ,j ĉ
†
i ĉj (I.1)

and a two-particle operator has the form

Ŵ =
1

2

∑
i ,j,k,l

Wi ,j,k,l ĉ
†
i ĉ
†
j ĉ l ĉk (I.2)

Note the reversed order of the annihilators relative to the indices!

Our approach will be to work out the matrix elements of a product of creation and annihilation
operators between Slater determinants. Then the result will be compared with the Slater-Condon
rules Eqs. 3.41 -3.44 on p. 134

Our argument is restricted to Slater determinants constructed from the zero state by a
product of creation operators in a unique basis of one-particle orbitals. Thus, these states are
eigenstates of the occupation-number operator

n̂k
def
= ĉ†k ĉk (I.3)

That is, we consider here only states that obey

n̂k |Φ⟩ = |Φ⟩nk (I.4)

As the occupation-number eigenstates for a complete orthonormal basis of one-particle eigen-
states form a complete basis in the Fock space, we will obtain general matrix elements using
the rules determined here.

551
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I.1 Matrix elements between identical Slater determinants

One-particle operator

Let us determine the matrix element of a one-particle operator between two identical Slater deter-
minants |Φ⟩.

In the first step, we use ⟨Φ|ĉ†i ĉj |Φ⟩ = 0 for i ̸= j : Applied to a Slater determinant, ĉ†i ĉj with
i ̸= j produces a different Slater determinant that is orthogonal to the original one. Thus, only the
diagonal terms contribute.

⟨Φ|ĉ†j ĉk |Φ⟩ = δj,k⟨Φ| n̂j︸︷︷︸
ĉ†j ĉj

|Φ⟩ Eq. I.4
= δj,knj

⇒ ⟨Φ|
∑
j,k

Aj,k ĉ
†
j ĉk |Φ⟩ =

∞∑
j=1

njAj,j
Eq. 3.51
=

∞∑
j=1

nj⟨ϕj |Â|ϕj⟩ (I.5)

where |ϕj⟩ = ĉ†j |O⟩ are the one-particle states related to the creation operators. |O⟩ is the vacuum
state.

Eq. I.5 is identical to the first Slater-Condon rule for one-particle operators Eq. 3.41 on p.134.
Thus,

⟨Φ|
∑
j,k

Aj,k ĉ
†
j ĉk |Φ⟩

Eq. I.5
=

∞∑
j=1

nj ⟨ϕj |Â|ϕj⟩
Eq. 3.41
= ⟨Φ|Â|Φ⟩ (I.6)

In Eq. I.5, we sum over all one-particle basis functions and the occupation numbers ni select those
that are present in the Slater determinant. In Eq. 3.41, the sum goes directly over the one-orbitals
in the determinant.

Thus, we have shown that the operator
∑

i ,j Ai ,j ĉ
†
i ĉj has the same matrix elements as the operator

Â, if both wave functions are identical Slater determinants.

Two-particle operator

To work out the expressions for a two-particle operator, we use a similar argument. Unless the
operator ĉ†i ĉ

†
j ĉk ĉl creates all orbitals that it destroys, the resulting Slater determinant will differ from

and be orthogonal to the original Slater determinant. There are just two possibilities that contribute
to a nonzero value, namely

• case 1: i = k and j = l .

ĉ†i ĉ
†
j ĉi ĉj

[ĉ†i ,ĉj ]+=δi ,j
= ĉ†i δi ,j ĉj − ĉ

†
i ĉi ĉ

†
j ĉj = δi ,j n̂i − n̂i n̂j

• case 2: i = l and j = k

ĉ†i ĉ
†
j ĉj ĉi

[ĉj ,ĉj ]+=0
= −ĉ†i ĉ

†
j ĉi ĉj

[ĉ†i ,ĉj ]+=δi ,j
= −ĉ†i δi ,j ĉj + ĉ

†
i ĉi ĉ

†
j ĉj = −δi ,j n̂i + n̂i n̂j

• All other cases vanish because the creators and annihilators do not match.

Thus, we obtain

⟨Φ|ĉ†i ĉ
†
j ĉk ĉl |Φ⟩ = δi ,kδj,l

(
δi ,jni − ninj

)
+ δi ,lδj,k

(
−δi ,jni + ninj

)
= δi ,kδj,lδi ,jni︸ ︷︷ ︸

a

− δi ,kδj,lninj︸ ︷︷ ︸
b

− δi ,lδj,kδi ,jni︸ ︷︷ ︸
c

+ δi ,lδj,kninj︸ ︷︷ ︸
d

a=c
= δi ,lδj,kninj︸ ︷︷ ︸

d

− δi ,kδj,lninj︸ ︷︷ ︸
b
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which yields

⇒ ⟨Φ|
∑
i ,j,k,l

Wi ,j,k,l ĉ
†
i ĉ
†
j ĉ l ĉk |Φ⟩ =

∑
i ,j

ninj [Wi ,j,i ,j −Wi ,j,j,i ]

Note, that we interchanged the two annihilators which changes the sign of the expression.
Let us compare this result again with that of the first Slater-Condon rule Eq. 3.41 on p. 134.

I.2 Matrix elements between Slater determinants differing by
one orbital

We construct pairs of N-particle Slater determinants that differ by a single orbital from a common
(N−1)-particle Slater determinant |Φ⟩ by creating two different one-particle orbitals (one for each).
We obtain ĉ†a |Φ⟩ and ĉ†b |Φ⟩. They differ by exactly one one-particle orbital since a ̸= b and they are
automatically in maximum coincidence. Remember, that the bra related to ĉ†a |Φ⟩ is ⟨ĉ†aΦ| = ⟨Φ|ĉa.

One-particle operators

Let us construct the matrix element of a one-particle operator Â =
∑

j,k Aj,k ĉ
†
j ĉk between two Slater

determinants |Φa⟩
def
= ĉ†a |Φ⟩ and |Φb⟩

def
= ĉ†b |Φ⟩ differing by two distinct one-particle orbitals |ψa⟩ and

|ψb⟩, i.e. a ̸= b.

⟨Φ|ĉaĉ†j ĉk ĉ
†
b |Φ⟩

a ̸=b
= δa,j(1− nj)δk,b(1− nb)

⇒ ⟨Φ|ĉa

∑
j,k

Aj,k ĉ
†
j ĉk

 ĉ†b |Φ⟩ = ∑
j,k

Aj,kδa,i(1− ni)δj,b(1− nb) = Aa,b(1− na)(1− nb)

where nj = ⟨Φ|ĉ†j ĉj |Φ⟩. This result can be compared to the Slater-Condon rule Eq. 3.43 on p. 134.
The role of (1 − na) and (1 − nb) is to test if the corresponding one-particle orbitals are already
occupied in |Φ⟩. If one of the orbitals a or b is already present in |Φ⟩, the creation operators1 c†a or
c†b would turn this state into a zero state, for which the matrix element vanishes.

Two-particle operator

For the interaction matrix elements between two Slater determinants |Φa⟩
def
= ĉ†a |Φ⟩ and |Φb⟩

def
= ĉ†b |Φ⟩

differing by two distinct one-particle orbitals |ψa⟩ and |ψb⟩, i.e. a ̸= b, we need to determine matrix
elements of the type

⟨Φa|ĉ†i ĉ
†
j ĉk ĉl |Φb⟩ = ⟨Φ|ĉaĉ

†
i ĉ
†
j ĉk ĉl ĉ

†
b |Φ⟩ . (I.7)

For this matrix element to be non-zero, each annihilator must be paired with a creator of the same
orbital.

The matrix element can be evaluated with brute force by commutating all operators so that the
creation operators stand to the left of all annihilation operators. Once the matrix elements have this
form, they are readily evaluated.

Here, however, we try to be more economical:

1. Let us pair the annihilator ĉa with one of the creation operators. There are two possibilities:
i = a and j = a. The possibility b = a has been excluded, because this is the case of two
identical Slater determinants, which has been investigated in the previous section. The case
i = j does not contribute because the two creation operators stand next to each other and
ĉ†j ĉ

†
j = 0̂.

1⟨ĉ†aΦ| = ⟨Φ|ĉa
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2. For each of the two possibilities there are two cases b = k and b = l where the creator ĉb is
paired with one of the annihilators. As before the cases a = b and k = l do not contribute.

Thus, there are four sets of indices with nonzero value, namely

⟨Φ|ĉaĉ†i ĉ
†
j ĉk ĉl ĉ

†
b |Φ⟩ =

(
δa,i

(
δb,kδj,l + δb,lδj,k

)
+ δa,j

(
δb,kδi ,l + δb,lδi ,k

))
⟨Φ|ĉaĉ†i ĉ

†
j ĉk ĉl ĉ

†
b |Φ⟩

= δa,iδb,kδj,l ⟨Φ|ĉaĉ†a ĉ
†
j ĉbĉj ĉ

†
b |Φ⟩+ δa,iδb,lδj,k⟨Φ|ĉaĉ

†
a ĉ
†
j ĉj ĉbĉ

†
b |Φ⟩

+ δa,jδb,kδi ,l ⟨Φ|ĉaĉ†i ĉ
†
a ĉbĉi ĉ

†
b |Φ⟩+ δa,jδb,lδi ,k⟨Φ|ĉaĉ

†
i ĉ
†
a ĉi ĉbĉ

†
b |Φ⟩

= −δa,iδb,kδj,l ⟨Φ|ĉaĉ†a
(
ĉ†j ĉj

)
ĉbĉ

†
b |Φ⟩+ δa,iδb,lδj,k⟨Φ|ĉaĉ

†
a

(
ĉ†j ĉj

)
ĉbĉ

†
b |Φ⟩

+δa,jδb,kδi ,l ⟨Φ|ĉaĉ†a
(
ĉ†i ĉi

)
ĉbĉ

†
b |Φ⟩ − δa,jδb,lδi ,k⟨Φ|ĉaĉ

†
a

(
ĉ†i ĉi

)
ĉbĉ

†
b |Φ⟩

= −δa,iδb,kδj,l(1− na)(1− nb)nj + δa,iδb,lδj,k(1− na)(1− nb)nj
+δa,jδb,kδi ,l(1− na)(1− nb)ni − δa,jδb,lδi ,k(1− na)(1− nb)ni (I.8)

In the last step, I exploited that our Slater determinant |Φ⟩ is an eigenstate of the occupation-
number operators

ĉ†i ĉi |Φ⟩ = |Φ⟩ni
ĉi ĉ
†
i |Φ⟩ = |Φ⟩(1− ni) (I.9)

where ni are the eigenvalues, which are the occupations of the orbital in |Φ⟩.
Thus, we obtain

⟨Φ|ĉaŴ ĉ†b |Φ⟩ = ⟨Φ|ĉa

1
2

∑
i ,j,k,l

Wi ,j,k,l ĉ
†
i ĉ
†
j ĉl ĉk

 ĉ†b |Φ⟩
= −
1

2

∑
i ,j,k,l

Wi ,j,k,l⟨Φ|ĉaĉ†i ĉ
†
j ĉk ĉl ĉ

†
b |Φ⟩

= −
1

2

∑
j

(
Wa,j,j,b(1− na)nj(1− nb)−Wa,j,b,j(1− na)nj(1− nb)

−Wj,a,j,b(1− na)nj(1− nb) +Wj,a,b,j(1− na)nj(1− nb)
)

= −(1− na)(1− nb)
1

2

∑
j

nj

(
Wa,j,j,b −Wa,j,b,j −Wj,a,j,b +Wj,a,b,j

)
(I.10)

Because of the special form of the interaction W (x⃗ , x⃗ ′) = W (x⃗ ′, x⃗), the terms can be combined
pairwise, so that the number of independent terms is reduced from four to two. The definition of
the matrix elements Eq. 3.51 from p. 135 is

Wi ,j,k,l

Eq. 3.51
def
=

∫
d4x

∫
d4x ′ ϕ∗i (x⃗)ϕ

∗
j (x⃗
′)W (x⃗ , x⃗ ′)ϕk(x⃗)ϕl(x⃗ ′) . (I.11)

With of W (x⃗ , x⃗ ′) = W (x⃗ ′, x⃗), the interaction Wi ,j,k,l is symmetric under interchanging simultaneously
the first two and the last two indices. Thus, Wa,j,j,b = Wj,a,b,j and Wa,j,b,j = Wj,a,j,b and The property
W (x⃗ , x⃗ ′) = W (x⃗ ′, x⃗) is an expression of Newton’s third law “actio=reactio”.

⟨Φ|ĉaŴ ĉ†b |Φ⟩ = −(1− na)(1− nb)
1

2

∑
j

nj

(
Wa,j,j,b −Wa,j,b,j

)
= (1− na)(1− nb)

1

2

∞∑
j=1

nj

(
Wa,j,b,j −Wa,j,j,b

)
(I.12)
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The first term ensures, that the result vanishes, if |Φ⟩ already contains the orbital |ϕa⟩ or the orbital
|ϕb⟩.

Eq. I.12 is the result of the second Slater-Condon rule Eq. 3.43 on p. 134.

I.3 Matrix elements between Slater determinants differing by
two orbitals

The procedure is analogous to the above case. We construct the N-electron Slater determinants
ĉ†a ĉ

†
b |Φ⟩ and ĉ†c ĉ

†
d |Φ⟩ from the same N − 2 electron Slater determinant |Φ⟩. All four indices a, b, c, d

are pairwise different.
Then we select those terms where all creators are paired with an annihilator of the same orbital.

All other terms vanish. Note that the bra related to ĉ†a ĉ
†
b |Φ⟩ is ⟨Φ|ĉbĉa, because

(
ĉ†a ĉ

†
b

)†
= ĉbĉa.

For the one-particle operator, the matrix element vanishes consistent with the third Slater-Condon
rule Eq. 3.45, because the one-particle operator can only match one annihilator.

For the two-particle operator, we obtain

⟨Φ|ĉbĉa
(
ĉ†i ĉ

†
j ĉk ĉl

)
ĉ†c ĉ

†
d |Φ⟩

= δb,iδa,jδk,cδl ,d ⟨Φ|ĉbĉaĉ†i ĉ
†
j ĉk ĉl ĉ

†
c ĉ
†
d |Φ⟩

+ δb,iδa,jδk,dδl ,c⟨Φ|ĉbĉaĉ†i ĉ
†
j ĉk ĉl ĉ

†
c ĉ
†
d |Φ⟩

+ δb,jδa,iδk,cδl ,d ⟨Φ|ĉbĉaĉ†i ĉ
†
j ĉk ĉl ĉ

†
c ĉ
†
d |Φ⟩

+ δb,jδa,iδk,dδl ,c⟨Φ|ĉbĉaĉ†i ĉ
†
j ĉk ĉl ĉ

†
c ĉ
†
d |Φ⟩

= δb,iδa,jδk,cδl ,d ⟨Φ|ĉbĉaĉ†b ĉ
†
a ĉc ĉd ĉ

†
c ĉ
†
d |Φ⟩

+ δb,iδa,jδk,dδl ,c⟨Φ|ĉbĉaĉ†b ĉ
†
a ĉd ĉc ĉ

†
c ĉ
†
d |Φ⟩

+ δb,jδa,iδk,cδl ,d ⟨Φ|ĉbĉaĉ†a ĉ
†
b ĉc ĉd ĉ

†
c ĉ
†
d |Φ⟩

+ δb,jδa,iδk,dδl ,c⟨Φ|ĉbĉaĉ†a ĉ
†
b ĉd ĉc ĉ

†
c ĉ
†
d |Φ⟩

c ̸=d ;a ̸=b
= δb,iδa,jδk,cδl ,d ⟨Φ|ĉbĉ†b ĉaĉ

†
a ĉc ĉ

†
c ĉd ĉ

†
d |Φ⟩

− δb,iδa,jδk,dδl ,c⟨Φ|ĉaĉ†a ĉbĉ
†
b ĉd ĉ

†
d ĉc ĉ

†
c |Φ⟩

− δb,jδa,iδk,cδl ,d ⟨Φ|ĉaĉ†a ĉbĉ
†
b ĉc ĉ

†
c ĉd ĉ

†
d |Φ⟩

+ δb,jδa,iδk,dδl ,c⟨Φ|ĉaĉ†a ĉbĉ
†
b ĉd ĉ

†
d ĉc ĉ

†
c |Φ⟩

= δb,iδa,jδk,cδl ,d(1− nd)(1− nc)(1− na)(1− nb)
− δb,iδa,jδk,dδl ,c(1− nd)(1− nc)(1− na)(1− nb)
− δb,jδa,iδk,cδl ,d(1− nd)(1− nc)(1− na)(1− nb)
+ δb,jδa,iδk,dδl ,c(1− nd)(1− nc)(1− na)(1− nb)

Thus, we obtain

⟨Φ|ĉbĉa

1
2

∑
i ,j,k,l

Wi ,j,k,l ĉ
†
i ĉ
†
j ĉl ĉk

 ĉ†c ĉ†d |Φ⟩
= −
1

2

∑
i ,j,k,l

Wi ,j,k,l⟨Φ|ĉbĉa
(
ĉ†i ĉ

†
j ĉk ĉ l

)
ĉ†c ĉ

†
d |Φ⟩

= −
1

2

(
Wb,a,c,d −Wb,a,d,c −Wa,b,c,d +Wa,b,d,c

)
·(1− nd)(1− nc)(1− na)(1− nb)
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Now we exploit that a joint interchange of the first two indices and the last two indices does not change
the matrix element, that is Wi ,j,k,l = Wj,i ,l .k . This is allowed because the interaction is inversion
symmetric, that is V (x⃗ , x⃗ ′) = V (x⃗ , x⃗ ′), which is a special property of the Coulomb interaction.

⟨Φ|ĉbĉa

1
2

∑
i ,j,k,l

Wi ,j,k,l ĉ
†
i ĉ
†
j ĉl ĉk

 ĉ†c ĉ†d |Φ⟩
= −

(
Wa,b,d,c −Wa,b,c,d

)
(1− nd)(1− nc)(1− na)(1− nb)

= +
(
Wa,b,c,d −Wa,b,d,c

)
(1− nd)(1− nc)(1− na)(1− nb)

This result corresponds directly to the third Slater-Condon rule Eq. 3.45 on p. 134.



Appendix J

Addenda to the Equation of motion
for the Green’s function

This chapter, I will derive the second equation of motion for the Green’s function, which changes the
second time argument of the Greens function. The derivation is analogous to that for the equation
of motion for the first time argument presented in section 8.1 on p. 253.

The second equation is required, for example, for the arguments (Eq. 3b in [87]) by Kadanoff and
Baym.[86, 87] Editor: The connection of the equation of motion with respect to the
second time argument with the left-hand equation in Baym needs to be shown here.

iℏ∂t ĉ+H,ζ(t) = Û(0, t)
[
ĉ†S,ζ, Ĥ

]
−
Û(t, 0) (J.1)

In order to continue, we need the commutator of the creation operator in the Schrödinger picture
with the Hamiltonian. For the sake of simplicity, we drop the explicit subscript S denoting the
Schrodinger picture. It is implicitly assumed.

Ĥ =
∑
α,β

hα,β ĉ
†
αĉβ +

1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β ĉγ ĉδ (J.2)

We begin with the one-particle operator

[
ĉ†ζ ,
∑
α,β

hα,β ĉ
†
αĉβ

]
−
=
∑
α,β

hα,β

(
ĉ†ζ ĉ

†
α︸︷︷︸

−ĉ†αĉ†ζ

ĉβ − ĉ†α ĉβ ĉ
†
ζ︸︷︷︸

δβ,ζ−ĉ†ζ ĉβ

)
=
∑
α,β

hα,β ĉ
†
αδβ,ζ =

∑
β

hα,ζ ĉ
†
α (J.3)

557



558 J ADDENDA TO THE EQUATION OF MOTION FOR THE GREEN’S FUNCTION

and continue with the interaction

[
ĉ†ζ ,
1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β ĉγ ĉδ

]
−
=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ

(
ĉ†ζ ĉ

†
αĉ
†
β︸ ︷︷ ︸

ĉ†αĉ
†
β ĉ
†
ζ

ĉγ ĉδ − ĉ†αĉ
†
β ĉγ ĉδ ĉ

†
ζ

)

=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β

(
ĉ†ζ ĉγ︸︷︷︸

δζ,γ−ĉγ ĉ†ζ

ĉδ − ĉγ ĉδ ĉ
†
ζ︸︷︷︸

δδ,ζ−ĉ†ζ ĉδ

)

=
1

2

∑
α,β,γ,δ

Wα,β,δ,γ ĉ
†
αĉ
†
β

(
δζ,γ ĉδ − ĉγδδ,ζ

)
=
1

2

∑
α,β,δ

Wα,β,δ,ζ ĉ
†
αĉ
†
β ĉδ −

1

2

∑
α,β,γ

Wα,β,ζ,γ︸ ︷︷ ︸
Wβ,α,γ,ζ

ĉ†αĉ
†
β︸︷︷︸

−ĉ†β ĉ
†
α

ĉγ

=
1

2

∑
α,β,δ

Wα,β,δ,ζ ĉ
†
αĉ
†
β ĉδ +

1

2

∑
α,β,γ

Wβ,α,γ,ζ ĉ
†
β ĉ
†
αĉγ

=
1

2

∑
α,β,δ

Wα,β,δ,ζ ĉ
†
αĉ
†
β ĉδ +

α↔β,γ↔δ︷ ︸︸ ︷
1

2

∑
α,β,δ

Wα,β,δ,ζ ĉ
†
αĉ
†
β ĉδ (J.4)

=
∑
α,β,δ

Wα,β,δ,ζ ĉ
†
αĉ
†
β ĉδ (J.5)

We exploited that a simultaneous interchange of the first two and, at the same time, the last two
arguments leaves the value of the interaction matrix elements unchanged, i.e. Wα,β,γ,δ = Wβ,α,δ,γ .
This symmetry follows from the form of the interaction matrix elements defined in Eq. 3.51 on
p. 135. Editor: This argument refers to the Coulomb interaction. What about the
most general definition as W (t) = Ĥ(t)− ĥ?

With the results Eqs. J.3, J.5, we can return to Eq. J.1 and evaluate the time derivative of the
annihilator in the Heisenberg picture as

iℏ∂t ĉ+H,ζ(t) = Û(0, t)
[
ĉ†S,ζ, Ĥ

]
−
Û(t, 0)

Eqs. J.3,J.5
= Û(0, t)

(∑
α

hα,ζ ĉ
†
S,α +

∑
α,β,δ

Wα,β,δ,ζ ĉ
†
S,αĉ

†
S,β ĉS,δ

)
Û(t, 0)

=
∑
α

hα,ζ ĉ
+
H,α(t) +

∑
α,β,δ

Wα,β,δ,ζ ĉ
+
H,α(t)ĉ

+
H,β(t)ĉH,δ(t) (J.6)

Now, we can evaluate the time derivative of the Green’s function Eq. 7.16. We use the short-hand
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notation
〈
. . .
〉
T,µ

def
= Tr

{
ρ̂
(W )
T,µ . . .

}
.

iℏ∂t ′GCα,β(t, t ′)

Eq. 7.16
= iℏ∂t ′

[
θ(t − t ′)

iℏ

〈
ĉH,α(t)ĉ

+
H,β(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,β(t

′)ĉH,α(t)
〉
T,µ

]
= −δ(t − t ′)

〈
ĉH,α(t)ĉ

+
H,β(t

′)
〉
T,µ
− δ(t ′ − t)

〈
ĉ+H,β(t

′)ĉH,α(t)
〉
T,µ

+
θ(t − t ′)

iℏ

〈
ĉH,α(t)

(
iℏ∂t ′ ĉ+H,β(t

′)
)〉

T,µ
−
θ(t ′ − t)

iℏ

〈(
iℏ∂t ′ ĉ+H,β(t

′)
)
ĉH,α(t)

〉
T,µ

Eq. J.6
= −δ(t − t ′)

〈[
ĉH,α(t), ĉ

+
H,β(t

′)
]
+

〉
T,µ

+
θ(t − t ′)

iℏ

〈
ĉH,α(t)

(∑
a

ha,β ĉ
+
H,a(t

′) +
∑
a,b,d

Wa,b,d,β ĉ
+
H,a(t

′)ĉ+H,b(t
′)ĉH,d(t

′)

)〉
T,µ

−
θ(t ′ − t)

iℏ

〈(∑
a

ha,β ĉ
+
H,a(t

′) +
∑
a,b,d

Wa,b,d,β ĉ
+
H,a(t

′)ĉ+H,b(t
′)ĉH,d(t

′)

)
ĉH,α(t)

〉
T,µ

= −δ(t − t ′)
〈[
ĉH,α(t), ĉ

+
H,β(t

′)
]
+

〉
T,µ

+
∑
a

ha,β

(
θ(t − t ′)

iℏ

〈
ĉH,α(t)ĉ

+
H,a(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,a(t

′)ĉH,α(t)
〉
T,µ

)
+

∑
a,b,d

Wa,b,d,β

(
θ(t − t ′)

iℏ

〈
ĉH,α(t)ĉ

+
H,a(t

′)ĉ+H,b(t
′)ĉH,d(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈
ĉ+H,a(t

′)ĉ+H,b(t
′)ĉH,d(t

′)ĉH,α(t)
〉
T,µ

)
Eq. 8.7
= −δ(t − t ′)δα,β +

∑
a

ha,βGα,a(t, t
′)

+
∑
a,b,d

Wa,b,d,β

(
θ(t − t ′)

iℏ

〈
ĉH,α(t)

A︷ ︸︸ ︷
ĉ+H,a(t

′)ĉ+H,b(t
′)ĉH,d(t

′)
〉
T,µ
−
θ(t ′ − t)

iℏ

〈 A︷ ︸︸ ︷
ĉ+H,a(t

′)ĉ+H,b(t
′)ĉH,d(t

′) ĉH,α(t)
〉
T,µ

)
︸ ︷︷ ︸

1
iℏ

〈
TC ĉH,α(t)ĉ+H,a(t ′)ĉ

+
H,b(t

′)ĉH,d (t ′)

〉
T,µ

(J.7)

Eq. J.7 can be brought into a form similar to the defining equation of the Green’s function for
non-interacting systems is

EQUATION OF MOTION FOR THE INTERACTING GREEN’S FUNCTION

∑
γ

(
δα,γ iℏ∂t ′ − hα,γ

)
GCγ,β(t, t

′) =

= −δ(t − t ′)δα,β +
∑
γ

∑
b,d

︷ ︸︸ ︷
1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉH,α(t)ĉ

+
H,γ(t

′) ĉ+H,b(t
′)ĉH,d(t

′)︸ ︷︷ ︸
∼density operator

}
Wγ,b,d,β(J.8)

= −δ(t − t ′)δα,β +
∑
γ

1

iℏ
Tr

{
ρ̂
(W )
T,µ TC ĉH,α(t)ĉ

+
H,γ(t

′)
∑
b,d

Wγ,b,d,β ĉ
+
H,b(t

′)ĉH,d(t
′)︸ ︷︷ ︸

∼density operator︸ ︷︷ ︸
V̂ee(t ′)

}
(J.9)

V̂ee is the operator describing the Coulomb potential from the (other) electrons.
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Appendix K

Derivation of Wick’s theorem

Wick’s theorem[57] is summarized in section 10.2.3 on p. 303. Here, I provide a derivation of Wick’s
theorem. What is shown here is the so-called “generalized Wick’s theorem”[81], which has been
adjusted to time-dependent non-interacting Hamiltonians. The generalized Wick’s theorem is valid
also for finite temperatures and it avoids the problems of “adiabatic switching on the interaction”,
which can be problematic if the interaction interchanges ground and excited states.

The gist of Wick’s theorem is to map a many-particle expectation value (in Fock space) onto an
expression with only one-particle expectation values (in one-particle Hilbert space).

One of the key ingredients for the proof is that the anticommutators between creation and anni-
hilation operators in the interaction picture are numbers, namely the one-particle Green’s functions
of non-interacting electrons. These anticommutators are worked out in sections K.2 and K.3.

In the following, I will refer to the complex-valued time contour and its time-ordering operator
Eq. 6.36. The propagator can be expressed by the time-ordered exponential TC along the contour
Eq. 6.37.

One has to remember that the propagator on the complex time contour is, in general, not unitary,
Eq. 6.39. Similarly, the creation and annihilation operators in the interaction picture are not hermitian
conjugates of each other. The creation operator is therefore indicated as â+I,n(t) instead of â†I,n(t),
where the latter is the hermitian conjugate of the annihilator. This is specified in Eq. 6.41 on p. 236
for Heisenberg operators.

Editor: Remark: One aspect is worth considering: The perturbation expansion in
requires that the chemical potential of the interacting system is the same as that
of the non-interacting system. The number of electrons in thermal equilibrium may
be very different with and without interaction. This implies that the perturbation
expansion may proceed through states that are very different from the interacting
system of interest. This can be avoided by a suitable time-dependence of the non-interacting
Hamiltonian, also along the imaginary time axis. While I have no doubt that the required
time-dependence of a global energy shift is permitted, one should carefully check
if this is indeed so.
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K.1 Field operators in the interaction picture for complex time

FIELD OPERATORS IN THE INTERACTION PICTURE

The creation and annihilation operators ĉ†I,α(t), ĉI,α(t) in the interaction picture on a complex time
contour C have the form below in terms of the corresponding creation and annihilation operators
ĉ†S,α, ĉS,α in the Schrödinger picture.

ĉ†I,α(t)
Eq. K.28
=

∑
β

ĉ†S,β ⟨χβ |Û(0, t)|πα⟩ (K.1)

ĉI,α(t)
Eq. K.29
=

∑
β

⟨πα|Û(t, 0)|χβ⟩ ĉS,β (K.2)

The one-particle orbitals |χα⟩ may be non-orthonormal with an overlap matrix Sα,β = ⟨χα|χβ⟩. Each
orbital has a corresponding projector function ⟨πα| =

∑
β S
−1
α,β⟨χβ |. The creation and annihilation

operators defined for this basisset are ĉ†α =
∫
d4x ψ̂†(x⃗)⟨x⃗ |πα⟩ and ĉα =

∫
d4x ⟨πα|x⃗⟩ψ̂(x⃗).

The propagator Û(t, 0) satisfies the time-dependent Schrödinger equation along the contour
[
iℏ∂t −

ĥ(t)
]
Û(t, 0) = 0 with the (non-interacting) one-particle Hamiltonian ĥ(t). It furthermore satisfies

the initial condition Û(t, t) = 1̂. The propagator can be written as time-ordered exponential.

Û(t, 0) = TCe−
i
ℏ
∫ t
0 dt ĥ(t)

Û(0, t) = Û−1(t, 0) (K.3)

Note that the propagator is unitary only on the branch of the contour with real-valued time.

K.1.1 Proof for a time-dependent non-interacting Hamiltonian in the com-
plex time plane

Time-dependent one-particle states

Let me choose a complete, orthonormal one-particle basisset {|ϕn⟩}. The creation and annihilation
operators â†n, ân and the Slater determinants |σ⃗⟩ shall be defined with respect to this basiset.

Starting from this basisset {|ϕn⟩} as initial states, I construct a set
{
|ϕn(t)⟩

}
of time-dependent

one-particle states, which satisfy

iℏ∂t |ϕn(t)⟩ = ĥ(t)|ϕn(t)⟩ with |ϕn(0)⟩ = |ϕn⟩ (K.4)

on the complex time contour C. Because the propagator is not unitary, when the time contour
deviates from the real-time axis, the orthonormality is not preserved in general. The time-dependent
overlap matrix is

Om,n(t)
def
= ⟨ϕm(t)|ϕn(t)⟩ (K.5)

The states |ϕn(t)⟩ are not eigenstates of the instantaneous Hamiltonian ĥ(t), except for t = 0.
The propagator Eq. 4.31 in the one-particle Hilbert space is then

Û(t, 0)
Eq. 4.31
=

∑
m,n

|ϕm(t)⟩ O−1m,n(0)︸ ︷︷ ︸
δm,n

⟨ϕn(0)|
Eq. 4.40
= TCe−

i
ℏ
∫ t
0 dt

′ ĥ(t ′) (K.6)

TC is the time-ordering operator along the contour in the complex time plane. Similarly, the time
integral in Eq. K.6 is to be interpreted as a contour integral along C.
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The inverse overlap matrix present in Eq. 4.31 has been dropped in Eq. K.6, because the orbitals
|ϕ(t)⟩ are orthonormal at t = 0.

The backward transformation Û(0, t) def
= Û−1(t, 0) is

Û(0, t)
Eq. 4.31
=

∑
m,n

|ϕm(0)⟩ O−1m,n(t)⟨ϕn(t)| (K.7)

Thus, the matrix elements of the propagator are

Um,n(t, 0)
def
= ⟨ϕm(0)|Û(t, 0)|ϕn(0)⟩

Eq. K.6
= ⟨ϕm(0)|ϕn(t)⟩

Um,n(0, t)
def
= ⟨ϕm(0)|Û(0, t)|ϕn(0)⟩

Eq. K.7
=

∑
j

O−1m,j(t)⟨ϕj(t)|ϕn(0)⟩ (K.8)

The propagator Û(t, 0) acts in the one-particle Hilbert space and so does the Hamiltonian in the
time-ordered exponential of Eq. K.6.1

Time-dependent many-particle states

From the time-dependent one-particle states
∣∣ϕn(t)〉, I can construct time-dependent Slater deter-

minants in the form

Φ(x⃗1, . . . , x⃗N , t)
Eq. 1.88
=

1√
N!

N∑
j1,...,jN=1

ϵj1,...,jN ϕj1(x⃗1, t) · · ·ϕjN (x⃗N , t) (K.9)

where the wave function corresponds to a Slater determinant with N electrons. The time-dependent
wave function |Φ(t)⟩ is a Slater determinant of the time-dependent one-particle orbitals because it
is propagated with the non-interacting Hamiltonian.

In this fashion, I construct a time-dependent basisset of Slater determinants |Φσ⃗(t)⟩, which satisfy

iℏ∂t |Φσ⃗(t)⟩ = ĥ(t)|Φσ⃗(t)⟩ and |Φσ⃗(0)⟩ = |σ⃗⟩ =
∞∏
n=1

(
â†n
)σn |O⟩ (K.10)

where |σ⃗⟩ denotes the Slater determinants in the basis of |ϕn(0)⟩.
The propagator in Fock space can then be written as

Û (0)(t, 0) =
∑
σ⃗,σ⃗′

∣∣Φσ⃗(t)〉 Ō−1σ⃗,σ⃗′(0)︸ ︷︷ ︸
δ
σ⃗,σ⃗′

〈
Φσ⃗′(0)

∣∣ = TCe− i
ℏ
∫ t
0 dt

′ ĥ(t ′)

Û (0)(0, t) = Û (0),−1(t, 0) =
∑
σ⃗,σ⃗′

∣∣Φσ⃗(0)〉Ō−1σ⃗,σ⃗′(t)〈Φσ⃗′(t)∣∣ with Ōσ⃗,σ⃗′ =
〈
Φσ⃗(t)

∣∣Φσ⃗′(t)〉(K.11)

The Hamiltonian in the time-ordered exponential is a one-particle-at-a-time operator in Fock space.
The inverse overlap matrix (present in Eq. 4.31) has been dropped, because I required the basisset
|ϕn⟩ to be orthonormal at time t = 0. This, in turn, implies orthonormality, Ōσ⃗,σ⃗′(0) = δσ⃗,σ⃗′ , of the
Slater determints in this basisset at t = 0.2

1The non-interacting Hamiltonian and the corresponding operator has the same symbols in the one-partcle Hilbert
space and in the Fock space.

2This orthonormality is preserved along the real-valued time axis, but it does not hold for complex-valued time
arguments.
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Creation and annihilation operators

Let me define a set of creation and annihilation operators that construct the time-dependent orbitals
|ϕj(t)⟩. The creation operator b̂+S,j(t) shall be defined such that

|ϕj(t)⟩ = b̂+S,j(t)|O⟩ (K.12)

I am using the symbol + rather than † to indicate that b̂+I,j(t) is not necessarily the hermitian conjugate
of the corresponding annihilator, if the contour deviates from the real time axis.

The time evolution of the one-particle orbitals discussed in the section above satisfies

|ϕj(t)⟩ =
∑
k

|ϕk(0)⟩ ⟨ϕk(0)|ϕj(t)⟩︸ ︷︷ ︸
Uk,j (t,0)

Eq. K.8
=

∑
k

|ϕk(0)⟩︸ ︷︷ ︸
â†S,k |O⟩

Uk,j(t, 0) (K.13)

The comparison of Eq. K.12 and Eq. K.13 suggests the following definition of b̂†S,k(t)

b̂+S,j(t)
def
=
∑
k

â†S,kUk,j(t, 0) (K.14)

b̂S,j(t)
def
=
∑
k

Uj,k(0, t)âS,k (K.15)

The annihilator Eq. K.15 has been defined so that the equal-time anticommutator relation is
conserved over time, which is verified as follows:[

b̂+S,m(t), b̂S,n(t)
]
+
=
∑
j,k

Uj,m(t, 0)Un,k(0, t)
[
â†S,j , âS,k

]
+
=
∑
j

Un,j(0, t)Uj,m(t, 0)1̂

= δm,n1̂ (K.16)

The new creation operator b̂+S,j(t) can also be expressed by the (non-interacting) propagator in
Fock space. Let me start with the identity in the one-particle Hilbert space.

b̂+S,j(t)|O⟩
Eq. K.12
= |ϕj(t)⟩ = Û

(0)
(t, 0) âS,j |O⟩︸ ︷︷ ︸

|ϕj (0)⟩

= Û (0)(t, 0)âS,j Û
(0)
(0, t)|O⟩︸ ︷︷ ︸
=|O⟩

(K.17)

This relation between b̂+S,j(t) and â†S,j can be generalized from the one-particle Hilbert space to
arbitrary Slater determinants: On the one hand, the time-dependent Slater determinants can be
represented using the time-dependent one-particle orbitals via the definition of Eq. K.9.

|Φσ⃗(t)⟩
Eqs. K.9, K.12
=

∞∏
n=1

(
b̂+S,n(t)

)σn
|O⟩ (K.18)

On the other hand, the time-dependent Slater determinants can be obtained by propagating the
initial state |σ⃗⟩.

|Φσ⃗(t)⟩ = Û
(0)
(t, 0)

∞∏
n=1

(
â†S,n

)σn
|O⟩︸ ︷︷ ︸

=|σ⃗⟩=|Φσ⃗(t=0)⟩

=

∞∏
n=1

(
Û (0)(t, 0)â†S,n Û

(0)
(0, t)

)σn
Û (0)(t, 0)|O⟩︸ ︷︷ ︸

=|O⟩

(K.19)

The comparison provides the identity

b̂+S,j(t) = Û
(0)
(t, 0)â†S,j Û

(0)
(0, t) (K.20)

b̂S,j(t) = Û
(0)
(t, 0)âS,j Û

(0)
(0, t) (K.21)
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Some caution is required: The operators b̂+S,j(t) and b̂S,j(t) are Schrödinger operators and not the
creation and annihilation operators in the interaction picture: the propagators in the equations above
propagate in the opposite direction compared to the transformation Eq. 10.4 into the interaction
picture. Rather, we can identify the b-operators in the interaction picture directly with the a-operators
in the Schrödinger picture.

b̂+I,j(t)
Eqs. 10.4, K.20

= Û (0)(0, t)

b̂†S,j Eq. K.20︷ ︸︸ ︷
Û (0)(t, 0)â†S,j Û

(0)
(0, t) Û (0)(t, 0) = â†S,j (K.22)

b̂I,j(t)
Eqs. 10.4, K.21

= Û (0)(0, t)

b̂S,j Eq. K.21︷ ︸︸ ︷
Û (0)(t, 0)âS,j Û

(0)
(0, t) Û (0)(t, 0) = âS,j (K.23)

Now we are ready to translate the creation and annihilation operators in the interaction picture
to those in the Schrödinger picture.

• for the creation operator, I obtain

â+I,n(t)
Eq. 10.4
= Û (0)(0, t)â†S,n Û

(0)
(t, 0)

Eq. K.14
= Û (0)(0, t)

â†S,n︷ ︸︸ ︷∑
k

b̂+S,k(t)Uk,n(0, t) Û
(0)
(t, 0)

=
∑
k

Û (0)(0, t)b̂+S,k(t) Û
(0)
(t, 0)︸ ︷︷ ︸

=b̂+I,k (t)

Uk,n(0, t)

Eq. K.22
=

∑
k

â†S,k Uk,n(0, t) (K.24)

• and for the annihilation operator, I obtain analogously

âI,n(t)
Eq. 10.4
= Û (0)(0, t)âS,n Û

(0)
(t, 0)

Eq. K.15
= Û (0)(0, t)

âS,n︷ ︸︸ ︷∑
k

Un,k(t, 0)b̂S,k(t) Û
(0)
(t, 0)

=
∑
k

Un,k(t, 0) Û
(0)
(0, t)b̂S,k(t) Û

(0)
(t, 0)︸ ︷︷ ︸

b̂I,k (t)

Eq. K.23
=

∑
k

Un,k(t, 0)âS,k (K.25)

Eqs. K.24 and K.25 are remarkable results: The field operators in the interaction picture can be
represented as superpositions of field operators in the Schrödinger picture.

General (non-orthonormal) basissets

The derivation above used an orthonormal initial basisset. The restriction was not necessary, but has
been chosen to keep things simple and move complications out of the picture.

Here, I transform the result to a general basisset of orbitals |χα⟩, which shall be complete, but
which need not be orthonormal. The overlap is Sα,β = ⟨χα|χβ⟩. I am using projector functions ⟨πα|,
which satisfy the biorthogonality condition ⟨πα|χβ⟩ = δα,β. The projector functions may be written
as ⟨πα| =

∑
β S
−1
α,β⟨χβ |.
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The creation and annihilation operators ĉ†α, ĉα of the non-orthonormal basisset {|χα⟩} are trans-
formed onto those â†n, ân of the orthonormal basisset {|ϕn⟩} as

ĉ†α =

∫
d4x ψ̂†(x⃗)⟨x⃗ |πα⟩ =

∑
n

â†n⟨ϕn|πα⟩

ĉα =

∫
d4x ⟨πα|x⃗⟩ψ̂(x⃗) =

∑
n

⟨πα|ϕn⟩ân (K.26)

and vice versa

â†n =

∫
d4x ψ̂†(x⃗)⟨x⃗ |ϕn⟩ =

∑
α

ĉ†α⟨χα|ϕn⟩

ân =

∫
d4x ⟨ϕn|x⃗⟩ψ̂(x⃗) =

∑
n

⟨ϕn|χα⟩ĉα (K.27)

It is important to note that the anticommutator in the non-orthonormal basisset is the overlap
of the projector functions!

ĉ†I,α
Eq. K.26
=

∑
n

â+I,n(t)⟨ϕn|πα⟩

Eq. K.24
=

∑
n

â+I,n(t)︷ ︸︸ ︷∑
k

â†S,k Uk,n(0, t)︸ ︷︷ ︸
⟨ϕk |Û(0,t)|ϕn⟩

⟨ϕn|πα⟩

Eq. K.27
=

∑
k,n

â†S,k︷ ︸︸ ︷∑
β

ĉ†S,β⟨χβ |ϕk⟩⟨ϕk |Û(0, t)|ϕn⟩⟨ϕn|πα⟩

=
∑
β

ĉ†S,β⟨χβ |Û(0, t)|πα⟩ (K.28)

ĉI,α(t)
Eq. K.26
=

∑
n

⟨πα|ϕn⟩âI,n(t)

Eq. K.25
=

∑
n

⟨πα|ϕn⟩

âI,n(t)︷ ︸︸ ︷∑
k

Un,k(t, 0)︸ ︷︷ ︸
⟨ϕn |Û(t,0)|ϕn⟩

âS,k

Eq. K.27
=

∑
k,n

⟨πα|ϕn⟩⟨ϕn|Û(t, 0)|ϕk⟩

âS,k︷ ︸︸ ︷∑
β

⟨ϕk |χβ⟩ĉS,β

= ⟨πα|Û(t, 0)|χβ⟩ĉS,β (K.29)

K.1.2 Sanity check: One-orbital model

The following is a minimal model for many-particle physics. Its one-particle Hilbert space has only a
single one-particle orbital. Consequently the Fock space is spanned by only two Slater determinants,
namely the vacuum state and the sole one-particle orbital. In this example we consider the time as
complex-valued variable.
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One-particle Hilbert space: Consider a one-particle Hilbert space with a single one-particle orbital
|ϕ⟩. Let me now also define the time-dependent one-particle orbital, which obeys the Schröedinger
equation with the Hamiltonian

ĥ = |ϕ⟩ϵ̄(t)⟨ϕ| (K.30)

The Hamiltonian shall only depend on the real part of the time, i.e. ĥ(t) = ĥ(t∗).
The Schrödinger equation is

iℏ
(
dt

ds

)−1
∂s

∣∣∣ψ(t(s))〉 = ĥ(t(s))∣∣∣ψ(t(s))〉
⇔ iℏ∂t

∣∣∣ψ(t)〉 = ĥ(t)∣∣∣ψ(t)〉 (K.31)

The solution is ∣∣∣ψ(t(s))〉 = ∣∣∣ψ(t(0))〉e− i
ℏ
∫ s
0 ds

′ dt
ds
ϵ̄(t(s ′))

⇔
∣∣∣ψ(t)〉 = ∣∣∣ψ(0)〉e− i

ℏ
∫ t
C,0 dt

′ ϵ̄(t ′) (K.32)

Let me choose a solution |ϕ(t)⟩ to the Schrödinger equation with specific initial conditions
|ϕ(0)⟩ = |ϕ⟩ to define a time-dependent orbital∣∣∣ϕ(t)〉 = ∣∣∣ϕ〉e− i

ℏ
∫ t
C,0 dt

′ ϵ̄(t) (K.33)

The time-dependent orbital is not normalized and the overlap is

O(t) = ⟨ϕ(t)|ϕ(t)⟩ =
(
e−

i
ℏ
∫ t
C,0 dt

′ ϵ̄(t)
)∗
⟨ϕ||ϕ⟩e−

i
ℏ
∫ t
C,0 dt

′ ϵ̄(t) = |e−
i
ℏ
∫ t
C,0 dt

′ ϵ̄(t)|

= exp

(
1

ℏ
Im
(∫ t

C,0
dt ′ ϵ̄(t)

))
(K.34)

The time-dependent orbital remains normalized as long as the time argumnent remains real valued.
As the contour deviates from the real axis, the overlap changes.

The propagator in the one-particle Hilbert space is

Û(t, 0) = |ϕ(t)⟩O−1(0)︸ ︷︷ ︸
=1

⟨ϕ(0)| = |ϕ⟩e−
i
ℏ
∫ t
0 dt

′ ϵ̄(t)⟨ϕ| (K.35)

The back transformation is the inverse of the forward propagator.

Û(0, t) = |ϕ(0)⟩O−1(t)⟨ϕ(t)|

= |ϕ(0)⟩
1(

e−
i
ℏ
∫ t
0 dt

′ ϵ̄(t ′)
)†(
e−

i
ℏ
∫ t
0 dt

′ ϵ̄(t ′)
)(e− i

ℏ
∫ t
0 dt

′ ϵ̄(t ′)
)†
⟨ϕ(0)|

= |ϕ(0)⟩e+
i
ℏ
∫ t
0 dt

′ ϵ̄(t ′)⟨ϕ(0)| (K.36)

Fock space: The Fock space of the one-orbital model contains only two states, the vacuum
state |O⟩ and the one-particle orbital |ϕ⟩. The occupation-number vector of a Slater determi-
nants has only one element, namely σ ∈ {0, 1}. Editor: In the following I am ignoring
the time-dependence of the Hamiltonian.

The creation and annihilation operators are

â† = |ϕ⟩⟨O|
â = |O⟩⟨ϕ| (K.37)
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The Hamiltonian in Fock space is

ĥ = ϵ̄â†â (K.38)

and the Schrödinger equation is

iℏ∂t |Ψ(t)⟩ = ĥ|Ψ(t)⟩ (K.39)

It has the general solution

|Ψ(t)⟩ = Û (0)(t, 0)|Ψ(0)⟩ = |O⟩⟨O|Ψ(0)⟩+ |ϕ⟩e−
i
ℏ ϵ̄t⟨ϕ|Ψ(0)⟩ (K.40)

Let me define the time-dependent Slater determinants by choosing the basis-states as initial
values. The indices are σ⃗ ∈ {0, 1} = {O, ϕ}.

|Φ0⟩ = |O⟩
|Φ1⟩ = |ϕ⟩ e−

i
ℏ ϵ̄t︸ ︷︷ ︸

U(t,0)

(K.41)

where Û(t, 0) = |ϕ⟩U(t, 0)⟨ϕ| is the propagator in the one-particle Hilbert space.
When calculating the overlap matrix, we need to take into account that the time argument is

complex-valued.

Ō(t) =

(
⟨Φ0(t)|Φ0(t)⟩ ⟨Φ0(t)|Φ1(t)⟩
⟨Φ1(t)|Φ0(t)⟩ ⟨Φ1(t)|Φ1(t)⟩

)
=

(
1 0

0 e
i
ℏ ϵ̄(t

∗−t)

)
(K.42)

The (1, 1) overlap matrix element can be expressed by the propagator Û†(t, 0) in the one-particle
Hilbert space as Ō1,1(t) = ⟨ϕ|Û†(t, 0)Û(t, 0)|ϕ⟩. Notice, that the propagator is not unitary, if the
time is complex valued.

The propagator has the form

Û (0)(t, 0) =
∑
σ⃗,σ⃗′

|Φσ⃗(t)⟩Ō−1σ⃗,σ⃗′(0)⟨Φσ⃗(0)| = |O⟩⟨O|+ |ϕ⟩e
− i
ℏ ϵ̄t⟨ϕ| (K.43)

Let me calculate the inverse transformation

Û (0)(0, t) =
∑
σ⃗

|Φσ⃗(0)⟩Ō−1σ⃗,σ⃗′(t)⟨Φσ⃗′(t)|

= |O⟩⟨O|+ |ϕ⟩ e−
i
ℏ ϵ̄(t

∗−t)︸ ︷︷ ︸
O−1ϕ,ϕ

e+
i
ℏ ϵ̄t

∗⟨ϕ|︸ ︷︷ ︸
⟨ϕ(t)|

= |O⟩⟨O|+ |ϕ⟩e+
i
ℏ ϵ̄t⟨ϕ| (K.44)

Notice that the inverse transformation is not simply the hermitian conjugate, if the time argument
is complex-valued.

U †(t, 0) = U(0, t)Ō(t) (K.45)

Let me now turn to the creation and annihilation operators in the interaction picture

â+I (t) =

Û(0,t)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e+

i
ℏ ϵ̄t⟨ϕ|

) â†S︷ ︸︸ ︷
|ϕ⟩⟨O|

Û(t,0)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e−

i
ℏ ϵ̄t⟨ϕ|

)
= |ϕ⟩e+

i
ℏ ϵ̄t⟨O| = e+

i
ℏ ϵ̄t︸ ︷︷ ︸

U(0,t)

â†S

âI(t) =

Û(0,t)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e+

i
ℏ ϵ̄t⟨ϕ|

) âS︷ ︸︸ ︷
|O⟩⟨ϕ|

Û(t,0)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e−

i
ℏ ϵ̄t⟨ϕ|

)
= |ϕ⟩e−

i
ℏ ϵ̄t⟨O| = âS e−

i
ℏ ϵ̄t︸ ︷︷ ︸

U(t,0)

(K.46)
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In the interaction picture, the creation and annihilation operators are not complex conjugates of each
other, unless the time argument is real valued.

The anticommutator of creation and annihilation operators at different times are[
â+I (t), âI(t

′)
]
+
=
[
â+S , âS

]
+
e−

i
ℏ ϵ̄(t

′−t)︸ ︷︷ ︸
=U(0,t)U(t ′,0)

(K.47)

The commutator is readily obtained in this simple example. Let me, nevertheless, now work
through the intermediate steps:

The new creation and annihilation operators are defined via the propagator U(t, 0) = exp
(
−

i
ℏ
∫ t
0 dt

′ h(t ′)
)

of the one-particle problem.

b̂+S (t) = â
†
S U(t, 0)︸ ︷︷ ︸
e−

i
ℏ ϵ̄t

b̂S(t) = U(0, t)︸ ︷︷ ︸
e+

i
ℏ ϵ̄t

âS (K.48)

Let me verify the relation

b̂+S (t) =

Û(t,0)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e−

i
ℏ ϵ̄t⟨ϕ|

) â†S︷ ︸︸ ︷
|ϕ⟩⟨O|

Û(0,t)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e+

i
ℏ ϵ̄t⟨ϕ|

)
= |ϕ⟩e−

i
ℏ ϵ̄t⟨O| = â†S e

− i
ℏ ϵ̄t︸ ︷︷ ︸

U(t,0)

b̂S(t) =

Û(t,0)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e−

i
ℏ ϵ̄t⟨ϕ|

) âS︷ ︸︸ ︷
|O⟩⟨ϕ|

Û(0,t)︷ ︸︸ ︷(
|O⟩⟨O|+ |ϕ⟩e+

i
ℏ ϵ̄t⟨ϕ|

)
= |ϕ⟩e+

i
ℏ ϵ̄t⟨O| = e+

i
ℏ ϵ̄t︸ ︷︷ ︸

U(0,t)

âS (K.49)

â+I (t) = Û
(0)
(0, t)

â†S︷ ︸︸ ︷
e+

i
ℏ ϵ̄t︸ ︷︷ ︸

U(0,t)

b̂+S (t) Û
(0)
(t, 0) = e+

i
ℏ ϵ̄t b̂+I (t) = e

+ i
ℏ ϵ̄t︸ ︷︷ ︸

U(0.t)

â†S

âI(t) = Û
(0)
(0, t)

âS︷ ︸︸ ︷
b̂S(t) e

− i
ℏ ϵ̄t︸ ︷︷ ︸

U(t,0)

Û (0)(t, 0) = b̂I(t)e−
i
ℏ ϵ̄t = âS e

− i
ℏ ϵ̄t︸ ︷︷ ︸

U(t,0)

(K.50)

K.2 Anticommutators of field operators in the interaction pic-
ture

For the proof of the generalized Wick theorem in section 10.2.3 on p. 303, we need the anticom-
mutator between creation and annihilation operators in the interaction picture for a time-dependent
non-interacting Hamiltonian. In the following, it is shown that the anticommutator is a number
(respectively a unit operator in Fock space.) albeit with a value given by the propagator of the
non-interacting Hamiltonian.
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ANTICOMMUTATORS BETWEEN CREATION AND ANNIHILATION OPERATORS IN THE
INTERACTION PICTURE

The anticommutators of the creation and annihilation operators in the interaction picture are given
by the matrix elements of the propagator Û(t, t ′) in the one-particle Hilbert space. In Fock space, the
anticommutators are numbers, that is they are proportional to the identity operator in Fock space.[

ĉI,α(t2), ĉ
+
I,β(t1)

]
+

Eq. K.55
=

〈
πα

∣∣∣Û(t2, t1)∣∣∣πβ〉1̂ (K.51)[
ĉ+I,m(t1), ĉ

+
I,n(t2)

]
+
= 0̂ (K.52)[

ĉI,m(t1), ĉI,n(t2)
]
+
= 0̂ (K.53)

The one-particle orbitals |χα⟩ may be non-orthonormal with an overlap matrix Sα,β = ⟨χα|χβ⟩. Each
orbital has a corresponding projector function ⟨πα| =

∑
β S
−1
α,β⟨χβ |. The creation and annihilation

operators defined for this basisset are ĉ†α =
∫
d4x ψ̂†(x⃗)⟨x⃗ |πα⟩ and ĉα =

∫
d4x ⟨πα|x⃗⟩ψ̂(x⃗).

The propagator Û(t, 0) satisfies the time-dependent Schrödinger equation along the contour
[
iℏ∂t −

ĥ(t)
]
Û(t, 0) = 0 with the (non-interacting) one-particle Hamiltonian ĥ(t). It furthermore satisfies

the initial condition Û(t, t) = 1̂. The propagator can be written as time-ordered exponential.

Û(t, 0) = TCe−
i
ℏ
∫ t
0 dt ĥ(t)

Û(0, t) = Û−1(t, 0) (K.54)

Note that the propagator is unitary only on the branch of the contour with real-valued time. a

aCaution is needed to not confuse Û(t2, t1 with the propagator Û (0)(t2, t1) in Fock space. They differ by the space
they act on: Û(t2, t1) acts in the one-particle Hilbert space, while Û (0)(t2, t1) acts in the Fock space.

The anticommutator relations in the interaction picture are used for Wick’s theorem in sec-
tion 10.2.3 on p. 303.

The proof of Eq. K.51 rests on the finding, that the creation and annihilation operators in the
interaction pictures can be expressed in terms of their Schrödinger counterparts as shown in Eq. K.24
and Eq. K.2. The operator Û(t, 0) is the propagator in the one-particle Hilbert space, which differs

from the propagator Û (0)(t, 0) in Fock space.

[
ĉI,α(t), ĉ

+
I,β(t

′)
]
+

Eqs. K.1, K.2
=

[∑
γ

〈
πα
∣∣Û(t, 0)∣∣χγ〉ĉS,γ ,∑

δ

ĉ†S,δ⟨χδ|Û(0, t
′)|πβ⟩

]
+

=
∑
γ

∑
δ

〈
πα
∣∣Û(t, 0)∣∣χγ〉 [

ĉS,γ , ĉ
†
S,δ

]
+︸ ︷︷ ︸

⟨πγ |πδ⟩ Eq. B.8

⟨χδ|Û(0, t ′)|πβ⟩

=
〈
πα
∣∣Û(t, 0)∑

γ

∣∣χγ〉⟨πγ |︸ ︷︷ ︸
1̂

∑
δ

∣∣πδ〉〈χδ∣∣︸ ︷︷ ︸
1̂

Û(0, t ′)|πβ⟩

=
〈
πα
∣∣Û(t, t ′)|πβ⟩ (K.55)

K.3 Commutating a field operator with the density matrix

For the proof of the generalized Wick theorem we need to interchange the order of a creation operator
in the interaction picture with the von-Neumann density matrix of a non-interacting system.
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ĉ+I,α(t)ρ̂
(0)
T,µ

Eq. K.69
=

∑
γ

ρ̂
(0)
T,µĉ

+
I,γ(t)

〈
χγ

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣πα〉 (K.56)

ĉI,α(t)ρ̂
(0)
T,µ

Eq. K.70
=

∑
γ

〈
πα

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣χγ〉ρ̂(0)T,µĉI,γ(t) (K.57)

where Û(t, 0) is the propagator in one-particle Hilbert space. ρ̂
(0)
T,µ is the thermal von-Neumann

density matrix of the non-interacting system in the grand canonical ensemble.

Editor: Can this can be shown also for a non-thermal ensemble?
Editor: Is the proof also possible directly in a non-orthonormal basisset?
Assumption: The non-interacting Hamiltonian depends only on the real part of the time. The

non-interacting ensemble is determined for the Hamiltonian ĥ(0) at time t = 0. In the following, I
will drop the time argument of the Hamiltonian, when it is zero.

Let the basisset be the eigenstates of the non-interacting Hamiltonian ĥ. Let me denote the
Slater determinants in this basisset in the occupation-number representation as |σ⃗⟩.

e−β(ĥ−µN̂)|σ⃗⟩ = |σ⃗⟩e−β
∑
n σn(ϵn−µ) (K.58)

⇒

{
â†S,ke

−β(ĥ−µN̂)|σ⃗⟩ = â†S,k |σ⃗⟩e−β
∑
n σn(ϵn−µ)

e−β(ĥ−µN̂)â†S,k |σ⃗⟩ = â
†
S,k |σ⃗⟩e−β

∑
n σn(ϵn−µ)e−β(ϵk−µ)

(K.59)

⇒

{
âS,ke

−β(ĥ−µN̂)|σ⃗⟩ = âS,k |σ⃗⟩e−β
∑
n σn(ϵn−µ)

e−β(ĥ−µN̂)âS,k |σ⃗⟩ = âS,k |σ⃗⟩e−β
∑
n σn(ϵn−µ)e+β(ϵk−µ)

(K.60)

Combining the equations of each pair yields

â†S,ke
−β(ĥ−µN̂) = e−β(ĥ−µN̂)â†S,ke

+β(ϵk−µ) (K.61)

âS,ke
−β(ĥ−µN̂) = e−β(ĥ−µN̂)âS,ke

−β(ϵk−µ) (K.62)

Next I use Eqs. K.1 and K.2.

â+I,n(t)
Eq. K.1
=

∑
k

â†S,kUk,n(0, t) (K.63)

âI,n(t)
Eq. K.2
=

∑
k

Un,k(t, 0)âS,k (K.64)
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to obtain

â+I,n(t)e
−β(ĥ−µN̂) Eq. K.1

=
∑
k

â†S,ke
−β(ĥ−µN̂)Uk,n(0, t)

Eq. K.61
=

∑
k

e−β(ĥ−µN̂)â†S,ke
β(ϵk−µ)Uk,n(0, t)

=
∑
k

e−β(ĥ−µN̂)

â†S,k︷ ︸︸ ︷∑
p

â†S,p

∑
q

Up,q(0, t)Uq,k(t, 0)︸ ︷︷ ︸
δp,k

eβ(ϵk−µ)Uk,n(0, t)

= e−β(ĥ−µN̂)
∑
q

∑
p

â†S,pUp,q(0, t)︸ ︷︷ ︸
â+I,q

∑
k

Uq,k(t, 0)e
β(ϵk−µ)Uk,n(0, t)

Eq. K.1
= e−β(ĥ−µN̂)

∑
q

â+I,q

(∑
k

Uq,k(t, 0)e
β(ϵk−µ)Uk,n(0, t)

)
Eq. K.1
= e−β(ĥ−µN̂)

∑
q

â+I,q

〈
ϕq

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣ϕn〉 (K.65)

âI,n(t)e
−β(ĥ−µN̂) Eq. K.2

=
∑
k

Un,k(t, 0)âS,ke
−β(ĥ−µN̂)

Eq. K.62
=

∑
k

Un,k(t, 0)e
−β(ĥ−µN̂)e−β(ϵk−µ)âS,k

= e−β(ĥ−µN̂)
∑
k

Un,k(t, 0)e
−β(ϵk−µ)

âS,k︷ ︸︸ ︷∑
p

∑
q

Uk,q(0, t)Uq,p(t, 0)︸ ︷︷ ︸
δk,p

âS,p

= e−β(ĥ−µN̂)
∑
k

Un,k(t, 0)e
−β(ϵk−µ)

∑
q

Uk,q(0, t)
∑
p

Uq,p(t, 0)âS,p︸ ︷︷ ︸
âI,q(t)

Eq. K.2
= e−β(ĥ−µN̂)

∑
q

(∑
k

Un,k(t, 0)e
−β(ϵk−µ)Uk,q(0, t)

)
âI,q(t)

= e−β(ĥ−µN̂)
∑
q

〈
ϕn

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣ϕq〉âI,q(t) (K.66)

Normalizing the Boltzmann factors with the partition sum yields the density operator of the
non-inteacting system

â+I,n(t)ρ̂
(0)
T,µ =

∑
q

ρ̂
(0)
T,µâ

+
I,q

〈
ϕq

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣ϕn〉 (K.67)

âI,n(t)ρ̂
(0)
T,µ =

∑
q

〈
ϕn

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣ϕq〉ρ̂(0)T,µâI,q(t) (K.68)

Transformation into a non-orthonormal basisset

Let me now transform from the orthonormal basisset {|ϕn⟩} with creation and annihilation operators
â+I,n and âI,n to a general non-orthonormal basisset {|χα⟩} with creation and annihilation operators
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ĉ+I,α and ĉI,α.

ĉ+I,α(t)ρ̂
(0)
T,µ =

ĉ+I,α(t)︷ ︸︸ ︷∑
n

â+I,n(t)⟨ϕn|πα⟩ ρ̂
(0)
T,µ

Eq. K.67
=

∑
n,q

ρ̂
(0)
T,µâ

+
I,q

〈
ϕq

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣ϕn〉⟨ϕn|πα⟩
= ρ̂

(0)
T,µ

∑
q,q′

â+I,q

∑
γ

⟨ϕq |πγ⟩⟨χγ |ϕq′⟩︸ ︷︷ ︸
δq,q′

〈
ϕq′
∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)|πα⟩

= ρ̂
(0)
T,µ

∑
γ

∑
q

â+I,q⟨ϕq |πγ︸ ︷︷ ︸
ĉ+γ (t)

⟩⟨χγ |
∑
q′

|ϕq′⟩
〈
ϕq′
∣∣∣︸ ︷︷ ︸

1̂

Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)|πα⟩

=
∑
γ

ρ̂
(0)
T,µĉ

+
γ (t)

〈
χγ

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣πα〉 (K.69)

ĉI,α(t)ρ̂
(0)
T,µ =

ĉI,α(t)︷ ︸︸ ︷∑
n

〈
πα
∣∣ϕn〉âI,n(t) ρ̂(0)T,µ

Eq. K.68
=

∑
n

〈
πα

∣∣∣ϕn〉∑
q

〈
ϕn

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣ϕq〉ρ̂(0)T,µâI,q(t)
=

∑
q

〈
πα

∣∣∣∑
n

∣∣ϕn〉〈ϕn∣∣︸ ︷︷ ︸
1̂

Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)
∑
γ

∣∣χγ〉〈πγ∣∣︸ ︷︷ ︸
1̂

∣∣∣ϕq〉ρ̂(0)T,µâI,q(t)
=

∑
γ

〈
πα

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣χγ〉ρ̂(0)T,µ∑
q

〈
πγ
∣∣ϕq〉âI,q(t)︸ ︷︷ ︸
ĉγ

=
∑
γ

〈
πα

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣χγ〉ρ̂(0)T,µĉI,γ(t) (K.70)

K.4 Contract the trace

K.4.1 Single step of Wick’s theorem

Consider the expectation value Y = Tr
{
Â1Â2 . . . Â2M ρ̂

(0)
T,µ

}
of the time-ordered product of fermionic

creation and annihilation operators Âj ∈ {ĉ+I,α(t), ĉI,α(t)} in the interaction picture as defined in
Eq. 10.33.

Before beginning, let me collect the underlying assumptions and the definition of the symbols, so
that we can look them up easily.

• The operators Âj are fermionic creation and annihilation operators in the interaction picture,
i.e Âj ∈ {ĉ+I,α(t), ĉI,α(t)}.

• The creation and annihilation operators are defined by a one-particle basisset {|χα⟩}, i.e.
ĉ†S,α|O⟩ = |πα⟩. which may be non-orthonormal. Each orbital |χα⟩ has a projector function
⟨πα| =

∑
β S
−1
α,β⟨χβ |, where Sα,β = ⟨χα|χβ⟩ is the overlap matrix.

• The number of creation and annihilation operators is equal. There are M annihilation operators
and M creation operators in the product.
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• The time of the operators is increasing from right to left, i.e. t1 ≥ t2 ≥ . . . ≥ t2M .

• Û(t2, t1) is the propagator in the one-particle Hilbert space by the time-dependent, non-
interacting Hamiltonian ĥ(t). That is

(
1̂iℏ∂t − ĥ(t)

)
Û(t, t ′) = 0̂ and Û(t, t) = 1̂.

• ρ̂
(0)
T,µ is the von-Neumann density matrix for the non-interacting Hamiltonian ĥ(t) at time t = 0,

i.e. ρ̂(0)T,µ =
1

Z
(0)
T,µ

e−β(ĥ(0)−µN̂).

Remember, that the operators Âj and ρ̂(0)T,µ act in the Fock space and Û(t, t ′) and the one-particle-

reduced density matrix ρ̂(1)(0)T,µ act on the one-particle Hilbert space. The non-interacting Hamiltonian
ĥ(t) can be either, an operator in one-particle Hilbert space or a one-particle-at-a-time operator in
Fock space.

Now, we are ready to begin with the derivation

Y
Eq. 10.33
= Tr

{
Â1Â2 . . . Â2M ρ̂

(0)
T,µ

}
= Tr

{
[Â1, Â2]+ . . . Â2M ρ̂

(0)
T,µ

}
− Tr

{
Â2Â1 . . . Â2M ρ̂

(0)
T,µ

}
= Tr

{
[Â1, Â2]+ . . . Â2M ρ̂

(0)
T,µ

}
− Tr

{
Â2[Â1, Â3]+ . . . Â2M ρ̂

(0)
T,µ

}
+Tr

{
Â2Â3Â1Â4 . . . Â2M ρ̂

(0)
T,µ

}
=

2M∑
j=2

(−1)jTr
{
(Â2 · · · Âj−1)[Â1, Âj ]+(Âj+1 · · · Â2M)ρ̂(0)T,µ

}
︸ ︷︷ ︸

X

− (−1)2M︸ ︷︷ ︸
=+1

Tr
{
Â2 · · · Â2M

(
Â1ρ̂

(0)
T,µ

)}
(K.71)

As shown in Eq. K.56 and Eq. K.57, the operator A1ρ̂
(0)
T,µ can be expressed as a superposition of

terms ρ̂(0)T,µA1 with the order interchanged.

ĉ+I,α(t)ρ̂
(0)
T,µ

Eq. K.56
=

∑
γ

ρ̂
(0)
T,µĉ

+
I,γ(t)

〈
χγ

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣πα〉 (K.72)

ĉI,α(t)ρ̂
(0)
T,µ

Eq. K.57
=

∑
γ

〈
πα

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣χγ〉ρ̂(0)T,µĉI,γ(t) (K.73)

Cyclic permutation in the trace will bring Â1 to the front so that the trace has the same structure
as Y . Thus, we arrive at a system of equations, which can be resolved for Y .

Notation: We need to distingish several cases, which I distinguish by attaching a superscript
± ∈ {+,−} and an orbital index α to the result Y ±α . The superscript is ± = + if Â1 = ĉ+I,α(t) is a
creation operator and it is ± = − if Â1 = ĉI,α(t) is an annihilation operator. In a similar spirit, I will
introduce a short-hand notation X±α .
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• for Â1 = ĉ+I,α(t), I obtain Y +α

Y +α
def
= Tr

{ Â1︷ ︸︸ ︷
ĉ+I,α(t) Â2 . . . Â2M ρ̂

(0)
T,µ

}
Eq. K.71
=

2M∑
j=2

(−1)jTr
{
(Â2 · · · Âj−1)[Â1, Âj ]+(Âj+1 · · · Â2M)ρ̂(0)T,µ

}
︸ ︷︷ ︸

=:X+α

−Tr
{
Â2 · · · Â2M

Â1ρ̂
(0)
T,µ Eq. K.56︷ ︸︸ ︷∑

γ

ρ̂
(0)
T,µĉ

+
I,γ(t)

〈
χγ

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣πα〉}

= X+α −
∑
γ

Tr
{
Â2···Â2M ρ̂(0)T,µĉ

+
I,γ(t)

}︷ ︸︸ ︷
Tr
{
ĉ+I,γ(t)Â2 · · · Â2M ρ̂

(0)
T,µ

}
︸ ︷︷ ︸

Y +γ

〈
χγ

∣∣∣Û(t, 0)eβ(ĥ−µ1̂)Û(0, t)∣∣∣πα〉 (K.74)

This is a system of equations for the {Y +γ }. I bring all terms containing one of the {Y +γ } to
the left-hand side of the equation, and multiply both sides with the inverse of the prefactor.

⇒
∑
γ

Y +γ

δγ,α+
〈
χγ

∣∣Û(t,0)eβ(ĥ−µ1̂)Û(0,t)∣∣πα〉︷ ︸︸ ︷〈
χγ

∣∣∣Û(t, 0)(1̂ + eβ(ĥ−µ1̂))Û(0, t)∣∣∣πα〉 = X+α
⇒ Y +γ =

∑
α

X+α

〈
χα

∣∣∣Û(t, 0)(1̂ + eβ(ĥ−µ1̂))−1Û(0, t)∣∣∣πγ〉
α→γ→α1⇒ Y +α1 =

∑
γ

X+γ

〈
χγ

∣∣∣Û(t1, 0)(1̂ + eβ(ĥ−µ1̂))−1Û(0, t1)∣∣∣πα1〉 (K.75)

Notation: In the last step, I renamed the indices (α1 rather than α) so that I can distinguish
the orbital indices αj of several operators Âj . Furthermore, I am denoting the time argument
of Âj with tj .

Let me now turn to X+γ . Let Âj = ĉI,αj (tj) and Â1 = ĉ+I,α1(t1). I will use Eqs. K.51, K.52
and K.53 from p. 570. The anticommutator of two creation operators vanishes also in the
interaction picture, which is taken into account by limiting the sum to annihilators.

X+γ
def
=

2M∑
j=2

Âj=annihilator

(−1)jTr
{
(Â2 · · · Âj−1)

[Â1,Âj ]+︷ ︸︸ ︷
[ĉ+I,γ(t1), ĉI,αj (tj)]+(Âj+1 · · · Â2M)ρ̂

(0)
T,µ

}

Eq. K.51
=

2M∑
j=2

Âj=annihilator

(−1)jTr
{
(Â2 · · · Âj−1)⟨παj |Û(tj , t1)|πγ⟩(Âj+1 · · · Â2M)ρ̂

(0)
T,µ

}
(K.76)
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which yields

Y +α1
Eq. K.75
=

∑
γ

X+γ︷ ︸︸ ︷
2M∑
j=2

Âj=annihilator

(−1)jTr
{
(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ

}〈
παj

∣∣∣Û(tj , t1)∣∣∣πγ〉

×
〈
χγ

∣∣∣Û(t1, 0)(1̂ + eβ(ĥ−µ1̂))−1Û(0, t1)∣∣∣πα1〉
=

2M∑
j=2

Âj=annihilator

(−1)jTr
{
(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ

}

×
〈
παj

∣∣∣Û(tj , 0)(1̂ + eβ(ĥ−µ1̂))−1Û(0, t1)∣∣∣πα1〉 (K.77)

We find that Y +α is expressed by a sum of terms, having a similar structure as Y ±α , albeit with less
operators in the product. This indicates that the same rule can be applied iteratively to shrink
the products in the trace and ultimately make them vanish. What we gain is that a complicated
trace in Fock space is replaced by an expression of matrix elements in the one-particle Hilbert
space, albeit a lengthy one.

The operator
(
1̂+eβ(ĥ−µ1̂)

)−1
can be identified with one-particle-reduced density matrix ρ̂(1),(0)T,µ

in thermal equilibrium with the initial non-interacting Hamiltonian ĥ(0)

ρ̂
(1)(0)
T,µ = fT,µ(ĥ(0)) =

(
1̂ + eβ(ĥ−µ1̂)

)−1
(K.78)

Here, fT,µ(ϵ)
def
= (1 + e−β(ϵ−µ))−1 is the Fermi distribution.

The prefactor in Eq. K.77 can be identified with the Green’s function of the non-interacting
Hamiltonian, which is given in Eq. 7.27 (p.247) as

ĜC,(0)(t, t ′)
Eq. 7.27
=

1

iℏ
Û(t, 0)

{
θC(t − t ′)

(
1̂− ρ̂(1)(0)T,µ

)︸ ︷︷ ︸
electrons

− θC(t ′ − t)ρ̂(1)(0)T,µ︸ ︷︷ ︸
holes

}
Û(0, t ′)(K.79)

The prefactor in Eq. K.77 can thus be rewritten as

〈
παj

∣∣∣Û(tj , 0)(1̂ + eβ(ĥ−µ1̂))−1Û(0, t1)∣∣∣πα1〉 t1≥tj
=

= 1 for t1 ≥ tj︷ ︸︸ ︷
θC(t1 − tj)

〈
παj

∣∣∣Û(tj , 0)
(
1̂+eβ(ĥ−µ1̂)

)−1
︷ ︸︸ ︷
ρ̂
(1)(0)
T,µ Û(0, t1)

∣∣∣πα1〉
Eq. 7.27
= −iℏ

〈
παj

∣∣∣ĜC(0)(tj , t1)∣∣∣πα1〉
= −iℏ GC(0)αj ,α1

(tj , t1) (K.80)

The sign factor (−1)j+1 in Eq. K.77 can be related to the number of permutations of the indices
in the original time-ordered product to bring them into the order (j, 1, 2, . . . , j−1, j+1, . . . , 2M)
of the final result. There are j − 1 permutations to bring the index j to the front which gives
the desired sign factor (−1)j−1 = (−1)j+1. This allows one to rewrite the sign factor in the
form

(−1)j+1 = ϵj,1,2,...,j−1,j+1,...,2M (K.81)

where ϵj1,...,2M is the fully antisymmetric tensor.
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Thus, the final result for Y +α1 is

Y +α1 = iℏ
2M∑
j=2

Âj=annihilator

ϵj,1,2,...,j−1,j+1,...,2M ĜC(0)αj ,α1
(tj , t1)Tr

{
(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ

}
(K.82)

Before we continue, let me turn to the second case where Â1 is an annihilator. The derivation
for annihilators and creators is analogous.

• Let me now proceed with the case when Â1 is an annihilator, that is for Â1 = ĉI,α(t). Similar
to the previous case, I am introducing the symbols Y −α and X−α

Y −α (t)
def
= Tr

{ Â1︷ ︸︸ ︷
ĉI,α(t) Â2 . . . Â2M ρ̂

(0)
T,µ

}
Eq. K.71
=

2M∑
j=2

(−1)jTr
{
(Â2 · · · Âj−1)[Â1, Âj ]+(Âj+1 · · · Â2M)ρ̂(0)T,µ

}
︸ ︷︷ ︸

=:X−α

−Tr
{
Â2 · · · Â2M

Â1ρ̂
(0)
T,µ Eq. K.57︷ ︸︸ ︷∑

γ

〈
πα

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣χγ〉ρ̂(0)T,µĉI,γ(t)}

= X−α −
∑
q

〈
πα

∣∣∣Û(t, 0)e−β(ĥ−µ1̂)Û(0, t)∣∣∣χγ〉
Tr
{
Â2···Â2M ρ̂(0)T,µĉI,γ(t)

}︷ ︸︸ ︷
Tr
{
ĉI,γ(t)Â2 · · · Â2M ρ̂(0)T,µ

}
︸ ︷︷ ︸

Y −γ

(K.83)

This is a system of equations for {Y −γ }. I bring all terms containing one of the {Y −γ } to the
left hand side of the equation, and multiply both sides with the inverse of the prefactor.

⇒
∑
γ

δα,γ+
〈
χα

∣∣Û(t,0)e−β(ĥ−µ1̂)Û(0,t)∣∣χγ〉︷ ︸︸ ︷〈
πα

∣∣∣Û(t, 0)(1̂ + e−β(ĥ−µ1̂))Û(0, t)∣∣∣χγ〉 Y −γ = X−α
⇒ Y −γ =

∑
α

〈
πγ

∣∣∣Û(t, 0)(1̂ + e−β(ĥ−µ1̂))−1Û(0, t)∣∣∣χα〉X−α
α→γ→α1⇒ Y −α1 =

∑
γ

〈
πα1

∣∣∣Û(t, 0)(1̂ + e−β(ĥ−µ1̂))−1Û(0, t)∣∣∣χγ〉X−γ (K.84)

Let me now turn to X−γ . Let Âj = ĉ+I,αj (tj) and Â1 = ĉI,α1(t1). I will use Eqs. K.51, K.52 and
K.53 from p. 570.

X−γ
def
=

2M∑
j=2

Âj=creator

(−1)jTr
{
(Â2 · · · Âj−1)

[Â1,Âj ]+︷ ︸︸ ︷
[ĉI,γ(t1), ĉ

+
I,αj
(tj)]+(Âj+1 · · · Â2M)ρ̂(0)T,µ

}

Eq. K.51
=

2M∑
j=2

Âj=creator

(−1)jTr
{
(Â2 · · · Âj−1)

[Â1,Âj ]+︷ ︸︸ ︷
⟨πγ |Û(t1, tj)|παj ⟩(Âj+1 · · · Â2M)ρ̂

(0)
T,µ

}
(K.85)
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which yields

Y −α1 =
∑
γ

〈
πα1

∣∣∣Û(t1, 0)(1̂ + e−β(ĥ−µ1̂))−1Û(0, t1)∣∣∣χγ〉

×

X−γ︷ ︸︸ ︷
2M∑
j=2

Âj=creator

(−1)j
〈
πγ

∣∣∣Û(t1, tj)∣∣∣παj〉Tr{(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ}

=

2M∑
j=2

Âj=creator

(−1)j
〈
πα1

∣∣∣Û(t1, 0)(1̂ + e−β(ĥ−µ1̂))−1Û(0, tj)∣∣∣παj〉

×Tr
{
(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ

}
(K.86)

The term with the Boltzmann factor can be expressed by the thermal one-particle-reduced
density matrix for the initial non-interacting Hamiltonian ĥ(0).(

1̂ + e−β(ĥ(0)−µ1̂)
)−1
= 1̂− fT,µ(ĥ(0)) = 1̂− ρ̂(1)(0)T,µ (K.87)

where fT,µ(ϵ) is the Fermi distribution.

The prefactor can then be expressed by the Green’s function of the non-interacting system.

〈
πα1

∣∣∣Û(t1, 0)(1̂ + e−β(ĥ−µ1̂))−1Û(0, tj)∣∣∣παj〉 t1≥tj
=

=1︷ ︸︸ ︷
θC(t1 − tj)

〈
πα1

∣∣∣Û(t1, 0)
(
1̂+e−β(ĥ−µ1̂)

)−1
︷ ︸︸ ︷(
1̂− ρ̂(1)(0)T,µ

)
Û(0, tj)

∣∣∣παj〉
= iℏ

〈
πα1

∣∣∣ĜC(0)(t1, tj)∣∣∣παj〉
= iℏ GC(0)α1,αj

(t1, tj) (K.88)

Let me relate the sign factor (−1)j+1 to the number of permutations of the indices in the
original time-ordered product to bring them into the order (1, j, 2, . . . , j − 1, j + 1, . . . , 2M) of
the final result.

(−1)j = ϵ1,j,2,...,j−1,j+1,...,2M (K.89)

where ϵj1,...,2M is the fully antisymmetric tensor.

Thus, we obtain the final result for Y −n1

Y −α1 = iℏ
2M∑
j=2

Âj=creator

ϵ1,j,2,...,j−1,j+1,...,2M ĜC(0)α1,αj
(t1, tj)Tr

{
(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ

}
(K.90)

Summary of one step of Wick’s theorem:

Let me combine the two cases:

Y = iℏ
2M∑
j=2

Tr
{
(Â2 · · · Âj−1)(Âj+1 · · · Â2M)ρ̂(0)T,µ

}

×


ϵj,1,2,...,j−1,j+1,...,2M Ĝ

C(0)
αj ,α1(tj , t1) if A1 creator and Aj annihilator

ϵ1,j,2,...,j−1,j+1,...,2M Ĝ
C(0)
α1,αj (t1, tj) if Aj creator and A1 annihilator

0 else

(K.91)
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In words:

1. The first operator Â1 is paired with all operators Âj of opposite type. That is, when Â1 is a
creation operator it is paired with all Âj , that are annihilators, and vice versa.

2. Each pair is represented by a Green’s function where the annihilator of the pair enters as the
left and the creator as the right argument.

3. The order of the indices, after placing Green’s function up front (or to the end), enters the
fully antisymmetric tensor to determine the sign.

4. A factor iℏ is introduced.

5. The trace of operators contains two operators less, which made up the Green’s function.

6. The product in the trace is still time ordered.

K.4.2 Sequence of Wick’s iterations:

So far, we described a single step of Wick’s theorem. This step is executed iteratively for the
remaining products in the trace, until only Tr[ρ̂(0)T,µ] is left, which is a factor 1, that can be ignored.

After all rounds of Wick’s theorem have been completed, the result has the form

Y︷ ︸︸ ︷
Tr
{
ρ̂
(0)
T,µÂ1 · · · Â2M

}
= (iℏ)M

∑
P⃗∈X

ϵP1,...,P2M

M∏
j=1

GC(0)αP2j−1 ,αP2j
(tP2j−1 , tP2j ) (K.92)

where the set X of vectors P⃗ needs to be specified.
The vectors P⃗ ∈ Xmap the operator indices from the initial time order onto the operator sequence

as they turn up after Wicks theorem. This order is also the time order of the time arguments in the
final result.

Let me walk through the rounds of Wicks theorem:

1. In the first round of Wick’s theorem, the first operator Â1 in the trace is paired up with each
operator of opposite type, that is creators are paired with annihilators and vice versa. Each
pair is converted into a non-interacting Green’s function. The result is a sum with M terms
each containing one Green’s function and a trace with 2M − 2 operators in the trace.

2. In the second round of Wick’s theorem, the first of the remaining operators in the trace is
paired up with all operators of opposite type. This divides each term of the first round further
into M − 1 terms. After the second round, the sum has M(M − 1) terms, each with a product
of two Green’s functions and a trace with 2M − 4 operators.

3. After theM-th round of Wick’s theorem, the sum hasM! terms, each consisting of a product of
M Green’s functions. The trace contains only the von-Neumann density matrix, Tr

{
ρ̂
(0)
T,µ

}
= 1.

This is the last round of Wick’s theorem.

The final sum contains all complete pairings of operators with a partner of the opposite type. Each
of the M! complete pairings occurs exactly once in the sum.

Let refine the description of the set X further:

1. The components of the 2M-dimensional vectors P⃗ ∈ X are integers with 1 ≤ Pj ≤ 2M. There
are MM such vectors.

2. The fully antisymmetric tensor filters all vectors out that are not permutations of the initial
sequence (1, 2, . . . , 2M) of operators. There are (2M)! permutations of the initial operator
sequence.
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3. From the result Eq. K.91 of one round of Wicks theorem, we notice that the annihilation
operators occur always as left arguments of a Green’s function and the creation operators occur
as the right argument. There are (M!)2 vectors P⃗ with this property: there areM! permutations
of the creation operators among each other and M! permutations of the annihilation operators.

4. Two vectors P⃗ , which correspond to an interchange of two (or more) Green’s functions in the
product, describe the same pairing. To avoid double counting of the same pairing, only one of
them can be an element of X. In order to select exactly one vector describing the same pairing,
let me require that the even indices, are in ascending order, that is, they maintain the order of
creation operator in the initial operator product.

P2 < P4 < . . . < P2M for P⃗ ∈ X (K.93)

Let me summarize this in different words: the indices of the creation operators in the order of the
initial product determines the components of P⃗ with even index. That is, all elements of X have the
same sequence of components P2j with even index 2j . The components of P⃗ with odd index refer to
the indices of the annihilation operators. These M indices can occur in any order and consequently
there are M! terms in the set X.

The selection of the vectors P⃗ is still a bit clumsy. Bear with me, it will get a little better below...

K.4.3 Wick’s theorem for a product that is not time ordered

In the derivation of Wick’s theorem, we required in Eq. 10.33 that the operators are already time
ordered. This implies that the time ordering TC along the contour has already been performed.

When the time-ordering operator acts on a sequence of operators, it introduces a sign change for
every permutation of neighboring fermionic operators. These sign due to the time ordering need to
be added to the ones introduced by Wick’s theorem.

All these sign changes can described by a fully antisymmetric tensor which monitors the permu-
tations from the order in the operator product to the time-ordered product and further to the order
of indices in the final product of Green’s functions.

The vector P⃗ maps the indices in the final product to their arrangement of operators in the initial
product before applying the time-ordering operator.

The result of the sequence has the form

Tr
{
ρ̂
(0)
T,µTCÂ1 · · · Â2M

}
Eq. K.92
= (iℏ)M

∑
P⃗∈X′

ϵP1,...,P2M

M∏
j=1

GC(0)αP2j−1 ,αP2j
(tP2j−1 , tP2j ) (K.94)

There is a subtle difference between the trace in the equation above and the product Y used earlier in
Eq. K.92, namely, the time-ordering operator TC has been inserted. Consequently, the set X′ differs
from the set X used earlier in Eq. K.92, because the vectors map the final sequence of arguments to
the initial order of operators, which have no time order.

In the equation above the product Â1 · · · Â2M is not time ordered. The time order is established
through the time-ordering operator, but then the order of the operators has already changed, i.e.
the indices are no more ascending. Only this, rearranged, product of operators can be used in the
expression Y for Wick’s theorem.

The insertion of the time-ordering operator maintains the same structure of the result, because
the sign changes due to rearrangement of the operators from the initial order to the time order are
tracked by the fully antisymmetric tensor.
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K.4.4 Alternating order of annihilation an creation operators

It is often convenient to bring the creation and annihilation operators under the time-ordering operator
into a specific order, so that the annihilation operators alternate with creation operators.

TCŴI(t)
Eq. K.95
=

1

2

∑
i1,o1,i2,o2

Wo1,o2,i1,i2TC
{
ĉ+I,o1(t

+)ĉ+I,o2(t
+)ĉI,i2(t)ĉI,i1(t)

}
=

1

2

∑
i1,o1,i2,o2

Wo1,o2,i1,i2TC
{
ĉI,i1(t)ĉ

+
I,o1
(t+)ĉI,i2(t)ĉ

+
I,o2
(t+)

}
(K.95)

There are no sign changes.
Inspection of the Green’s function in Eq. 10.22 shows that this alternating order is consistent

with the order of the operators in the Green’s function.

Tr
{
ρ̂
(0)
T,µTC

M∏
j=1

ĉI,ij (t
′
j )ĉ
†
I,oj
(t+j )

}
Eq. K.94
= (iℏ)M

∑
P⃗∈X′′

ϵP1,...,P2M

M∏
j=1

G
C(0)
ij ,oj
(t ′Pj , t

+
j ) (K.96)

The X′′ differs from the one used previously because it is the mapping for a different ordering of the
initial operator product.

For this specific order of the initial operators, the 2M-dimensional permutation vectors P⃗ can be
expressed by a set of M-dimensional vectors P⃗.

P⃗ = (2P1 − 1, 2, 2P2 − 1 , 4, . . . , 2PM − 1, 2M) (K.97)

ϵP⃗ = ϵ2P1−1,2,2P2−1,4,...,2PM−1,2M
?
= ϵP1,P2,...,PM = ϵP⃗ (K.98)

For a vector P⃗ = (1, 2, . . . ,M) the two antisymmetric tensors are equal, i.e. ϵP⃗ = 1 = ϵP⃗ .

Next, I need to show that the interchange of two neighboring components of the vector P⃗ involves
three interchanges of neighboring components in the corresponding vector P⃗ . Let me demonstrate
it for M = 2.

(P1,P2) → (P2,P1)

(P2P1−1, 2, P2P2−1, 4)
1st→ (2, P2P1−1, P2P2−1, 4)

2nd→ (2, P2P2−1, P2P1−1, 4)
3rd→ (P2P2−1, 2, P2P1−1, 4)

(K.99)

In both cases the permutation introduces a sign change. Thus, we have shown that ϵP⃗ = ϵP⃗ if the
vector P⃗ is related to P⃗ as described above.

With this choice, the result Eq. K.96 obtains the form

Tr
{
ρ̂
(0)
T,µTC

M∏
j=1

ĉI,ij (t
′
j )ĉ
†
I,oj
(t+j )

}
Eq. K.96
= (iℏ)M

∑
P⃗

ϵP1,...,PM

M∏
j=1

G
C(0)
iPj ,oj
(t ′Pj , t

+
j ) (K.100)

The set of permutation vectors P⃗ is much simpler than the set X: It contains all M-dimensional
integer vectors with elements between one and M. The fully antisymmetric tensor selects those
vectors that are permutation vectors.
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K.4.5 Final form of Wick’s theorem

Let me now summarize the final form of Wick’s theorem, as it given in Eq. 10.38 on p. 305 of the
main text.

WICK’S THEOREM

Tr
{
ρ̂
(0)
T,µTC

M∏
j=1

ĉI,ij (t
′
j )ĉ
†
I,oj
(t+j )

}
Eq. K.100
= (iℏ)M

∑
P⃗

ϵP1,...,PM

M∏
j=1

G
C(0)
iPj ,oj
(t ′Pj , t

+
j ) (K.101)

The creation and annihilation operators ĉ†I,o and ĉI,i are given in the interaction picture with respect
to a time-depending, non-interacting Hamiltonian ĥ(t). While the Hamiltonian ĥ(t) depends only on
the real part of the complex-valued time argument, it propagates the wave functions, along a contour
C in the complex time plane.
The time argument t+j stands for a time, which is infinitesimally displaced forward along the contour
relative to the time tj .
The one-particle basisset defining the creation and annihilation operators may be non-orthonormal.
The density matrix ρ̂(0)T,µ is the thermal von-Neumann density matrix for the non-interacting Hamil-
tonian ĥ(t) at time t = 0.
The sum is performed over all M-dimensional vectors with components Pj ∈ {1, 2, . . . ,M}. The fully
antisymmetric tensor ϵP1,P2,...,PM selects the permutation vectors with Pj ̸= Pk .
The non-interacting contour-ordered Green’s function G

C(0)
i ,o (t

′, t) has been defined in Eq. 7.27
(p.247) as

G
C,(0)
i ,o (t

′, t)
Eq. 7.27
=

1

iℏ

〈
πi

∣∣∣Û(t ′, 0){θC(t − t ′)(1̂− ρ̂(1)(0)T,µ

)︸ ︷︷ ︸
electrons

− θC(t ′ − t)ρ̂(1)(0)T,µ︸ ︷︷ ︸
holes

}
Û(0, t)

∣∣∣πo〉

K.4.6 Why is the time-ordered Green’s function important?

As we introduced the Green’s function for many particle systems, we have seen that several Green’s
function could have been defined by adding a solution of the homogeneous Schrödinger equation.
As motivation for the time-ordered Green’s function, I referred to Wick’s theorem. In the derivation
above, the contractions are, up to a factor, equal to the time-ordered Green’s function and no other
type of Green’s function, which explains the importance of the time-ordered Green’s function.

K.4.7 Non-interacting grand potential

Editor: This is not for the reader. It shall be merged with the main text. See
also Eq. 10.70 on p. 319 and Eq. 10.28 on p. 302. There are probably some duplications.

The grand potential is obtained from

Ω
(0)
T,µ = −kBT ln Tr

{
e−β(ĥ−µN̂)

}
= −kBT ln

∑
σ⃗

e−β
∑
j σj (ϵj−µ)

= −kBT
∑
j

ln
(
1 + e−β(ϵj−µ)

)
= −kBT Tr

[
ln
(
111 + e−β(h−µ111)

)]
(K.102)
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We can express the grand potential also in terms of the occupations of the one-particle orbitals.

fn =
(
1 + eβ(ϵn−µ)

)−1
eβ(ϵn−µ) =

1

fn
− 1 =

1− fn
fn

1 + e−β(ϵn−µ) = 1 +
fn
1− fn

=
1

1− fn
(K.103)

Thus, we obtain

Ω
(0)
T,µ = +kBT

∑
n

ln(1− fn)

= +kBTTr ln(1̂− ρ̂(1))

= +kBTTr ln
(
1̂ + iℏĜ(0)(t, t+)

)
= +kBTTr ln

(
−iℏĜ(0)(t+, t)

)
(K.104)

dΩ
(0)
T,µ = −kBTTr

[(
111 + e−β(h−µ111)

)−1 (
−βe−β(h−µ111)

)
dh

]
= Tr

[(
1 + eβ(h−µ111)

)−1
dh

]
(K.105)
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Appendix L

Code for the construction of
Feynman diagrams

While it is important to understand the underpinnings of Feynman diagrams, many of the operations
can be performed on the computer. This chapter contains a FORTRAN code that sets up the
permutation vectors defining the Feynman diagrams to a specified order. The code determines the
linked, topologically inequivalent diagrams together with their symmetry factor and the sign.

L.1 Procedure to exclude disconnected diagrams

The linked-cluster theorem Eq. 11.17 reduces the set of all closed diagrams to the subset of linked
clusters. The disconnected diagrams, which need to be sorted out, are easily identified from the
drawn diagram itself. Disconnected diagrams can also be identified on the basis of a permutation
vector as mentioned in section 11.4 on p. 335. Here, I am sketching a systematic and efficient
procedure, which can be used either by hand and which can be put on the computer.

The procedure to discard the disconnected diagrams passes through all vertices of a linked cluster
in the diagram and identifies the vertices, which belong to it. If a vertex of the diagram is left over,
the diagram is disconnected.

The procedure makes use of the permutation vector P⃗ of the diagram. Let the set B be the
linked cluster connected to the first vertex. We maintain an array, which keeps track, which vertices
have already been identified as member of B. The array has one entry for each vertex with value true
or false

1. We start with the first vertex and complete the Fermi loop that passes through it. This is done
by repeating the following two steps until a vertex is encountered that is already marked as
member of B.

(a) The current vertex vj is marked as member of B
(b) One proceeds to vertex with number vk = Pj
(c) If this vertex has already been marked as member of B, the Fermi loop has been completed

and one proceeds to the next step (2) of the procedure described below. If not, one
continues with (1.a) to follow along the Fermi loop as sketched above.

2. From the current vertex vj , one proceeds through the vertices in ascending order of their
numbers until a vertex is encountered that is not yet marked as member of B.

3. If, on the one hand, the partner of the odd-even vertex pair containing the current vertex has
not been marked as member of B, the diagram at hand is disconnected and not a linked cluster.
Thus, the procedure is complete and can be ended.

585
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The reason that one can take the decision to identify a disconnected diagram already at this
point, is that each Fermi loop is identified beginning at the vertex having the lowest index.

4. If, on the other hand, the partner of the odd-even vertex pair has already been marked as
member of B, the current vertex is connected to B by an interaction line. Thus, the current
member is also part of B. Therefore, one proceeds with step (1.a) to identify the Fermi loop
passing through the current vertex.

5. When we arrive at the last vertex, all vertices belong to the same linked cluster B and the
diagram is kept in the set of linked diagrams L.

This procedure identifies a diagram as linked or disconnected in one pass. It can easily be put
on the computer. The code is provided in the appendix L on p. 585. The implementation does not
implement the procedure as described above, but follows it in spirit.

L.2 Installation:

Prerequisites are a FORTRAN compiler such as gfortran.

1. Download the code as “diagrams.f90”. Be aware of special non-printing symbols when grabbing
it from a pdf file.

2. Compile the code with gfortran -o diagrams.x diagrams.f90

3. Run the code as diagrams.x. You will be asked to provide the order of the diagrams to be
calculated.

L.3 Example:

In order to obtain the result for the third order in the interaction execute the following on the
command line of a UNIX system.

gfortran -o diagrams.x diagrams.f90; echo 3 | diagrams.x > out.dat

The resulting file out.dat is given below in section L.6.3.
Each line represents a linked Feynman diagram. The first column is the symmetry factor multiplied

by the sign of the diagram. Denoted with p= is the permutation vector P⃗. In order to draw the
diagram,

1. start drawing n interaction lines, where n is the order of the diagram.

2. label the vertices so that each interaction line has one odd-numbered vertex and the next higher
even-numbered vertex.

3. For each component pj of the 2n-dimensional permutation vector draw a bare Green’s function
line from vertex Vj to vertex Vpj .

L.4 Code Description

• The subroutine permutationvectors sets up all (2n)! permutation vectors with length 2n,
where n is the order of the diagrams. It implements the method is described in section 11.2.1
on p. 329.
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• The subroutine loops determines the sign factor of the diagrams and it identifies disconnected
diagrams. If the diagram is not a linked-cluster, the sign factor is set to zero. The routine follows
in spirit the method described in section L.1 on p. 585. Editor: This routine does not
exploit the description section L.1 in full: It searches for odd-even pairs from
the beginning, rather than from the start of the most recent Fermi loop. It does
not stop the search at the first possibility to detect a disconnected cluster,
but only at the end.

• The subroutine vertexmaps sets up all n!2n transformations of permutation vectors, that result
in a topologically equivalent diagram. A specific transformation is represented by a vector M⃗
with the same length 2n of the permutation vector.

P ′Mj
= MPj (L.1)

• The subroutine symmetryfactor determines the symmetry factor sofd of a specific diagram
and it selects one specific diagram from a set of topologically equivalent diagrams. Internally, all
topologically equivalent diagrams of the current diagram are created using the transformations
set up in routine vertexmaps. A sequence for all diagrams is defined. If any of the transformed
permutation vectors has a lower value in the sequence, the current diagram is omitted by exiting
the routine after setting the symmetry factor sofd to zero. If the current diagram is one to be
considered, the symmetry factor is determined by identifying the number of mere deformations
among all transformations. The symmetry factor is provided as S(D) =sofd.

L.5 Source code:

The code diagrams.f90 can be downloaded from the ΦSX Website phisx.org. For the sake of
completeness it is included below.

program main
! *************************************************************************
! ** determines the permutation vectors defining the topologically **
! ** inequivalent, linked feynman diagrams of the specified order **
! ** **
! ** provide the order of the diagram from standard input (integer) **
! ** **
! ** interaction lines connect odd numbered vertices with the next higher**
! ** even numbered index. the j-th component p_j of the permutation **
! ** specifies a green’s function from vertex j to vertex p_j. **
! ** **
! ** the value of a diagram is given in **
! ** p.Bloechl, PhiSX Advanced Solid-State Theory **
! ** http://www2.pt.tu-clausthal.de/atp/phisx.html **
! ** **
! *************************************************************************
! ** COPYRIGHT (C) 2017 PETER BLOECHL, (MODIFIED M.I.T. LICENSE) **
! ** **
! ** PERMISSION IS HEREBY GRANTED, FREE OF CHARGE, TO ANY PERSON **
! ** OBTAINING A COPY OF THIS SOFTWARE (THE "SOFTWARE"), TO DEAL IN THE **
! ** SOFTWARE WITHOUT RESTRICTION, INCLUDING WITHOUT LIMITATION THE **
! ** RIGHTS TO USE, COPY, MODIFY, MERGE, PUBLISH, DISTRIBUTE, SUBLICENSE,**
! ** AND/OR SELL COPIES OF THE SOFTWARE, AND TO PERMIT PERSONS TO WHOM **
! ** THE SOFTWARE IS FURNISHED TO DO SO, SUBJECT TO THE FOLLOWING **
! ** CONDITIONS: **

phisx.org
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! ** **
! ** THE ABOVE COPYRIGHT NOTICE AND THIS PERMISSION NOTICE SHALL BE **
! ** INCLUDED IN ALL COPIES OR SUBSTANTIAL PORTIONS OF THE SOFTWARE. **
! ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, **
! ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF **
! ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND **
! ** NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS **
! ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN **
! ** ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN **
! ** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE **
! ** SOFTWARE. **
! ** **
! ** THIS LICENSE APPLIES ONLY TO THE SECTION OF FORTRAN CODE THAT **
! ** CONTAINS THIS LICENSE. IT DOES NOT APPLY TO THE PHISX LECTURE NOTES **
! ** THAT MAY CONTAIN THE SOFTWARE. **
! *************************************************************************

implicit none
integer(4) :: order !order in the interaction
integer(4) :: len !length of permutation vector
integer(4) :: nvecx !X#(permutation vectors)
integer(4) :: nmapx
integer(4),allocatable :: pvec(:,:) !(len,nvecx) permutation vector
integer(4),allocatable :: map(:,:) !(len,nmapx)
integer(4),allocatable :: sofd(:) !(nvecx) symmetry factor*sign
integer(4),allocatable :: sgn(:) !(nvecx)
integer(4) :: nvec !#(permutation vectors)
integer(4) :: nmap
integer(4) :: i,j
real(8) :: svar

! *************************************************************************
write(*,fmt=’("provide the order of the diagrams (integer):")’)
read(*,fmt=*)order
write(*,fmt=’(40("."),t1,"order of the diagrams",t40,i15)’)order
len=2*order

!
! =========================================================================
! == allocate array for permutation vector ==
! == a permutation vector has the length len=2*order ==
! == the number of permutation vectors in this order is factorial(len) ==
! =========================================================================

nvecx=1
do i=1,len
nvecx=nvecx*i

enddo
allocate(pvec(len,nvecx))
allocate(sgn(nvecx))
allocate(sofd(nvecx))

! =========================================================================
! == determine all permutation vectors ==
! =========================================================================

call permutationvectors(len,nvecx,nvec,pvec)
write(*,fmt=’(40("."),t1,"nr. of all diagrams (=n!)",t40,i15)’)nvec

!
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! =========================================================================
! == count the number of loops (sign of the diagram) ==
! == identify unlinked diagrams (sgn=0) ==
! =========================================================================

do i=1,nvec
call loops(len,pvec(:,i),sgn(i))

enddo
!
! =========================================================================
! == remove unlinked diagrams ==
! =========================================================================

j=0
do i=1,nvec
if(sgn(i).eq.0) cycle
j=j+1
pvec(:,j)=pvec(:,i)
sgn(j)=sgn(i)

! write(*,fmt=’("(",20i4,")",i10)’)pvec(:,j),sgn(j)
enddo
nvec=j
write(*,fmt=’(40("."),t1,"nr. of linked diagrams",t40,i15)’)nvec

!
! =========================================================================
! == determine symmetry factor (sofd=0 for duplicates) ==
! == sign is integrated into the symmetry factor ==
! =========================================================================

nmapx=1
do i=1,order
nmapx=nmapx*2*i

enddo
allocate(map(len,nmapx))
call vertexmaps(len,nmapx,nmap,map)
do i=1,nvec
call symmetryfactor(len,pvec(:,i),nmap,map,sofd(i))
sofd(i)=sofd(i)*sgn(i)

enddo
deallocate(map)

!
! =========================================================================
! == remove topologically equivalent diagrams ==
! =========================================================================

j=0
do i=1,nvec
if(sofd(i).eq.0) cycle
j=j+1
pvec(:,j)=pvec(:,i)
sofd(j)=sofd(i)
sgn(j)=sgn(i)

enddo
nvec=j
write(*,fmt=’(40("."),t1,"nr. of top. distinct diagrams",t40,i15)’)nvec

!
! =========================================================================
! == test sum rule ==
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! =========================================================================
svar=sum(1.d0/abs(sofd(:nvec)))
do i=1,len/2
svar=svar*2.d0*real(i,kind=8)

enddo
write(*,fmt=’(40("."),t1,"sum-rule test 2^n * n! * S(D) ",t40,f15.1)’)svar
write(*,fmt=’(40("."),t1,"...must reproduce number of linked diagrams")’)

!
! =========================================================================
! == print resulting permutation vectors and symmetry factors ==
! =========================================================================

write(*,*)
write(*,fmt=’("sign, symmetry factor and permutation vectors:")’)
do i=1,nvec
write(*,fmt=’(i8," sign*sofd=",i8," p=",20i4)’) &

& i,sofd(i),pvec(:,i)
enddo
stop
end

!
! ..1.........2.........3.........4.........5.........6.........7.........8

subroutine vertexmaps(len,nmapx,nmap,map)
! *************************************************************************
! ** determine the mappings of vertices that produce topologically **
! ** equivalent diagrams. **
! ** the map array contains all permutations of the vertices among each **
! ** other.
! *************************************************************************

implicit none
integer(4),intent(in) :: len ! #(green’s functions)
integer(4),intent(in) :: nmapx
integer(4),intent(out):: nmap
integer(4),intent(out):: map(len,nmapx)
integer(4),allocatable:: pvec(:,:)
integer(4) :: nvecx
integer(4) :: nvec
integer(4) :: nmap2,imap,jmap,ivec,i,j

! *************************************************************************
if(mod(len,2).eq.1) then
stop ’argument len must be even’

end if
!
! == allocate dimension of map array ======================================

nvecx=1
do i=1,len/2
nvecx=nvecx*i

enddo
allocate(pvec(len/2,nvecx))
call permutationvectors(len/2,nvecx,nvec,pvec)

!
! == construct all permutation of vertices

nmap=0
do ivec=1,nvec
nmap=nmap+1
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do i=1,len/2
map(2*i-1,nmap)=2*pvec(i,ivec)-1
map(2*i ,nmap)=2*pvec(i,ivec)

enddo
nmap2=nmap
jmap=nmap
do j=1,len/2
do imap=nmap,nmap2
jmap=jmap+1
map(:,jmap)=map(:,imap)
map(2*j-1,jmap)=map(2*j,imap)
map(2*j,jmap)=map(2*j-1,imap)

enddo
nmap2=jmap

enddo
nmap=nmap2

enddo
return
end

!
! ..1.........2.........3.........4.........5.........6.........7.........8

subroutine symmetryfactor(len,pvec,nmap,map,sofd)
! *************************************************************************
! ** determine symmetry factor **
! ** a zero value for the symmetry factor is set if a topologically **
! ** equivalent diagram has already been considered. **
! ** **
! ** The symmetry factor Sofd is the ratio of mere deformations among **
! ** all n!2^n diagrams obtained by remapping the vertices. **
! ** **
! ** for each diagram there are n!2^n diagrams that give the same value. **
! ** These diagrams are obtained by remapping the vertices. These **
! ** these mappings (1) permutate the interaction lines and **
! ** (2) they interchange the two vertices of one interaction. **
! ** **
! ** A deformation is characterized by the same permutation vector and **
! ** is thus the identical diagram. Hence it must not be counted. **
! ** **
! ** each diagram is converted into a value obtained from the permutation**
! ** vector. Only those diagrams are retained, for which the **
! ** topologically equivalent partners have a higher number than the **
! ** diagram itself. This singles out one diagram from each class of **
! ** topologically distinct diagrams. **
! ** **
! *************************************************************************

implicit none
integer(4),intent(in) :: len ! #(green’s function in the diagram)
integer(4),intent(in) :: pvec(len) ! permutation vector
integer(4),intent(in) :: nmap
integer(4),intent(in) :: map(len,nmap)
integer(4),intent(out):: sofd ! symmetry factor
integer(4) :: imap,i
integer(4) :: ndef ! #(deformations)
integer(4) :: ovec(len)
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logical(4) :: tident
integer(4) :: order
integer(4) :: ndistinct

! *************************************************************************
order=len/2

!
! =========================================================================
! == initial checks ==
! =========================================================================
! == check that len is even. It is the number of green’s functions and ==
! == that number is twice the number of interaction lines ==

if(mod(len,2).eq.1) then
stop ’argument len must be even’

end if
!
! =========================================================================
! == loop over all mappings
! =========================================================================

do imap=1,nmap
! == remap vertices =====================================================

do i=1,len
ovec(map(i,imap))=map(pvec(i),imap)

enddo
!
! =======================================================================
! == exclude all diagrams that map onto another one with a smaller count=
! =======================================================================

tident=.true.
do i=1,len
if(ovec(i).ne.pvec(i)) then
if(tident.and.ovec(i).lt.pvec(i)) then
sofd=0 ! is already counted by another pvec
return

end if
exit

end if
enddo

enddo

! =========================================================================
! == count mere deformations ==
! =========================================================================

ndef=0
do imap=1,nmap
do i=1,len
ovec(map(i,imap))=map(pvec(i),imap)

enddo
tident=.true.
do i=1,len
if(ovec(i).ne.pvec(i)) then
tident=.false.
exit

end if
enddo
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if(tident)ndef=ndef+1
enddo

!
! =========================================================================
! == calculate symmetry factor ==
! =========================================================================
! == the diagram has ndef deformations. the number of topologically ==
! == equivalent diagrams which are not mere deformations is ==
! == ndistinct=nmap/ndef. ==
! == the inverse of symmetry factor is the number of ==
! == topologically equivalent, which are not mere deformations, ==
! == divided by the factor n!2^n. ==
! == Hence, 1/sofd=ndistinct/nmap=1/ndef ==
! =========================================================================

ndistinct=nmap/ndef
sofd=ndef !=nmap/ndistinct
return
end

!
! ..1.........2.........3.........4.........5.........6.........7.........8

subroutine loops(len,pvec,sgn)
! *************************************************************************
! ** sgn=1 for an even number of green’s function loops **
! ** sgn=-1 for an odd number of green’s function loops **
! ** sgn=0 for a diagram which is not a linked cluster **
! ** **
! ** the sign theorem links the sign of a diagram to the number of **
! ** loops formed by Green’s functions. **
! ** **
! ** the code follows green’s function lines and marks each vertex **
! ** visited by a loop number. If an un-marked vertex (iloop=0) is **
! ** encountered, the code searches for interaction lines, of which one **
! ** vertex has been visited and the other not. At such an interaction **
! ** the loop index in increased, and loop search at the unmarked vertex**
! ** is initiated. **
! ** **
! ** if interaction lines with two unmarked vertices are left over **
! ** the diagram consists of disconnected parts and sgn=0 is set. **
! ** otherwise the sign is determined from the the number of loops. **
! ** **
! *************************************************************************

implicit none
integer(4),intent(in) :: len ! #(greens functions)
integer(4),intent(in) :: pvec(len) ! permutation vector of diagram
integer(4),intent(out):: sgn ! sign or (zero for linked cluster)
integer(4) :: work(len) ! holds loop indices for each vertex
logical(4) :: t1,t2
integer(4) :: iloop ! loop index
integer(4) :: ip ! vertex pointer
integer(4) :: i

! *************************************************************************
if(mod(len,2).eq.1) then
write(*,*)’argument len must be even’
stop ’in loops’
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end if
!
! =========================================================================
! == explore diagram for fermi loops ==
! =========================================================================

work(:)=0
iloop=1
ip=1
work(ip)=iloop

!
1000 continue
!
! == walk around the first loop of greensfunctions and mark with loop nr.

do
ip=pvec(ip)
if(work(ip).ne.0) exit ! end of Fermi loop encountered
work(ip)=iloop

enddo
!
! == find interaction with one vertex that has been visited and another
! == one that has not been visited.

ip=0
do i=1,len/2
t1=work(2*i-1).eq.0
t2=work(2*i).eq.0
if(t1.eqv.t2) cycle ! both are true or both are false.

! -- set pointer to unmarked vertex -----------------------------------
if(t1) then
ip=2*i-1

else
ip=2*i

end if
enddo

! == jump back to next fermi-loop search or exit
if(ip.ne.0) then ! vertex for fermi-loop search found
iloop=iloop+1 ! increase loop index
work(ip)=iloop ! mark actual vertex
goto 1000

end if
!
! =========================================================================
! == calculate sgn ==
! =========================================================================

sgn=1
if(mod(iloop,2).eq.1) sgn=-1

!
! =========================================================================
! == check if this is a linked diagram ==
! =========================================================================

do i=1,len
if(work(i).eq.0) then
sgn=0
exit

end if
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enddo
!

return
end

!
! ..1.........2.........3.........4.........5.........6.........7.........8

subroutine permutationvectors(len,nvecx,nvec,pvec)
! *************************************************************************
! ** construct all len-factorial permutation vectors of length len **
! ** as described in section 11.1.1 "Construct all permutation vectors" **
! ** of P.Bloechl PhiSX Advanced Solid-State Theory **
! *************************************************************************

implicit none
integer(4),intent(in) :: len
integer(4),intent(in) :: nvecx ! X#(permutation vectors)
integer(4),intent(out) :: nvec ! #(permutation vectors)
integer(4),intent(out) :: pvec(len,nvecx) ! permutation vectors
integer(4) :: i,j,k,ip1,ip2,isvar
integer(4) :: work(len)

! *************************************************************************
isvar=1
do i=1,len
isvar=isvar*i

enddo
if(nvecx.lt.isvar) then
stop ’nvecx too small (a)’

end if
!
! =========================================================================
! == start the recursive construction with trivial vector (1,2,.., len) ==
! =========================================================================

nvec=1
do i=1,len
pvec(i,nvec)=i

enddo
!
! =========================================================================
! == construct all other permutation vectors recusively
! =========================================================================

do
!
! == find longest trailing descending sequence ==========================
! == that is pvec(ip1) > pvec(ip1+1) > pvec(ip1+2) > ... ================

j=len
ip1=0
do j=len,2,-1
if(pvec(j-1,nvec).gt.pvec(j,nvec)) cycle
ip1=j-1
exit

enddo
if(ip1.eq.0) exit ! sequence is descending, exit

!
! == prepare an entry for a new perturbation vector =====================

nvec=nvec+1
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if(nvec.gt.nvecx) then
stop ’nvec exceeds nvecx (b)’

end if
!
! == copy previous permutation vector as non-descending part ============

pvec(:,nvec)=pvec(:,nvec-1)

! -- ip1 is the start of the descending series. -------------------------
! -- identify the smallest component of pvec in the descending sequence -
! -- that is still larger than the first element of the descending ------
! -- sequence. ----------------------------------------------------------

ip2=ip1+1
do k=ip1+1,len
if(pvec(k,nvec).lt.pvec(ip1,nvec))exit
ip2=k

end do
!
! -- replace first element of descending seqence ------------------------

isvar=pvec(ip1,nvec)
pvec(ip1,nvec)=pvec(ip2,nvec)
pvec(ip2,nvec)=isvar

!
! -- change descending sequence into an ascending one -------------------

work(ip1+1:)=pvec(ip1+1:,nvec)
do j=1,len-ip1
pvec(ip1+j,nvec)=work(len+1-j)

enddo
enddo
return
end

L.6 Low-order diagrams with symmetry factor and sign

L.6.1 First order

provide the order of the diagrams (integer):
order of the diagrams.................. 1
nr. of all diagrams (=n!).............. 2
nr. of linked diagrams................. 2
nr. of top. distinct diagrams.......... 2
sum-rule test.......................... 2.0
...must reproduce number of linked diagrams

sign, symmetry factor and permutation vectors:
1 sign*sofd= 2 p= 1 2
2 sign*sofd= -2 p= 2 1

• The vector P1 = (1, 2) is the eyeglass diagram

• The vector P2 = (2, 1) is the oyster diagram
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L.6.2 Second order

provide the order of the diagrams (integer):
order of the diagrams.................. 2
nr. of all diagrams (=n!).............. 24
nr. of linked diagrams................. 20
nr. of top. distinct diagrams.......... 5
sum-rule test.......................... 20.0
...must reproduce number of linked diagrams

sign, symmetry factor and permutation vectors:
1 sign*sofd= -2 p= 1 3 2 4
2 sign*sofd= 1 p= 1 3 4 2
3 sign*sofd= -2 p= 2 3 4 1
4 sign*sofd= 4 p= 3 4 1 2
5 sign*sofd= -4 p= 3 4 2 1

• The vector P4 = (3, 4, 1, 2) is the double ring diagram

• The vector P5 = (3, 4, 2, 1) is the double exchange diagram

L.6.3 Third order

provide the order of the diagrams (integer):
order of the diagrams.................. 3
nr. of all diagrams (=n!).............. 720
nr. of linked diagrams................. 592
nr. of top. distinct diagrams.......... 20
sum-rule test.......................... 592.0
...must reproduce number of linked diagrams

sign, symmetry factor and permutation vectors:
1 sign*sofd= 2 p= 1 3 2 5 4 6
2 sign*sofd= -1 p= 1 3 2 5 6 4
3 sign*sofd= -1 p= 1 3 4 5 2 6
4 sign*sofd= 1 p= 1 3 4 5 6 2
5 sign*sofd= -2 p= 1 3 5 2 4 6
6 sign*sofd= 1 p= 1 3 5 2 6 4
7 sign*sofd= 3 p= 1 3 5 4 2 6
8 sign*sofd= -1 p= 1 3 5 6 2 4
9 sign*sofd= 1 p= 1 3 5 6 4 2
10 sign*sofd= 2 p= 2 3 1 5 6 4
11 sign*sofd= -3 p= 2 3 4 5 6 1
12 sign*sofd= -2 p= 2 3 5 1 6 4
13 sign*sofd= 1 p= 2 3 5 6 1 4
14 sign*sofd= -1 p= 2 3 5 6 4 1
15 sign*sofd= 6 p= 3 4 5 6 1 2
16 sign*sofd= -6 p= 3 4 5 6 2 1
17 sign*sofd= -6 p= 3 5 1 6 2 4
18 sign*sofd= 2 p= 3 5 1 6 4 2
19 sign*sofd= -2 p= 3 5 2 6 4 1
20 sign*sofd= 6 p= 3 5 6 2 4 1

• The vector P15 = (3, 4, 5, 6, 1, 2) is the particle-particle ladder diagram.
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• The vector P16 = (3, 4, 5, 6, 2, 1) is the wheel diagram.

• The vector P17 = (3, 5, 1, 6, 2, 4) is the triple ring diagram

• The vector P20 = (3, 5, 6, 2, 4, 1) is the particle-hole ladder.

L.6.4 Fourth order

provide the order of the diagrams (integer):
order of the diagrams.................. 4
nr. of all diagrams (=n!).............. 40320
nr. of linked diagrams................. 33888
nr. of top. distinct diagrams.......... 107
sum-rule test.......................... 33888.0
...must reproduce number of linked diagrams

sign, symmetry factor and permutation vectors:
1 sign*sofd= -2 p= 1 3 2 5 4 7 6 8
2 sign*sofd= 1 p= 1 3 2 5 4 7 8 6
3 sign*sofd= 1 p= 1 3 2 5 6 7 4 8
4 sign*sofd= -1 p= 1 3 2 5 6 7 8 4
5 sign*sofd= 1 p= 1 3 2 5 7 4 6 8
6 sign*sofd= -1 p= 1 3 2 5 7 4 8 6
7 sign*sofd= -1 p= 1 3 2 5 7 6 4 8
8 sign*sofd= 1 p= 1 3 2 5 7 6 8 4
9 sign*sofd= 1 p= 1 3 2 5 7 8 4 6
10 sign*sofd= -1 p= 1 3 2 5 7 8 6 4
11 sign*sofd= -1 p= 1 3 4 5 2 7 8 6
12 sign*sofd= -1 p= 1 3 4 5 6 7 2 8
13 sign*sofd= 1 p= 1 3 4 5 6 7 8 2
14 sign*sofd= -1 p= 1 3 4 5 7 2 6 8
15 sign*sofd= 1 p= 1 3 4 5 7 2 8 6
16 sign*sofd= 1 p= 1 3 4 5 7 6 2 8
17 sign*sofd= -2 p= 1 3 4 5 7 6 8 2
18 sign*sofd= -1 p= 1 3 4 5 7 8 2 6
19 sign*sofd= 1 p= 1 3 4 5 7 8 6 2
20 sign*sofd= -1 p= 1 3 5 2 4 7 8 6
21 sign*sofd= -1 p= 1 3 5 2 6 7 4 8
22 sign*sofd= 1 p= 1 3 5 2 6 7 8 4
23 sign*sofd= -2 p= 1 3 5 2 7 4 6 8
24 sign*sofd= 1 p= 1 3 5 2 7 4 8 6
25 sign*sofd= 1 p= 1 3 5 2 7 6 4 8
26 sign*sofd= -1 p= 1 3 5 2 7 8 4 6
27 sign*sofd= 1 p= 1 3 5 2 7 8 6 4
28 sign*sofd= 1 p= 1 3 5 4 2 7 8 6
29 sign*sofd= -1 p= 1 3 5 4 7 2 8 6
30 sign*sofd= -4 p= 1 3 5 4 7 6 2 8
31 sign*sofd= 1 p= 1 3 5 4 7 8 2 6
32 sign*sofd= -1 p= 1 3 5 4 7 8 6 2
33 sign*sofd= 2 p= 1 3 5 6 2 7 4 8
34 sign*sofd= -1 p= 1 3 5 6 2 7 8 4
35 sign*sofd= 1 p= 1 3 5 6 4 7 8 2
36 sign*sofd= -2 p= 1 3 5 6 7 2 4 8
37 sign*sofd= 1 p= 1 3 5 6 7 2 8 4
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38 sign*sofd= -1 p= 1 3 5 6 7 4 8 2
39 sign*sofd= -1 p= 1 3 5 6 7 8 2 4
40 sign*sofd= 1 p= 1 3 5 6 7 8 4 2
41 sign*sofd= 2 p= 1 3 5 7 2 4 6 8
42 sign*sofd= -1 p= 1 3 5 7 2 4 8 6
43 sign*sofd= 1 p= 1 3 5 7 2 8 4 6
44 sign*sofd= -1 p= 1 3 5 7 2 8 6 4
45 sign*sofd= -1 p= 1 3 5 7 4 2 6 8
46 sign*sofd= 1 p= 1 3 5 7 4 2 8 6
47 sign*sofd= -1 p= 1 3 5 7 4 8 2 6
48 sign*sofd= 1 p= 1 3 5 7 4 8 6 2
49 sign*sofd= -1 p= 1 3 5 7 6 2 8 4
50 sign*sofd= 1 p= 1 3 5 7 6 4 8 2
51 sign*sofd= 1 p= 1 3 5 7 6 8 2 4
52 sign*sofd= -1 p= 1 3 5 7 6 8 4 2
53 sign*sofd= -1 p= 1 3 5 7 8 2 4 6
54 sign*sofd= 1 p= 1 3 5 7 8 2 6 4
55 sign*sofd= 1 p= 1 3 5 7 8 4 2 6
56 sign*sofd= -1 p= 1 3 5 7 8 4 6 2
57 sign*sofd= 2 p= 1 3 5 7 8 6 4 2
58 sign*sofd= -2 p= 2 3 1 5 4 7 8 6
59 sign*sofd= 1 p= 2 3 1 5 6 7 8 4
60 sign*sofd= 1 p= 2 3 1 5 7 4 8 6
61 sign*sofd= -1 p= 2 3 1 5 7 8 4 6
62 sign*sofd= 1 p= 2 3 1 5 7 8 6 4
63 sign*sofd= -4 p= 2 3 4 5 6 7 8 1
64 sign*sofd= -1 p= 2 3 4 5 7 1 8 6
65 sign*sofd= 1 p= 2 3 4 5 7 8 1 6
66 sign*sofd= -1 p= 2 3 4 5 7 8 6 1
67 sign*sofd= -2 p= 2 3 5 1 7 4 8 6
68 sign*sofd= 1 p= 2 3 5 1 7 8 4 6
69 sign*sofd= -1 p= 2 3 5 1 7 8 6 4
70 sign*sofd= 2 p= 2 3 5 6 1 7 8 4
71 sign*sofd= -2 p= 2 3 5 6 7 1 8 4
72 sign*sofd= 1 p= 2 3 5 6 7 8 1 4
73 sign*sofd= -1 p= 2 3 5 6 7 8 4 1
74 sign*sofd= 2 p= 2 3 5 7 1 4 8 6
75 sign*sofd= -1 p= 2 3 5 7 1 8 4 6
76 sign*sofd= 1 p= 2 3 5 7 1 8 6 4
77 sign*sofd= -1 p= 2 3 5 7 4 1 8 6
78 sign*sofd= 1 p= 2 3 5 7 4 8 1 6
79 sign*sofd= -1 p= 2 3 5 7 4 8 6 1
80 sign*sofd= 2 p= 2 3 5 7 6 8 4 1
81 sign*sofd= 1 p= 2 3 5 7 8 1 4 6
82 sign*sofd= -1 p= 2 3 5 7 8 1 6 4
83 sign*sofd= -1 p= 2 3 5 7 8 4 1 6
84 sign*sofd= 1 p= 2 3 5 7 8 4 6 1
85 sign*sofd= -2 p= 3 4 1 5 7 8 2 6
86 sign*sofd= 1 p= 3 4 1 5 7 8 6 2
87 sign*sofd= -2 p= 3 4 2 5 7 8 6 1
88 sign*sofd= 8 p= 3 4 5 6 7 8 1 2
89 sign*sofd= -8 p= 3 4 5 6 7 8 2 1
90 sign*sofd= -2 p= 3 4 5 7 1 8 2 6
91 sign*sofd= 1 p= 3 4 5 7 1 8 6 2
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92 sign*sofd= 2 p= 3 4 5 7 2 8 1 6
93 sign*sofd= -1 p= 3 4 5 7 2 8 6 1
94 sign*sofd= -2 p= 3 4 5 7 8 1 6 2
95 sign*sofd= 2 p= 3 4 5 7 8 2 6 1
96 sign*sofd= 8 p= 3 5 1 7 2 8 4 6
97 sign*sofd= -2 p= 3 5 1 7 2 8 6 4
98 sign*sofd= -4 p= 3 5 1 7 4 8 2 6
99 sign*sofd= 1 p= 3 5 1 7 4 8 6 2
100 sign*sofd= 2 p= 3 5 1 7 8 2 6 4
101 sign*sofd= -2 p= 3 5 1 7 8 4 6 2
102 sign*sofd= 4 p= 3 5 2 7 1 8 6 4
103 sign*sofd= -1 p= 3 5 2 7 4 8 6 1
104 sign*sofd= -2 p= 3 5 2 7 8 1 6 4
105 sign*sofd= 1 p= 3 5 2 7 8 4 6 1
106 sign*sofd= 8 p= 3 5 7 2 8 1 6 4
107 sign*sofd= -4 p= 3 5 7 2 8 4 6 1

• The vector P88 = (3, 4, 5, 6, 7, 8, 1, 2) is the particle-particle ladder.

• The vector P89 = (3, 4, 5, 6, 7, 8, 2, 1) is the wheel.

• The vector P96 = (3, 5, 1, 7, 2, 8, 4, 6) is the quadruple ring diagram

• The vector P106 = (3, 5, 7, 2, 8, 1, 6, 4) is the particle-hole ladder.



Appendix M

Second-order perturbation theory

M.1 Perturbation theory

Let me do an error estimate based on second order perturbation theory in the off-site Hamilton matrix
elements between pairs of Slater determinants.

I begin with the perturbation expansion by forming the derivatives of the Schrödinger equation
with respect to a scale factor λ for the perturbation Ŵ . The Hamiltonian has the form

Ĥ(λ) = ĥ + λŴ (M.1)

The perturbation expansion is obtained from the derivatives of the λ-dependent Schrödinger
equation

(
ĥ + λŴ

)
|ψn(λ)⟩ = |ψn(λ)⟩En(λ) . (M.2)

The derivatives are not taken at λ = 0 but at an arbitrary value of λ. This provides the next order by
forming a first derivatives on the current order. The λ-dependent quantities are the energies En(λ)
and the wave functions |ψn(λ)⟩. The λ-dependence is only made explicit where necessary. The first
and second derivatives of the Schrödinger equation are

(
ĥ + λŴ

) ∣∣∣∣dψndλ

〉
+ Ŵ |ψn(λ)⟩

Eq.M.2
=

∣∣∣∣dψndλ

〉
En(λ) +

∣∣∣ψn(λ)〉dEn
dλ

(M.3)(
ĥ + λŴ

) ∣∣∣∣d2ψndλ2

〉
+ 2Ŵ

∣∣∣∣dψndλ

〉
Eq.M.3
=

∣∣∣∣d2ψndλ2

〉
En(λ) + 2

∣∣∣∣dψndλ

〉
dEn
dλ
+
∣∣∣ψn(λ)〉d2En

dλ2
(M.4)

In addition to the Schrödinger equation, I also need to satisfy the orthonormality.

⟨ψn(λ)|ψm(λ)⟩ = δm,n (M.5)

The first two derivatives are

〈dψn
dλ

∣∣∣ψm〉+ 〈ψm∣∣∣dψn
dλ

〉
Eq.M.5
= 0 (M.6)〈d2ψn

dλ2

∣∣∣ψm〉+ 2〈dψm
dλ

∣∣∣dψn
dλ

〉
+
〈
ψm

∣∣∣d2ψn
dλ2

〉
Eq.M.6
= 0 (M.7)
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First-order perturbation theory

First-order perturbation yields

⟨ψm|
(
ĥ + λŴ

)
︸ ︷︷ ︸

Em⟨ψm |

∣∣∣∣dψndλ

〉
+ ⟨ψm|Ŵ |ψn⟩

Eq.M.5
=

〈
ψm

∣∣∣dψn
dλ

〉
En + ⟨ψm|ψn⟩︸ ︷︷ ︸

δm,n

dEn
dλ

⇒ (Em − En)
〈
ψm

∣∣∣∣dψndλ

〉
= −⟨ψm|Ŵ |ψn⟩+ δm,n

dEn
dλ

(M.8)

For m = n, this yields the change of the eigenvalues and for m ̸= n it yields the first-order change of
the eigenstates. The equation Eq. M.8 allow one to add of an arbitrary contribution of unperturbed
|ψn⟩ to the eigenstate.

This contribution is excluded by the normalization condition ⟨ψn(λ)|ψn(λ)⟩ = 0, Eq. M.6, which
implies Re

[〈
ψn
∣∣ d |ψn⟩
dλ

]
= 0. Only the real part is fixed. An arbitrary imaginary part may be added.

This imaginary part follows from an arbitrary phase factor eiϕ(λ) multiplied with the wave function,
which preserved the norm, but is contributes on additional imaginary term resulting from ∂λe

iϕ(λ) =
i ∂ϕ∂λ e

iϕ(λ)

dEn
dλ
= ⟨ψn|Ŵ |ψn⟩∣∣∣∣dψndλ

〉
=
∑
m;m ̸=n

|ψm⟩⟨ψm|
En − Em

Ŵ |ψn⟩+ |ψn⟩iC1 (M.9)

The real-valued factor C1 can be chosen arbitrarily, because the norm-conservation determines only
the real part of the prefactor of |ψn⟩. (I have not extended this argument to degenerate states, where
a λ-dependent unitary matrix can be used instead of the λ-dependent phase factor.)

Second-order perturbation theory

The second derivative yields

⟨ψm|
(
ĥ + λŴ

)
︸ ︷︷ ︸

Em⟨ψm |

∣∣∣∣d2ψndλ2

〉
− ⟨ψm

∣∣∣∣d2ψndλ2

〉
En(λ)

= −2⟨ψm|Ŵ
∣∣∣∣dψndλ

〉
+ 2⟨ψm

∣∣∣∣dψndλ

〉
dEn
dλ︸︷︷︸

⟨ψn |Ŵ |ψn⟩

+ ⟨ψm|ψn⟩︸ ︷︷ ︸
=δm,n

d2En
dλ2

⇒ (Em − En)
〈
ψm

∣∣∣∣d2ψndλ2

〉
= −2⟨ψm|

(
Ŵ − ⟨ψn|Ŵ |ψn⟩

)∑
p ̸=n

|ψp⟩⟨ψp|
En − Ep

Ŵ |ψn⟩︸ ︷︷ ︸
| dψndλ ⟩

+δm,n
d2En
dλ2

(M.10)

For m = n, I obtain

d2En
dλ2

= −2
∑
p ̸=n

⟨ψm|Ŵ |ψp⟩⟨ψp|Ŵ |ψn⟩
En − Ep

(M.11)

For m ̸= n, I obtain

1

2

〈
ψm

∣∣∣∣d2ψndλ2

〉
=

1

En − Em
⟨ψm|

(
Ŵ − ⟨ψn|Ŵ |ψn⟩

)∑
p ̸=n

|ψp⟩⟨ψp|
En − Ep

Ŵ |ψn⟩

= −
1

Em − En

(∑
p ̸=n

⟨ψm|Ŵ |ψp⟩⟨ψp|Ŵ |ψn⟩
En − Ep

−
⟨ψm|Ŵ |ψn⟩
En − Em

⟨ψn|Ŵ |ψn⟩
)

(M.12)
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The two equations above do not determine the change of the contribution of |ψn⟩, which is
obtained from the normalization condition ⟨ψn(λ)|ψn(λ)⟩ = 0, which implies

〈
ψn

∣∣∣d2ψn
dλ2

〉
+ 2

〈dψn⟩
dλ

∣∣∣dψn
dλ

〉
+
〈d2ψn
dλ2

∣∣∣ψn〉 = 0〈
ψn

∣∣∣d2ψn
dλ2

〉
= −

〈dψn
dλ

∣∣∣dψn
dλ

〉
= −

∑
m;m ̸=n

|⟨ψm|Ŵ |ψn⟩|2

(En − Em)2
(M.13)

1

2

∣∣∣d2ψn
dλ2

〉
= +

∑
m( ̸=n)

|ψm⟩
1

En − Em

(∑
p ̸=n

⟨ψm|Ŵ |ψp⟩⟨ψp|Ŵ |ψn⟩
En − Ep

−
⟨ψm|Ŵ |ψn⟩
En − Em

⟨ψn|Ŵ |ψn⟩
)

−
1

2
|ψn⟩

∑
m;m ̸=n

|⟨ψm|Ŵ |ψn⟩|2

(En − Em)2

=
∑
m( ̸=n)

|ψm⟩
∑
p ̸=n

⟨ψm|Ŵ |ψp⟩⟨ψp|Ŵ |ψn⟩
(En − Ep)(En − Em)

−
∑
m( ̸=n)

|ψm⟩
⟨ψm|Ŵ |ψn⟩
(En − Em)2

⟨ψn|Ŵ |ψn⟩

− |ψn⟩
1

2

∑
m;m ̸=n

|⟨ψm|Ŵ |ψn⟩|2

(En − Em)2
+ |ψn⟩iC2 (M.14)

The real-valued factor C2 can be chosen arbitrarily, because the norm-conservation determines only
the real value of the prefactor of |ψn⟩. Important is that the phase factor is already included in the
wave functions.

Energy and wave function in second-order perturbation theory

So far, we prepared the λ derivatives of energies and wave functions. From now on, we use the
Taylor expansion at λ = 0.

En(λ) = En(0) + λ
dEn
dλ

∣∣∣∣
λ=0

+
1

2
λ2

d2En
dλ2

∣∣∣∣
λ=0

(M.15)

In the following I indicate the unperturbed values with λ = 0 by a bar ontop of the symbol, i.e.
Ēn = En(λ = 0) and |ψ̄n⟩ = |ψn(λ = 0)⟩. I obtain the energies up to second order in λ as

En(λ) = ⟨ψ̄n|
(
h + λŴ

)
|ψ̄n⟩+ λ2

∑
m;m ̸=n

|⟨ψ̄m|Ŵ |ψ̄n⟩|2

Ēn − Ēm
+O(λ3) (M.16)

and the eigenstates as

|ψn(λ)⟩ = |ψ̄n⟩+
( ∑
m( ̸=n)

|ψ̄m⟩⟨ψ̄m|
Ēn − Ēm

)
Ŵ |ψ̄n⟩ −

( ∑
m( ̸=n)

|ψ̄m⟩⟨ψ̄m|
(Ēn − Ēm)2

)
Ŵ |ψ̄n⟩⟨ψ̄n|Ŵ |ψ̄n⟩︸ ︷︷ ︸

correction 1st order energy shift

− |ψ̄n⟩
1

2

∑
m( ̸=n)

|⟨ψ̄m|Ŵ |ψ̄n⟩|2

(Ēn − Ēm)2︸ ︷︷ ︸
normalization 1st order

+
( ∑
m( ̸=n)

|ψ̄m⟩⟨ψ̄m|
Ēn − Ēm

)
Ŵ
(∑
p ̸=n

|ψ̄p⟩⟨ψ̄p|
Ēn − Ēp

)
Ŵ |ψ̄n⟩︸ ︷︷ ︸

true second order

+O(λ3)(M.17)

The wave function agrees with the socond order corrections on Wikipedia https://en.wikipedia.
org/wiki/Perturbation_theory_(quantum_mechanics) retrieved June 24, 2022.

https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
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Second-order perturbation theory with Green’s functions

Editor: This section with Green’s function is unfinished! The equations are partly
incorrect.

Let me use perturbation theory of energies and wave functions to construct the perturbed Green’s
functions. Here the discussion is limited to the one-particle Hilbert space, because the Green’s
function is an operator in the one-particle Hilbert space, and therefore also the perturbation Ŵ must
be in the same space.

Ĝ(ϵ) =
∑
m

|ψm⟩⟨ψm|
E − Em

(M.18)

In the summations for the perturbation theory the pole is always excluded. This can be achieved
by going into the complex plane

Ĝ(ϵ) = lim
η→0+

∑
m

|ψm⟩
1

E − Em + iη
⟨ψm| (M.19)

ˆ̄G(ϵ) =
∑
m

|ψ̄m⟩⟨ψ̄m|
E − Ēm

(M.20)

Editor: In the following, the singularities of the Green’s functions are not treated
properly. In the perturbation expansion, the pole the singular term is removed.

En(λ) = Ēn + λ⟨ψ̄n|Ŵ |ψ̄n⟩+ λ2⟨ψ̄n|Ŵ ˆ̄G(Ēn)Ŵ |ψ̄n⟩+O(λ3) (M.21)

In the following, I will use

∂ϵG(ϵ) = ∂ϵ
∑
m

|ψm⟩⟨ψm|
E − Em

= −
∑
m

|ψm⟩⟨ψm|
(E − Em)2

= −Ĝ2(ϵ) (M.22)

|ψn(λ)⟩ = |ψ̄n⟩+
∑
m;m ̸=n

|ψ̄m⟩⟨ψ̄m|
Ēn − Ēm

Ŵ |ψ̄n⟩

−
∑
m( ̸=n)

|ψm⟩
1

Ēm − Ēn

∑
p ̸=n

⟨ψ̄m|Ŵ |ψ̄p⟩⟨ψ̄p|Ŵ |ψ̄n⟩
Ēn − Ēp

−
∑
m( ̸=n)

|ψm⟩
1

Ēm − Ēn
⟨ψ̄m|Ŵ |ψ̄n⟩
Ēn − Ēm

⟨ψ̄n|Ŵ |ψ̄n⟩

− |ψ̄n⟩
1

2

∑
m;m ̸=n

|⟨ψ̄m|Ŵ |ψ̄n⟩|2

(Ēn − Ēm)2
+O(λ3)

= |ψ̄n⟩+ Ḡ(Ēn)Ŵ |ψ̄n⟩+ Ḡ(Ēn)Ŵ Ḡ(Ēn)Ŵ |ψ̄n⟩−Ḡ2(Ēn)Ŵ |ψ̄n⟩⟨ψ̄n|Ŵ |ψ̄n⟩︸ ︷︷ ︸
+(∂λEn)∂E

ˆ̄G(E)
∣∣∣
Ēn
Ŵ |ψn⟩

− |ψ̄n⟩
1

2
⟨ψ̄n|Ŵ Ĝ2(Ēn)Ŵ |ψ̄n⟩+O(λ3)

= |ψ̄n⟩+ Ḡ(En(λ))Ŵ |ψn⟩︸ ︷︷ ︸
Ḡ(Ēn)Ŵ |ψ̄n⟩+(∂λEn)∂E ˆ̄G(E)

∣∣∣
Ēn
Ŵ |ψn⟩

+Ḡ(Ēn)Ŵ Ḡ(Ēn)Ŵ |ψ̄n⟩

− |ψ̄n⟩
1

2
⟨ψ̄n|Ŵ Ĝ(Ēn)2Ŵ |ψ̄n⟩+O(λ3) (M.23)

Ĝ−1(E) = ˆ̄G−1(E)− Ŵ
⇒ ˆ̄G(E) = Ĝ(E)− ˆ̄G(E)Ŵ Ĝ(E)
⇒ Ĝ(E) = ˆ̄G(E) + ˆ̄G(E)Ŵ Ĝ(E) (M.24)
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M.2 Ensembles of Slater determinants

In the chapter Eq. 2 on weakly interacting systems, I described an division Eq. 2.99 of the total
energy of an interacting Hamiltonian into one contribution, which is the energy of an ensemble of
Slater determinants, and a rest. The latter has been named the entanglement energy. Here, I use
second-order approxmation theory to estimate the entanglement energy.

Let me divide the Hamiltonian Ĥ = ĥ+ Ŵ into a term diagonal in a basis of Slater determinants
and the off-diagonal terms as in Eq. 2.99. The off-diagonal terms are then treated in second-order
perturbation theory.

Ĥ(λ) =
∑
σ⃗

|σ⃗⟩⟨σ⃗|Ĥ|σ⃗⟩⟨σ⃗|+ λ
∑

σ⃗,σ⃗′;σ⃗ ̸=σ⃗′
|σ⃗⟩⟨σ⃗|Ĥ|σ⃗′⟩⟨σ⃗′| (M.25)

The perturbation expansion depends on the one-particle basisset used to define the set of Slater
determinants. If the Slater determinants are formed from the natural orbitals, the zero-th order
contains the mean-field energy of the thermal Hartree-Fock approximation (THFA) and the energy
due to correlated occupation-number fluctuations . The first order term is responsible for what
I call the the entanglement energy.

The eigenvalues of Ĥ(λ) in second-order perturbation theory are

Eσ⃗(λ)
def
= ⟨Φσ⃗(λ)|Ĥ(λ)|Φσ⃗(λ)⟩

Eq.M.16
= ⟨σ⃗|Ĥ|σ⃗⟩+

∑
σ⃗′;σ⃗ ̸=σ⃗′

|⟨σ⃗|Ĥ|σ⃗′⟩|2

⟨σ⃗|Ĥ|σ⃗⟩ − ⟨σ⃗′|Ĥ|σ⃗′⟩
+O(λ3) (M.26)

The Hamiltonian in the equation above is the full Hamiltonian Ĥ(λ) including off-diagonal terms.
The |Φσ⃗(λ)⟩ are the eigenstates of the perturbed Hamiltonian Ĥ(λ), that are connected through
the perturbation expansion to the Slater determinant |σ⃗⟩, i.e. |Φσ⃗(λ = 0)⟩ = |σ⃗⟩. The Slater
determinants |σ⃗⟩ are also the eigenstates of the unperturbed Hamiltonian H(0) =

∑
σ⃗ |σ⃗⟩⟨σ⃗|Ĥ|σ⃗⟩⟨σ⃗|

Similarly the eigenvalues Eσ⃗(λ) inherit the label from the zeroth order solutions.
Let me now consider an ensemble {Pq, |Φq(λ)⟩}, with the λ-dependent eigenstates of the Hamil-

tonian as microstates |Φq⟩. The states are labeled according to the zero-th order Eigenstates so that
q = σ⃗.

The goal is to determine the energy of the ensemble in second-order perturbation theory

E =
∑
q

PqEq(λ) with Ĥ(λ)|Ψq(λ)⟩ = |Ψq(λ)⟩Eq(λ) (M.27)

This yields

E[{Pσ⃗}] =
∑
σ⃗

Pσ⃗Eσ⃗(λ) =
∑
σ⃗

Pσ⃗⟨σ⃗|Ĥ|σ⃗⟩+
∑

σ⃗,σ⃗′;σ⃗ ̸=σ⃗′
Pσ⃗

|⟨σ⃗|Ĥ|σ⃗′⟩|2

⟨σ⃗|Ĥ|σ⃗⟩ − ⟨σ⃗′|Ĥ|σ⃗′⟩
+O(λ3)

=
∑
σ⃗

Pσ⃗⟨σ⃗|Ĥ|σ⃗⟩+
1

2

∑
σ⃗,σ⃗′;σ⃗ ̸=σ⃗′

(
Pσ⃗ − Pσ⃗′

) |⟨σ⃗|Ĥ|σ⃗′⟩|2

⟨σ⃗|Ĥ|σ⃗⟩ − ⟨σ⃗′|Ĥ|σ⃗′⟩
+O(λ3) (M.28)

Thus the correction to the ensemble energy from second order perturbation theory is

∆E =
∑
σ⃗

Pσ⃗Eσ⃗ −
∑
σ⃗

Pσ⃗⟨σ⃗|Ĥ|σ⃗⟩ =
1

2

∑
σ⃗,σ⃗′;σ⃗ ̸=σ⃗′

(
Pσ⃗ − Pσ⃗′

) |⟨σ⃗|Ĥ|σ⃗′⟩|2

⟨σ⃗|Ĥ|σ⃗⟩ − ⟨σ⃗′|Ĥ|σ⃗′⟩

(M.29)

When we use the probabilities as Pσ = c∗σcσ of a many-particle wave function |Φ⟩ =
∑

σ⃗ |σ⃗⟩cσ⃗,
the entanglement energy is approximated as

Editor: Can one establish a reasonable link to Möller Plesset perturbation theory?
[141]
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Appendix N

Dictionary and Symbols

N.1 English-German Dictionary

caveat Vorbehalt
coincidence Übereinstimmung
convolution Faltung
cross section Wirkungsquerschnitt
esthetics Ästetik
factorial Fakultät (mathematische Operation)
faculty Fakultät (akademische Verwaltungseinheit)
for the sake of ... um ... willen (gen)
formidable gewaltig, eindrucksvoll
full width at half maximum Halbwertsbreite
propagator Zeitentwicklungsoperator
commutate kommutieren
rank Rang
scattering amplitude Streuamplitude
union Vereinigung
without loss of generality ohne Beschränkung der Allgemeinheit
wlog oBdA (ohne Beschränkung der Allgemeinheit)
work function Austrittsarbeit

N.2 Explanations

• caveat: Latin, a modifying or cautionary detail to be considered

N.3 Symbols

The list of symbols is not complete, nor is the usage of symbols unique. The list shall give a guidance.
Editor: The notes will not be completely consistent in the choice of symbols. Editor:
Later, we may include also a reference to the equations defining the symbols.

Editor: The choice of symbols is a compromise between symbols that are (1) easily
differentiated both in printed and hand-written form, that (2) exhibit similarity
if there meaning is related, and (3) similarity to symbols commonly used in the literature.
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N.4 Mathematical Symbols

• ∀ “for all”.

• [A,B]− = [A,B] = AB−BA: commutator of A and B. A and B may be matrices or operators.

• [A,B]+ = AB + BA: anti-commutator of A and B. A and B may be matrices or operators.

• a⃗ × b⃗: vector product between two three dimensional vectors a⃗ and b⃗.

a⃗ × b⃗ =

aybz − azbyazbx − axbz
axby − aybx

 (N.1)

• a⃗ ⊗ b⃗: outer product or dydadic product of two vectors a⃗ and b⃗.(
a⃗ ⊗ b⃗

)
i ,j
= aibj (N.2)

• det |A|: determinant of matrix A

• perm|A|: permanent of matrix A. The permanent is computed like the determinant with the
exceptions that all terms are summed up without the sign changes for permutations.

• δi ,j : Kronecker delta

δi ,j =

{
1 for i = j
0 else

(N.3)

• δ(x⃗): Dirac’s delta function defined by

∀f (x)
∫
dx f (x)δ(x) = f (0) (N.4)

which holds for all differentiable functions f (x). The delta function of a vector is the product
of the delta functions of its components.

• ϵi1,...,iN Levi-Civita Symbol or fully antisymmetric tensor

• θ(x): Heaviside step function. A subscript defines a special region where the Heaviside is
nonzero.

• sgn(x): sign function.

• statx F (x): value of the function F (x) at its stationary point with respect to x . The stationary
point may be a maximum, a minimum or a saddle point.

• Tr[A]: trace of a matrix A.

•
∑

x∈X sum over all elements x in the set X.

•
∑

σ∈{↑,↓} sum of the spin quantum number σ of a spin- 12 , which can assume values ↑ and ↓.
The states are defined by the eigenvalue equations Ŝz | ↑⟩ = | ↑⟩

(
+ ℏ2

)
and Ŝz | ↓⟩ = | ↓⟩

(
− ℏ2
)
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N.5 Vectors, matrices, operators, functions, etc.

typed blackboard
vector a⃗ a⃗

matrix A A
¯̄

state |a⟩ |a⟩
operator Â Â

Vectors are indicated by a vector arrow such as x⃗ . Matrices are made bold face such as A. I have
purposely combined two different notation, because this makes the difference optically more evident.
I also used the psychological analogy of using an arrow for a one-dimensionally extended object, and
“fat symbol” for a two-dimensionally extended object. On the blackboard, I use two underscores for
matrices.

Functionals are indicated by an argument in brackets such as F [y ], where y(x) is the function
in the argument. If function arguments are mixed with normal arguments they are combined as in
F ([y ], x).

Commutators and anticommutators are indicated by brackets. The commutator has a minus sign
as subscript or no subscript. An anticommutator always carries a plus sign as subscript.

• rather than using an integer counter for all summations
∑N

i=1, I often use sums over sets of
quantities such as

∑
σ∈{↑,↓} for a sum over spin directions or {

∑
t⃗} for a sum over all lattice

translations. When the meaning is obvious, I drop the curly brackets as in
∑

t⃗ . The curly
brackets should not be dropped for a set of integers, because that would make the expression
ambiguous.

• When the summation bounds or integration regions are dropped, “all values” of “the whole
range” is implied.

N.6 Generic conventions

• Thermodynamic quantites have arguments related to reservoirs as subscripts.

N.7 Symbols of physical quantities

• t+ variable t increased by an infinitesimally small, positive number. Useful for discontinuous
functions.

• ĉ+H,α(t) creation operator for orbital α in the Heisenberg picture in the complex time plane.
Equals ĉ†H,α(t) on the real-time axis.

• ρ̂(1) one-particle-reduced density matrix

• ρ̂(2) two-particle-reduced density matrix

• ρ̂vNT,µ, ρ̂T,µ von-Neumann density matrix, many-particle density matrix

• ρ̂vNT,µ von-Neumann density matrix, many-particle density matrix

• ρ̂
vN,(0)
T,µ , ρ̂(0)T,µ many-particle density matrix or statistical operator specifically of the non-interacting

system

• ρ̂
vN,(W )
T,µ , ρ̂(W )T,µ many-particle density matrix or statistical operator specifically of the interacting

system
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• ZT,µ partition function of the grand potential

• Z
(0)
T,µ partition function of the grand potential specifically for the non-interacting system

• Z
(W )
T,µ partition function of the grand potential specifically for the interacting system

• ΩT,µ grand potential

• AT,N Helmholtz potential

• |O⟩ vacuum state

• |∅⟩ zero state

• ĉ†α,ĉα creation and annihilation operators in a general basisset. Typically they refer local orbitals.

• â†n, ân creation and annihilation operators in a basisset of one-particle eigenstates of the non-
interacting Hamiltonian.

• ψ̂†(x⃗), ψ̂(x⃗) creation and annihilation operators in a real-space-and-spin basisset

• x⃗ composite vector containing a spatial coordinate r⃗ and a spin index σ.

• |x⃗⟩ basis state of the real-space-and-spin representation. Eigenstate to position operator with
eigenvalue r⃗ and of Ŝz with eigenvalue ℏ2σ, where σ is the spin index.

• |χα⟩ local orbital. Typically non-orthonormal. When they are orthonormal they can be Wannier
orbitals.

• ⟨πα| projector function for the orbital |χα⟩

• |ϕj⟩: element of a orthonormal one-particle basisset. Often they are natural orbitals or the
eigenstates of a one-particle Hamiltonian. Typically they are Bloch states.

•
〈
Â
〉
T,µ
= Tr

[
ρ̂T,µÂ

]
thermal expectation value of the observable Â in the grand ensem-

ble.Editor: (legacy notation) Should be AT,µ.

• Ŵ interaction operator or generally perturbation of an unperturbed Hamilton operator

• Ĥ(0) unperturbed Hamilton operator

• ĥ unperturbed Hamilton operator (without interaction or time dependence)

• Ĥ(W ) Hamilton operator including the interaction or perturbation

• n, n(1) electron density

• EH Hartree energy

• EX exchange energy

• Exc exchange-correlation energy

• T kinetic energy

• Ĝ(t, t ′) Green’s function expressed as operator in the one-particle Hilbert space

• D̂(ϵ) density of states expressed as operator in the one-particle Hilbert space

• Û(t, t ′): propagator in the one-particle Hilbert space

• Û(t, t ′): propagator in the Fock space.
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• Σ̂(t, t ′): usually the self energy. Also used for a general retarded potential.

• An set of all closed, labeled diagrams of order n in the interaction.

• Ln set of all closed, labeled, linked diagrams of order n in the interaction.

• Tn set of all closed, unlabeled (topologically inequivalent), linked diagrams of order n in the
interaction.

• Sn set of all closed, unlabeled (topologically inequivalent), skeleton diagrams of order n in the
interaction.

• S(D) symmetry factor of an unlabeled diagram D

N.8 Comparison with Fetter Walecka

The Green’s function GFW in the Book of Fetter Walecka is related to our definition by

G =
1

ℏ
GFW

see Eq. FW-7.1.

N.9 Greek Alphabet

A α alpha N ν nu
B β beta Ξ ξ ksi
Γ γ gamma O o, omicron
∆ δ delta Π π,ϖ pi
E ϵ, ε epsilon P ρ, ϱ rho
Z ζ zeta Σ σ, ς sigma
H η eta T τ tau
Θ θ, ϑ theta Υ υ upsilon
I ι iota Φ φ,ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ φ phi
M µ mu Ω ω omega
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Appendix O

About the PhiSX Series

O.1 Philosophy of the PhiSX Series

In the ΦSX series, I tried to implement what I learned from the feedback given by the students which
attended the courses and that relied on these books as background material.

The course should be self-contained. There should not be any statements “as shown easily...” if,
this is not true. The reader should not need to rely on the author, but he should be able to convince
himself, if what is said is true. I am trying to be as complete as possible in covering all material
that is required. The basis is the mathematical knowledge. With few exceptions, the material is also
developed in a sequence so that the material covered can be understood entirely from the knowledge
covered earlier.

The derivations shall be explicit. The novice should be able to step through every single step of
the derivation with reasonable effort. An advanced reader should be able to follow every step of the
derivations even without paper and pencil.

All units are explicit. That is, formulas contain all fundamental variables, which can be inserted in
any desirable unit system. Expressions are consistent with the SI system, even though I am quoting
some final results in units, that are common in the field.

The equations that enter a specific step of a derivation are noted as hyperlinks ontop of the
equation sign. The experience is that the novice does not immediately memorize all the material
covered and that he is struggling with the math, so that he spends a lot of time finding the rationale
behind a certain step. This time is saved by being explicit about it. The danger that the student gets
dependent on these indications, is probably minor, as it requires some effort for the advanced reader
to look up the assumptions, an effort he can save by memorizing the relevant material.

Important results and equations are highlighted by including them in boxes. This should facilitate
the preparations for examinations.

Portraits of the key researchers and short biographical notes provide independent associations
to the material. A student may not memorize a certain formula directly, but a portrait. From
the portrait, he may associate the correct formula. The historical context provides furthermore an
independent structure to organize the material.

The two first books are in german (That is the intended native language) in order to not add
complications to the novice. After these first books, all material is in English. It is mandatory that the
student masters this language. Most of the scientific literature is available only in English. English
is currently the language of science, and science is absolutely dependent on international contacts.

I tried to include many graphs and figures. The student shall become used to use all his senses
in particular the visual sense.

I have slightly modified the selection of the material commonly tought in most courses. Some
topics, which I consider of mostly historical relevance I have removed. Others such as the Noether
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theorem, I have added. Some, like chaos, stochastic processes, etc. I have not added yet.

Specific remarks for the “Advanced Solid-State Theory”

Editor: check these points for repetitions and eventually integrate into the general
set of remarks if possible.

• Often, I provide outlook in the solutions to the exercises. This outlook does not aim at a
comprehensive description, but rather to connect to prior knowledge or to provide a link to
external sources for further reading.

• The exercises aim at treating minimal models. In the many-particle description of solids,
model systems are often used to study and to describe certain physical effects.

• I took several measures to support students in keeping the focus in the learning process. These
are (1) boxes, highlighting, the most relevant equations. (2) The index provides a list of
relevant keywords. (3) The introduction and summaries of the chapters shall set the material
into context.

• Overloaded terminology:

– In the field the term vacuum state is used to denote the ground state such as the Fermi
sea. While this use is correct in a world of electrons and holes, it still can be mistaken.

– the non-interacting part of the Hamiltonian is often called the kinetic energy. This stems
from the free-electron gas and is an illegal use.

O.2 About the Author

Prof. Dr. rer. nat Peter E. Blöchl studied physics at Karlsruhe University of Technology in Germany.
Subsequently he joined the Max Planck Institutes for Materials Research and for Solid-State Research
in Stuttgart, where he developed of electronic-structure methods related to the LMTO method and
performed first-principles investigations of interfaces. He received his doctoral degree in 1989 from
the University of Stuttgart.

Following his graduation, he joined the renowned T.J. Watson Research Center in Yorktown
Heights, NY in the US on a World-Trade Fellowship. In 1990 he accepted an offer from the IBM
Zurich Research Laboratory in Ruschlikon, Switzerland, which had just received two Nobel prices in
Physics (For the Scanning Tunneling Microscope in 1986 and for the High-Temperature Supercon-
ductivity in 1987). He spent the summer term 1995 as visiting professor at the Vienna University of
Technology in Austria, from where he was later awarded the habilitation in 1997. In 2000, he left the
IBM Research Laboratory after a 10-year period and accepted an offer to be professor for theoretical
physics at Clausthal University of Technology in Germany. Since 2003, Prof. Blöchl is member of
the Braunschweigische Wissenschaftliche Gesellschaft (Academy of Sciences).

The main thrust of Prof. Blöchl’s research is related to ab-initio simulations, that is, parameter-
free simulation of materials processes and molecular reactions based on quantum mechanics. He
developed the Projector Augmented Wave (PAW) method, one of the most widely used electronic
structure methods to date. This work has been cited over 45,000 times.1 It is among the 100 most
cited scientific papers of all times and disciplines2 , and it is among the 10 most-cited papers out
of more than 500,000 published in the 120-year history of Physical Review. 3 Next to the research
related to simulation methodology, his research covers a wide area from biochemistry, solid state
chemistry to solid state physics and materials science. Prof. Blöchl contributed to 8 Patents and

1Researcher ID: B-3448-2012
2R. van Noorden, B. Maher and R. Nuzzo, Nature 514, 550 (2014)
3Oct. 15, 2014, search in the Physical Review Online Archive with criteria “a-z”.
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published about 100 research publications, among others in well-known Journals such as “Nature”.
The work of Prof. Blöchl has been cited over 60,000 times, and he has an H-index of 44.4

4Researcher ID: B-3448-2012
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